({ Fiches diverses pour ARDUINO D

Différents types de données utilisables avec Arduino.
TABRE DES CARACTERES ASCII affichables sur LCD

Détection d'un front sur une entrée analogique.

Détection d'un front sur une entrée binaire.

Calculs de transpositions de valeurs.

Différents types de mémoires sur Arduino.

Gestion du ''temps processeur"'.

Différents types de données utilisables avec Arduino.

TABRE DES CARACTERES ASCII affichables sur LCD

TYPE Valeurs possibles BITS | Octets
char -128 a +127 8 1
int -32768 a +32767 16 | 2
long -2147483648 a +2147483647 32 | 4
Variables Décimales.
float 3,4 *10"(-38) a2 +3,4 * 107(38) 32 | 4
double 1,7*107(-308) a +1,7 * 107(308) 64 | 8

La gestion des variables de type double dans Arduino est exactement la
méme que celle des variables de type float, sans gain de précision.

Variables NON SIGNEES : unsigned

char 0 a 255 8
int 0 a 65535 16 | 2
long 0 a 4294967295 32
Variables propres au langage C d'Arduino
byte 0 a +255 8 1
word 0 2 +65535 16 | 2
boolean Oout 1

Variables booléennes

boolean Nom Variable = FALSE ou TRUE

Toute variable peut servir de variable booléenne :
 Si elle vaut 0 ce sera intreprété comme FALSE.
» Si elle est = 0 ce sera intreprété comme TRUE.

Conversion Numérique analogique pour les entrées A0 a A5

CAN 0a 1023 10| 2

"noolean" NomBrocheSortieBinaire = LOW ou HIGH

DEC B Car | DEC B Car | DEC B Car
32 | 00100000 | SPC | 64 | 01000000 | @ | 96 | 01100000 | [&F
33 | 00100001 | | | 65 | 01000001 | A | 97 | 01100001 a
34 | 00100010 | " | 66 |01000010| B | 98 | 01100010 | b
35 | 00100011 | # | 67 |01000011| C | 99 | 01100011 | ¢
36 | 00100100 | $ | 68 | 01000100| D | 100 | 01100100 | d
37 | 00100101 | % | 69 |01000101| E | 101 | 01100101 | e
38 | 00100110 | & | 70 |o01000110| F | 102 | 01100110 f
39 | 00100111 | ' | 71 |o01000111| G | 103 | 01100111 | g
40 | 00101000 | (| 72 |01001000| H | 104 | 01101000 | h
41 | 00101001 |)y | 73 |o1001001| 1 | 105 | 01101001 | i
42 | ootot010| * | 74 |oto01010| J | 106 | 01101010 | |
43 | 00101011 | + | 75 |o1001011| K | 107 | 01101011 | K
44 | 00101100 | , | 76 |o1001100| L | 108 | 01101100
45 | 00101101 | - | 77 |o1001101| M | 109 | 01101101 | m
46 | 00101110 | . | 78 |ot001110| N | 110 | 01101110 | n
47 | 00101111 | 7 | 79 |ot001111| o | 111 | ot101111 | o
48 | 00110000 | o | 80 |o01010000| P | 112 | 01110000 | p
49 | 00110001 | 1 | 81 |o1010001| @ | 113 [01110001 | q
50 | 00110010 | 2 | 82 |o0fo10010| R | 114 | 01110010 r
51 | 00110011 | 3 | 83 |01010011| S | 115 [01110011 | s
52 | 00110100 | 4 | 84 |o0to10100| T | 116 | 01110100 t
53 | 00110101 | 5 | 85 |0fo10101| U | 117 | 01110101 | u
54 | 00110110 | 6 | 86 |o01010110| v | 118 | 01110110 v
55 | 00110111 | 7 | 87 |oto10111| W | 119 | o1110111 | w
56 | 00111000 | 8 | 88 |01011000| X | 120 | 01111000 | x
57 | 00111001 | 9 | 89 |o0f011001| Y | 121 | 01111001 | y
58 | 00111010 | : | 90 |o0to11010| z | 122 | 01111010 z
59 | 00111011 | ; | 91 |otot1011| [| 123 | 01111011 {
60 | 00111100 | < | 92 |o0f011100| \ | 124 | 01111100
61 | 00111101 | = | 93 |o0t011101| | | 125 | 01111101 3
62 111110 | > 94 1011110 | ~ 126 | 01111110
63 | 00111111 | 2 | 95 | 01011111 o7 i

-
Détection d'un front sur une entrée analogique :

ans son principe, la détection d'un front n'est pas trés compliquée,
mais impose la mémorisation de t'état en cours, car c'est le
changement de ce dernier qui est significatif d'un basculement et non le
fait qu'il soita "1" oua "0". C'est la "contradiction" entre 1'état actuel et
I'état mémorisé qui permet de déterminer la présence d'un front
descendant. Il en résulte le test @ qui dans le programme rétablit la
cohérence des deux booléens et déclenche l'action sur front détecté.
L'organigramme de la Fig.1 présente la logique du traitement de détection
(Traitem entdu 1) . du front descendant. Ce diagramme est
Flg_1 a lier au dessin de la Fig.2 qui précise
Etat "1" mesuré l'ordre chronologique des événements.

NON En bleu nous avons 1'évolution
ETATA1 = vrai 4 ; ' 5
ETAT1 =faux] | Ancien état = vrai de 1'état logique sur l'entrée

F testée en fonction du temps,

Ancien état = vrai®, OU! avec un changement d'étaten 1

oul

ET Etat1 =faux 1 puis en 2. En 3 chaque trait
NON :Téﬁ = faux vertical symbolise la lecture de
SUTTE H ction pourﬁLH l'entrée durant la boucle

: I —

principale du programme. Ce
n'est qu'en 4 que 1'état "1" est pris en compte par le programme, et en
5 que le passage a zéro est détecté. La zone violette et la zone jaune
sont représentatives du retard de prise en compte de I'état mesuré. La
trace rouge est relative a la valeur affectée a la variable Ancien_Etat.
En 6 le changement est immédiat, mais pour le passage a zéro en 7 il

/* Exemple simple de détection d'un front descendant */

int CNA; // Mesure analogique retournée par le CNA.

const byte Entree_mesuree = 0; // Mesure analogique sur AO.

boolean Etat1; // Etat binaire issu de la mesure analogique.

boolean Ancien_Etat; // Etat binaire mémorisé.

Voir aussi le cas d'un
bouton poussoir.

void loop() {
CNA = analogRead(Entree_mesuree);
if (CNA >) { Etat1=true; Ancien_Etat=true;}

else {Etat1=false;};

/| ========== Gérer le front descendant. ==========
if ((Ancien_Etat=true) && (!Etat1)) @
{Ancien_Etat=false; 0515}

7

Etat de I'entrée testée. .
Prise en compte dans %/@ Fig.2 /

11T

® Etat mémorisé dans \
M Ancien_Etat. @

faut que le programme effectue le test de détection de la transition
négative @ d'ou le petit retard repéré en vert sur le diagramme. Les
états "stables" qui suivent les transitions 4 et 5 ne doivent plus avoir
d'effet si ce n'est de confirmer pour le niveau "1" la stabilité de sa valeur
jusqu'a la prochaine transition 5.

Détection d'un front sur une entrée binaire :

L e principe est strictement identique et fait appel aux mémes

booléens que ceux utilisés pour une entrée analogique et ainsi
traiter la chronologie des événements. Comme il n'y a plus de traitement
a effectuer pour évaluer 1'état en entrée, c'est directement le résultat de
la lecture sur EntreeBinaire qui sert de test pour positionner Etat1.

const byte EntreeBinaire = 10; // Broche 10 pour détecter.
boolean Etat1; // Etat bin,aire issu de la lecture sur l'entrée.
boolean Ancien_Etat; // Etat binaire mémorisé.

void setup() { pinMode(EntreeBinaire, INPUT);}
void loop() {
if ((digitalRead(EntreeBinaire) == 1))
{Etat1=true; Ancien_Etat=true;}
else {Etat1=false;};

/| ========== Gérer le front descendant. ==========
if ((Ancien_Etat) && (!Etat1))
{Ancien_Etat=false; 0515}

Cas simplifie d'un bouton poussoir.
if(digitalRead(MonBouton)==LOW) { };// Front détecté.

\whiIe(digitaIRead(Monbouton)::LOW);// Attente du relacher.

Calculs de transpositions de valeurs : (Voir page 30)

F réquemment une variable variant dans une certaine plage de

valeurs doit étre linéairement transposée dans une autre
fourchette numérique avec pour les bornes aussi bien des signes positifs
que négatifs. Un exemple typique est explicité en page 24 pour
transposer la valeur d'une mesure analogique [0 a 1023] en [0 a 255]
apte a piloter une sortie binaire en mode PWM.

— ~ ol 3] 3] ﬁ
L
© = - o © 0 S
h—
| | | | | I [
T T I Y
| | | [vs) o o~ To)
o [xp] [Xp] [N] M~ — [[p)
<t [ss] — — ™ N

Fig.1 Transposée = (uint32_t) Analog * 255/1023

Codage pour des bornes algebriques quelconques.
La figure ci-dessous résume la transformation a effectuer : Quand la
variable V varie linéairement de la valeur A a la valeur B, la transposition
T doit retourner une valeur "proportionnelle" variant linéairement entre
les valeurs C et D bornes comprises. Les bornes sont toutes des entiers
algébriques. Naturellement B et D sont supérieures a A et C.

+ A V V Variable dentrée B

|
r

tC A T vawewrRANSPOSEE tD

Formule de calcul qui traite de tous les cas possibles.
(D-C)*(V-A)
‘-84 "
Pour le codage Arduino il faut commencer par la multiplication pour ne
pas perdre "les décimales" avec la division si les éléments sont des entiers
non signés. Dans I'écriture de la formule il faut commencer par la valeur
de (D-C) qui est une constante. Ainsi les parenthéses pour (V-A)
n'interfereront pas avec la directive (UINtINN_t). Prendre garde dans
les calculs a la valeur de NN, et particulierement si I'une des bornes est
négative et que le calcul de la multiplication conduit a des grandeurs
importantes. Le programme Formules_de TRANSPOSITION.ino
est un exemple de codage avec un jeu d'essais complet. (Voir .../...)

[V] [T]
cAsl A B C D | NN Formule de calcul
1) 0 1023 -8 25 32 |V*33/1023-8
2) -8 25 -2 333 | 32 [335*(V+8)/33-2
3) -2 333 3 10 8 |[7*(V+2)/335+3
4) 3 10 -50 5 16 | 55*(V-3)/7-50
)
)
)

5 -50 5 -100 | -80 | 16 | 70 *(V +50)/55-100
6) | -100 | -30 -40 -20 | 16 |20 * (V +100) /70 - 40
7 -40 -20 [5000 |10000| 32 | 5000 * (V +40) /20 + 5000
8) | 5000 {10000| -800 | -400 | 32 | 400 * (V -5000) /5000 - 800
Programme Formules_de TRANSPOSITION.ino :

// Définition des variables pour ce programme.

int Commande;// Valeur mesurée pour la variable V.
long TRANSPOSITION;// Pas de unsigned car signes négatifs possibles.

(
(
(
(
(
(
(
(

void loop() {
Commande = analogRead(EntreeAnalogique)+1;// [0 a 1024].
/] >>>>>>>>>>>>>>>>> Traitement du cas (1) <<<<<<<<<<<<<<<<<<

TRANSPOSITION = (uint32_t) Commande * 33/ 1023 - 8;

/] >>>>>>>>>>>>>>>>> Traitement du cas (2) <<<<<<<<<<<<<<<<<<
TRANSPOSITION = (uint32_t) 335 * (TRANSPOSITION + 8) /33 - 2;

/] >>>>>>>>>>>>>>>>> Traitement du cas (3) <<<<<<<<<<<<<<<<<<
TRANSPOSITION = (uint8_t) 7 * (TRANSPOSITION + 2) /335 + 3;

/] >>>>>>>>>>>>>>>>> Traitement du cas (4) <<<<<<<<<<<<<<<<<<
TRANSPOSITION = (uint16_t) 55 * (TRANSPOSITION - 3) /7 - 50;

/] >>>>>>>>>>>>>>>>> Traitement du cas (5) <<<<<<<<<<<<<<<<<<
TRANSPOSITION = (uint16_t) 70 * (TRANSPOSITION + 50) /55 -100;

/] >>>>>>>>>>>>>>>>> Traitement du cas (6) <<<<<<<<<<<<<<<<<<
TRANSPOSITION = (uint16_t) 20 * (TRANSPOSITION + 100) /70 - 40;

/] >>>>>>>>>>>>>>>>> Traitement du cas (7) <<<<<<<<<<<<<<<<<<
TRANSPOSITION = (uint32_t) 5000 * (TRANSPOSITION + 40) /20 +5000;

/] >>>>>>>>>>>>>>>>> Traitement du cas (8) <<<<<<<<<<<<<<<g<

TRANSPOSITION = (uint32_t) 400 * (TRANSPOSITION - 5000) / 5000 - 800;

NOTE : La transposée de la Fig.1 peut aussi s'écrire :

Transposée = (uint32_t) Analog * 4.88 que 1'on peut lire comme
le produit des incréments du CAN par sa définition, ou la constante
résultant du calcul de 255 / 1023. (Code plus compact mais moins lisible)

Différents types de mémoires sur Arduino :

Il existe trois types de mémoires internes aux microcontrdleurs de la

famille AVR (Atméga 168/ 328 etc ...) équipant les cartes Arduino :

* La mémoire FLASH est la mémoire non-volatile dans laquelle le
programme est "Téléversé" ety réside jusqu'aréécriture.Pour toutes
les cartes Arduino, 2 ko de lamémoire FLASH sont mobilisés par le
programme de téléchargement résidant. (Bootloader)

* LaSRAM aacces aléatoire oumémoire vive. Le programme y crée
ety modifieles variables durant son exécution. C'est unemémoire
volatile qui perd ses données lors de la mise hors tension.

* L'EEPROM est une mémoire non-volatile mise a la disposition du
programmeur pour y stocker des données destinées au long-terme.

Type ATmegal168 | ATmega328 | ATmegal1280| ATmega2560
FLASH 16 ko 32 ko 128 ko 256ko
SRAM 1024 Octets | 2048 Octets 8 ko 8 ko

EEPROM 512 Octets | 1024 Octets 4 ko 4 ko

La mémoire vive ne peut contenir que tres peu de données. (2Ko
sur Arduino Uno) La SRAM est rapidement saturée si I'on ne prend
pas garde a la taille des variables et surtout a la déclaration des
constantes "texte". LLa gestion d'un tableau de variables de grande
dimension peut facilement devenir impossible par manque de place.

Utilisation de 'EEPROM pour loger des données.

La facon la plus simple pour économiser de la place en SRAM consiste
aloger en EEPROM les chaines de caracteres constantes et les tables
de données constantes. Pour la procédure, voir en page 4 du livret les
Méthodes de la bibliotheque EEPROM.h et consulter les deux petits
programmes ECRIRE_en_ EEPROM.ino et LISTER_EEPROM.ino.
L'EEPROM présente un acces relativement lent puisque toute écriture
ou lecture exige 3,3mS. De plus, le nombre de cycles d'écriture fiables
se situe vers 100000. Cette mémoire doit en priorité étre utilisée pour
loger des constantes. Ce n'est que pour des données "variables" stockées
sur le long terme et ne devant pas étre perdues sur coupure alimentation
que 'EEPROM sera employée. Mais dans ce cas, généralement la
fréquence des écritures reste trées modérée et compatible avec la durée
de vie raisonnable du microcontrdleur utilisé dans l'application.

Utilisation de la mémoire FLASH pour loger des données.
Au méme titre que 'EEPROM, la mémoire FLASH prévue pour loger
le programme peut également étre utilisée pour y loger des données.
D'un acces aussi rapide que de la RAM, elle conserve les données sur
coupure d'alimentation. Mais, lI'estimation de la durée de vie d'une
mémoire flash se situe a environ 100000 écritures et effacements. De ce
fait, il faut la réserver raisonnablement au stockage de données constantes
telles que les tableaux de conversion etc. La mémoire FLASH doit étre
considérée comme une mémoire accessible uniquement en lecture.
PROGMEM type NomConstante (Valeur);
PROGMEM est un modificateur de variable, et ne peut s'utiliser
qu'avec les types de données définis dans la librairie avr/pgmspace.h
qui doit étre préalablement déclarée avec un #include. PROGMEM
précise au compilateur de placer les données dans la mémoire FLASH",
au lieu de la SRAM, ou elles devraient résider en standard.

Noter que PROGMEM étant un modificateur de variable, il n'y a pas
d'emplacement obligatoire, et le compilateur d'Arduino devrait accepter
toutes les définitions équivalentes. L'expérience montre que dans des
versions anciennes du compilateur il y a disfonctionnement si
PROGMEM est positionné apres le nom de la variable :

Type NomConstante[] PROGMEM = {}; // Accepté.

PROGMEM Type NomConstante[] = {}; // Accepté.

Type PROGMEMINTMConstante[] = {}; // Ne pas utiliser.

L'utilisation de types de données ordinaires peut conduire a des erreurs
énigmatiques. (Les float ne sont pas supportés) Il importe donc d'utiliser
impérativement les types de données déclarés dans avr/pgmspace.h :
prog_char : Type char signé sur 1 octet : -127 a 128.

prog_uchar : Type char non signé sur 2 octet : 0 a 255.

prog_int16_t : Type int signé sur 2 octet : -32767 a 32768.
prog_uint16_t : Type int non signé sur 2 octet : 0 a 65535.
prog_int32_t: Typelong signé sur 4 octet : -2147483648 2 2147483647.
prog_uint32_t : Type long non signé sur 4 octet : 0 2 4294967295.

Bien que PROGMEM fonctionne avec une variable élémentaire, il est
plus rentable de s'en servir avec des blocs de données a stocker, comme
des tableaux ou d'autres structures de données en langage C. Exemple :

PROGMEM prog_uint16_t MesValeurs[] = {65432, 12345, 73, 88, 3333};
J

~N

Gestion du ''temps processeur'" :

auf s'il est placé en veille, le microcontrdleur est occupé a 100%.

Méme "s'il ne fait rien" en déroulant des boucles d'attente dans
lesquelles il surveille une condition de sortie, le uP n'est jamais arrété.
Le probleme pour le programmeur réside dans la charge de travail en
tache de fond qui peut amener a une lenteur exagérée de rotation dans
la boucle de base loop ou dans ses procédures et fonctions de service.
Pour évaluer la fréquence de rafraichissement de la boucle de base ou
du temps passé dans les procédures de servitude ou d'interruptions, on
peut utiliser une sortie binaire que 'on fait changer d'état a convenance.
Ainsi, a I'aide d'un périodemetre numérique ou d'un oscilloscope il
devient facile d'estimer le temps disponible pour effectuer des traitements
globaux dans loop, et celui consommé dans les procédures.

L’ optimisation pour le choix du type des données et de
I'architecture adoptée pour la structure globale du programme
sont des incontournables a soigner pour minimiser les temps d'exécution
et ceux de réaction a un événement. Cette optimisation releve d'un
compromis engendré par l'utilisation de nombreuses procédures visant
a favoriser la lisibilité du programme.
Lisibilité du programme.
Sil'on désire dominer son logiciel, la logique conduit a ne trouver dans
la boucle de base pratiquement que des appels a des procédures ou
des fonctions dont les identificateurs sont parfaitement évocateurs. 11
en est de méme pour les routines de servitude. Mais chaque invocation
se paye par le temps d'appel et celui de retour.

Bien choisir le type des données.

Les microcontrdleurs de la famille AVR fonctionnent en mots de 8 bits.
Il importe de favoriser a outrance les variables et les constantes de
type char ou byte car tout autre choix implique de la consommation de
mémoire et du "temps machine". Le traitement d'un int de16 bits est
déja beaucoup plus long qu'un simple byte car il est traité sur deux octets
avec prise en compte de la retenue ou du bit de signe. C'est particulierement
vrai pour le choix de la variable d'évolution dans une boucle for.

Prise en compte des événements courts.
Si le microcontrdleur est tres chargé et qu'il "peine” dans la boucle de
base, le programme risque de ne pas détecter une transition ou un état

~

J

temporaire court sur l'une des entrées a surveiller.

Il faut considérer que chaque valeur que 1'on veut traiter (Etar des
broches, valeur des "Timers", données recues sur un port série,
valeur analogique convertie etc) est mise a jour dans des registres
constamment rafraichis par les "événements extérieurs". C'est au
programme que revient la responsabilité de prendre en compte ces
valeurs fugitives avant leur modification, donc par du code suffisamment
réactif pour ne pas perdre un événement significatif.

Mis a part certaines Interruptions, il n'y a pas de tampons d'attente
dans Arduino. Les registres peuvent changer a tout moment sans
prévenir. Chaque fonction matérielle est un périphérique externe au
CPU, associée a plusieurs registres. Il revient au programme d'en vérifier
le contenu et de le traiter avec une fréquence suffisante.

Gestion des événements.

S ans que nous en soyons forcément conscients, le microcontrdleur

est constamment sollicité par des requétes d'Interruptions issues
des périphériques connectés que ce soit en interne ou en externe.

(Timers, voie série etc) Dans la boucle de base, le listage ne montre
souvent que des instructions "simples" qui masquent la charge réelle de
travail du microcontrdleur. Cette charge de travail peut alors aboutir a
un ralentissement significatif de loop sil'on procede par examen cyclique
des nombreuses entrées du systeme. Pour les événements courts qui
peuvent étre perdus, il faut alors procéder par Interruptions pour éviter
les pertes de leur traitement. C'est dans ce cas qu'une sortie qui bascule
dans les séquences d'interruption ISR ou dans la boucle de base loop
permet d'optimiser le code en phase de développement.

—(Notes sur l'utilisation des interruptions.)—

*’usage des interruptions estidéal pour des taches qui consistent a
surveiller les touches d'un clavier, la détection d'un changement
d’étatrapide et aléatoire sur un capteur etc, sans avoir pour autant
aconstamment surveiller I’état de labroche d'entrée concernée.

* [déalement, une fonction attachée a une interruption doit &tre la plus
courte et la plus rapide possible. Une bonne pratique consiste a
s’en servir pour intercepter un événement aléatoire et positionner
savaleur dans une variable globale déclarée en typevolatile. Le
traitement de cette variable est ensuite confié en différé ala boucle
de base ou a l'une de ses procédures de servitude.

