
Fiches diverses pour ARDUINO

Différents types de données utilisables avec Arduino.

TABRE DES CARACTÈRES ASCII affichables sur LCD

Détection d'un front sur une entrée analogique.

Détection d'un front sur une entrée binaire.

Calculs de transpositions de valeurs.

Différents types de mémoires sur Arduino.

Gestion du "temps processeur".

La gestion des variables de type double dans Arduino est exactement la

même que celle des variables de type f loat, sans gain de précision.

Variables NON SIGNÉES : unsigned

char 0 à 255 8 1

int 0 à 65535 16 2

long 0 à 4294967295 32 4

Variables propres au langage C d'Arduino

byte 0 à +255 8 1

word 0 à +65535 16 2

boolean 0 ou 1 1 1

Variables booléennes

boolean Nom Variable = FALSE ou TRUE

TYPE Valeurs possibles BITS Octets

char -128 à +127 8 1

int -32768 à +32767 16 2

long -2147483648 à +2147483647 32 4

Variables Décimales.

float 3,4 * 10^(-38) à +3,4 * 10^(38) 32 4

double 1,7 * 10^(-308) à +1,7 * 10^(308) 64 8

Différents types de données utilisables avec Arduino.

Conversion Numérique analogique pour les entrées A0 à A5

CAN 0 à 1023 10 2

"boolean" NomBrocheSortieBinaire = LOW ou HIGH

Toute variable peut servir de variable booléenne :
• Si elle vaut 0 ce sera intreprété comme FALSE.
• Si elle est / 0 ce sera intreprété comme TRUE.

TABRE DES CARACTÈRES ASCII affichables sur LCD

32 00100000 SPC 64 01000000 @ 96 01100000

33 00100001 ! 65 01000001 A 97 01100001 a

34 00100010 " 66 01000010 B 98 01100010 b

35 00100011 # 67 01000011 C 99 01100011 c

36 00100100 $ 68 01000100 D 100 01100100 d

37 00100101 % 69 01000101 E 101 01100101 e

38 00100110 & 70 01000110 F 102 01100110 f

39 00100111 ' 71 01000111 G 103 01100111 g

40 00101000 (72 01001000 H 104 01101000 h

41 00101001) 73 01001001 I 105 01101001 i

42 00101010 * 74 01001010 J 106 01101010 j

43 00101011 + 75 01001011 K 107 01101011 k

44 00101100 , 76 01001100 L 108 01101100 l

45 00101101 - 77 01001101 M 109 01101101 m

46 00101110 . 78 01001110 N 110 01101110 n

47 00101111 / 79 01001111 O 111 01101111 o

48 00110000 0 80 01010000 P 112 01110000 p

49 00110001 1 81 01010001 Q 113 01110001 q

50 00110010 2 82 01010010 R 114 01110010 r

51 00110011 3 83 01010011 S 115 01110011 s

52 00110100 4 84 01010100 T 116 01110100 t

53 00110101 5 85 01010101 U 117 01110101 u

54 00110110 6 86 01010110 V 118 01110110 v

55 00110111 7 87 01010111 W 119 01110111 w

56 00111000 8 88 01011000 X 120 01111000 x

57 00111001 9 89 01011001 Y 121 01111001 y

58 00111010 : 90 01011010 Z 122 01111010 z

59 00111011 ; 91 01011011 [123 01111011 {

60 00111100 < 92 01011100 \ 124 01111100 |

61 00111101 = 93 01011101] 125 01111101 }

62 00111110 > 94 01011110 ^

63 00111111 ? 95 01011111 _
126 01111110

127 01111111

DEC B Car DEC B Car DEC B Car

126 127

Détection d'un front sur une entrée analogique :

DDDDD
ans son principe, la détection d'un front n'est pas très compliquée,

mais impose la mémorisation de t'état en cours, car c'est le

Fig.1

changement de ce dernier qui est significatif d'un basculement et non le

fait qu'il soit à "1" ou à "0". C'est la "contradiction" entre l'état actuel et

l'état mémorisé qui permet de déterminer la présence d'un front

descendant. Il en résulte le test @ qui dans le programme rétablit la

cohérence des deux booléens et déclenche l'action sur front détecté.

L'organigramme de la Fig.1 présente la logique du traitement de détection

du front descendant. Ce diagramme est

à lier au dessin de la Fig.2 qui précise

l'ordre chronologique des événements.

En bleu nous avons l'évolution

de l'état logique sur l'entrée

testée en fonction du temps,

avec un changement d'état en 1
puis en 2. En 3 chaque trait

vertical symbolise la lecture de

l ' en t rée durant la boucle

principale du programme. Ce

n'est qu'en 4 que l'état "1" est pris en compte par le programme, et en

5 que le passage à zéro est détecté. La zone violette et la zone jaune

sont représentatives du retard de prise en compte de l'état mesuré. La

trace rouge est relative à la valeur affectée à la variable Ancien_Etat.
En 6 le changement est immédiat, mais pour le passage à zéro en 7 il

Voir aussi le cas d'un
bouton poussoir.

/* Exemple simple de détection d'un front descendant */
int CNA; // Mesure analogique retournée par le CNA.
const byte Entree_mesuree = 0; // Mesure analogique sur A0.
boolean Etat1; // État binaire issu de la mesure analogique.
boolean Ancien_Etat; // État binaire mémorisé.

void loop() {
 CNA = analogRead(Entree_mesuree);
 if (CNA > Seuil) { Etat1=true; Ancien_Etat=true;}
 else {Etat1=false;};
 // ========== Gérer le front descendant. ==========
 if ((Ancien_Etat=true) && (!Etat1)) @
 {Ancien_Etat=false; ActionSurFrontDescendant();} ; }

Cas simplifié d'un bouton poussoir.
if(digitalRead(MonBouton)==LOW) {Actions}; // Front détecté.
while(digitalRead(Monbouton)==LOW); // Attente du relâcher.

1

3

5

6
7

4

Fig.22État de l'entrée testée.
Prise en compte dans

voidLoop().

Détection d'un front sur une entrée binaire :

faut que le programme effectue le test de détection de la transition

négative @ d'où le petit retard repéré en vert sur le diagramme. Les

états "stables" qui suivent les transitions 4 et 5 ne doivent plus avoir

d'effet si ce n'est de confirmer pour le niveau "1" la stabilité de sa valeur

jusqu'à la prochaine transition 5.

État mémorisé dans
Ancien_Etat.

LLLLL
e principe est strictement identique et fait appel aux mêmes

booléens que ceux utilisés pour une entrée analogique et ainsi

traiter la chronologie des événements. Comme il n'y a plus de traitement

à effectuer pour évaluer l'état en entrée, c'est directement le résultat de

la lecture sur EntreeBinaire qui sert de test pour positionner Etat1.

const byte EntreeBinaire = 10; // Broche 10 pour détecter.
boolean Etat1; // État binaire issu de la lecture sur l'entrée.
boolean Ancien_Etat; // État binaire mémorisé.

void setup() { pinMode(EntreeBinaire, INPUT);}

void loop() {
 if ((digitalRead(EntreeBinaire) == 1))
 {Etat1=true; Ancien_Etat=true;}
 else {Etat1=false;};
 // ========== Gérer le front descendant. ==========
 if ((Ancien_Etat) && (!Etat1))
 {Ancien_Etat=false; ActionSurFrontDescendant(); } ; }

FFFFF
réquemment une variable variant dans une certaine plage de

valeurs doit être linéairement transposée dans une autre
fourchette numérique avec pour les bornes aussi bien des signes positifs

que négatifs. Un exemple typique est explicité en page 24 pour

transposer la valeur d'une mesure analogique [0 à 1023] en [0 à 255]

apte à piloter une sortie binaire en mode PWM.

Transposée = (uint32_t) Analog * 255 / 1023

Codage pour des bornes algébriques quelconques.
La figure ci-dessous résume la transformation à effectuer : Quand la

variable V varie linéairement de la valeur A à la valeur B, la transposition

T doit retourner une valeur "proportionnelle" variant linéairement entre

les valeurs C et D bornes comprises. Les bornes sont toutes des entiers

algébriques. Naturellement B et D sont supérieures à A et C.

Pour le codage Arduino il faut commencer par la multiplication pour ne

pas perdre "les décimales" avec la division si les éléments sont des entiers

non signés. Dans l'écriture de la formule il faut commencer par la valeur

de (D-C) qui est une constante. Ainsi les parenthèses pour (V-A)

n'interfèreront pas avec la directive (uintNN_t). Prendre garde dans

les calculs à la valeur de NN, et particulièrement si l'une des bornes est

négative et que le calcul de la multiplication conduit à des grandeurs

importantes. Le programme Formules_de_TRANSPOSITION.ino
est un exemple de codage avec un jeu d'essais complet. (Voir .../...)

Formule de calcul qui traite de tous les cas possibles.

T =
(D - C) * (V - A)

(B - A)
 + C

 [V] [T]
CAS A B C D
(1) 0 1023 -8 25 32 V * 33 / 1023 - 8

(2) -8 25 -2 333 32 335 * (V + 8) / 33 - 2

(3) -2 333 3 10 8 7 * (V + 2) / 335 + 3
(4) 3 10 -50 5 16 55 * (V - 3) / 7 - 50

(5) -50 5 -100 -30 16 70 * (V + 50) / 55 - 100

(6) -100 -30 -40 -20 16 20 * (V + 100) / 70 - 40
(7) -40 -20 5000 10000 32 5000 * (V + 40) / 20 + 5000

(8) 5000 10000 -800 -400 32 400 * (V - 5000) / 5000 - 800

NN Formule de calcul
Calculs de transpositions de valeurs : (Voir page 30)

Fig.1 Programme Formules_de_TRANSPOSITION.ino :
// Définition des variables pour ce programme.
int Commande; // Valeur mesurée pour la variable V.
long TRANSPOSITION; // Pas de unsigned car signes négatifs possibles.

void loop() {
 Commande = analogRead(EntreeAnalogique)+1; // [0 à 1024].
// >>>>>>>>>>>>>>>>> Traitement du cas (1) <<<<<<<<<<<<<<<<<<
 TRANSPOSITION = (uint32_t) Commande * 33 / 1023 - 8;
// Pas de parenthèse car priorité des opérateurs respectée.
// >>>>>>>>>>>>>>>>> Traitement du cas (2) <<<<<<<<<<<<<<<<<<
 TRANSPOSITION = (uint32_t) 335 * (TRANSPOSITION + 8) / 33 - 2;
// >>>>>>>>>>>>>>>>> Traitement du cas (3) <<<<<<<<<<<<<<<<<<
 TRANSPOSITION = (uint8_t) 7 * (TRANSPOSITION + 2) / 335 + 3;
// >>>>>>>>>>>>>>>>> Traitement du cas (4) <<<<<<<<<<<<<<<<<<
 TRANSPOSITION = (uint16_t) 55 * (TRANSPOSITION - 3) / 7 - 50;
// >>>>>>>>>>>>>>>>> Traitement du cas (5) <<<<<<<<<<<<<<<<<<
 TRANSPOSITION = (uint16_t) 70 * (TRANSPOSITION + 50) / 55 - 100;
// >>>>>>>>>>>>>>>>> Traitement du cas (6) <<<<<<<<<<<<<<<<<<
 TRANSPOSITION = (uint16_t) 20 * (TRANSPOSITION + 100) / 70 - 40;
// >>>>>>>>>>>>>>>>> Traitement du cas (7) <<<<<<<<<<<<<<<<<<
 TRANSPOSITION = (uint32_t) 5000 * (TRANSPOSITION + 40) / 20 +5000;
// >>>>>>>>>>>>>>>>> Traitement du cas (8) <<<<<<<<<<<<<<<<<<
TRANSPOSITION = (uint32_t) 400 * (TRANSPOSITION - 5000) / 5000 - 800;

NOTE : La transposée de la Fig.1 peut aussi s'écrire :

Transposée = (uint32_t) Analog * 4.88 que l'on peut lire comme

le produit des incréments du CAN par sa définition, ou la constante

résultant du calcul de 255 / 1023. (Code plus compact mais moins lisible)

Différents types de mémoires sur Arduino :
Il existe trois types de mémoires internes aux microcontrôleurs de la

famille AVR (Atméga 168 / 328 etc …) équipant les cartes Arduino :
• La mémoire FLASH est la mémoire non-volatile dans laquelle le

programme est "Téléversé" et y réside jusqu'à réécriture. Pour toutes
les cartes Arduino, 2 ko de la mémoire FLASH sont mobilisés par le
programme de téléchargement résidant. (Bootloader)

• La SRAM à accès aléatoire ou mémoire vive. Le programme y crée
et y modifie les variables durant son exécution. C'est une mémoire

volatile qui perd ses données lors de la mise hors tension.
• L'EEPROM est une mémoire non-volatile mise à la disposition du

programmeur pour y stocker des données destinées au long-terme.

Type ATmega168 ATmega328 ATmega1280 ATmega2560

FLASH 16 ko 32 ko 128 ko 256ko

SRAM 1024 Octets 2048 Octets 8 ko 8 ko

EEPROM 512 Octets 1024 Octets 4 ko 4 ko

Utilisation de l'EEPROM pour loger des données.
La façon la plus simple pour économiser de la place en SRAM consiste

à loger en EEPROM les chaînes de caractères constantes et les tables

de données constantes. Pour la procédure, voir en page 4 du livret les

Méthodes de la bibliothèque EEPROM.h et consulter les deux petits

programmes ECRIRE_en_EEPROM.ino et LISTER_EEPROM.ino.

L'EEPROM présente un accès relativement lent puisque toute écriture

ou lecture exige 3,3mS. De plus, le nombre de cycles d'écriture fiables

se situe vers 100000. Cette mémoire doit en priorité être utilisée pour

loger des constantes. Ce n'est que pour des données "variables" stockées

sur le long terme et ne devant pas être perdues sur coupure alimentation

que l'EEPROM sera employée. Mais dans ce cas, généralement la

fréquence des écritures reste très modérée et compatible avec la durée

de vie raisonnable du microcontrôleur utilisé dans l'application.

Utilisation de la mémoire FLASH pour loger des données.
Au même titre que l'EEPROM, la mémoire FLASH prévue pour loger

le programme peut également être utilisée pour y loger des données.

D'un accès aussi rapide que de la RAM, elle conserve les données sur

coupure d'alimentation. Mais, l'estimation de la durée de vie d'une

mémoire flash se situe à environ 100000 écritures et effacements. De ce

fait, il faut la réserver raisonnablement au stockage de données constantes

telles que les tableaux de conversion etc. La mémoire FLASH doit être

considérée comme une mémoire accessible uniquement en lecture.

PROGMEM type NomConstante (Valeur); .
PROGMEM est un modificateur de variable, et ne peut s'utiliser

qu'avec les types de données définis dans la librairie avr/pgmspace.h
qui doit être préalablement déclarée avec un #include. PROGMEM
précise au compilateur de placer les données dans la mémoire FLASH",

au lieu de la SRAM, où elles devraient résider en standard.

Bien que PROGMEM fonctionne avec une variable élémentaire, il est

plus rentable de s'en servir avec des blocs de données à stocker, comme

des tableaux ou d'autres structures de données en langage C. Exemple :

PROGMEM prog_uint16_t MesValeurs[] = {65432, 12345, 73, 88, 3333};

Noter que PROGMEM étant un modificateur de variable, il n'y a pas

d'emplacement obligatoire, et le compilateur d'Arduino devrait accepter

toutes les définitions équivalentes. L'expérience montre que dans des

versions anciennes du compilateur il y a disfonctionnement si

PROGMEM est positionné après le nom de la variable :

La mémoire vive ne peut contenir que très peu de données. (2Ko
sur Arduino Uno) La SRAM est rapidement saturée si l'on ne prend
pas garde à la taille des variables et surtout à la déclaration des

constantes "texte". La gestion d'un tableau de variables de grande

dimension peut facilement devenir impossible par manque de place.

L
e
 p

ro
g

ra
m

m
e

Te

st
e

r_
P

R
O

G
M

E
M

.i
n

o
 d

o
n

n
e

 u
n

 e
x

e
m

p
le

 d
e

 s
to

c
k

a
g

e
 d

e
 d

o
n

n
é

e
s

e
n

 m
é

m
o

ir
e

 d
e

 p
ro

g
ra

m
m

e
.

Type NomConstante[] PROGMEM = {}; // Accepté.
PROGMEM Type NomConstante[] = {}; // Accepté.
Type PROGMEM NomConstante[] = {}; // Ne pas utiliser.

L'utilisation de types de données ordinaires peut conduire à des erreurs

énigmatiques. (Les float ne sont pas supportés) Il importe donc d'utiliser

impérativement les types de données déclarés dans avr/pgmspace.h :

prog_char : Type char signé sur 1 octet : -127 à 128.

prog_uchar : Type char non signé sur 2 octet : 0 à 255.

prog_int16_t : Type int signé sur 2 octet : -32767 à 32768.

prog_uint16_t : Type int non signé sur 2 octet : 0 à 65535.

prog_int32_t : Type long signé sur 4 octet : -2147483648 à 2147483647.

prog_uint32_t : Type long non signé sur 4 octet : 0 à 4294967295.

Gestion du "temps processeur" :

lesquelles il surveille une condition de sortie, le µP n'est jamais arrêté.

Le problème pour le programmeur réside dans la charge de travail en

tâche de fond qui peut amener à une lenteur exagérée de rotation dans

la boucle de base loop ou dans ses procédures et fonctions de service.

Pour évaluer la fréquence de rafraichissement de la boucle de base ou

du temps passé dans les procédures de servitude ou d'interruptions, on

peut utiliser une sortie binaire que l'on fait changer d'état à convenance.

Ainsi, à l'aide d'un périodemètre numérique ou d'un oscilloscope il

devient facile d'estimer le temps disponible pour effectuer des traitements

globaux dans loop, et celui consommé dans les procédures.

auf s'il est placé en veille, le microcontrôleur est occupé à 100%.

Même "s'il ne fait rien" en déroulant des boucles d'attente dansSSSSS

Prise en compte des événements courts.
Si le microcontrôleur est très chargé et qu'il "peine" dans la boucle de

base, le programme risque de ne pas détecter une transition ou un état

Bien choisir le type des données.
Les microcontrôleurs de la famille AVR fonctionnent en mots de 8 bits.

Il importe de favoriser à outrance les variables et les constantes de

type char ou byte car tout autre choix implique de la consommation de

mémoire et du "temps machine". Le traitement d'un int de16 bits est

déjà beaucoup plus long qu'un simple byte car il est traité sur deux octets

avec prise en compte de la retenue ou du bit de signe. C'est particulièrement

vrai pour le choix de la variable d'évolution dans une boucle for.

• L’usage des interruptions est idéal pour des tâches qui consistent à
surveiller les touches d'un clavier, la détection d'un changement

d’état rapide et aléatoire sur un capteur etc, sans avoir pour autant
à constamment surveiller l’état de la broche d'entrée concernée.

• Idéalement, une fonction attachée à une interruption doit être la plus
courte et la plus rapide possible. Une bonne pratique consiste à

s’en servir pour intercepter un événement aléatoire et positionner
sa valeur dans une variable globale déclarée en type volatile. Le
traitement de cette variable est ensuite confié en différé à la boucle
de base ou à l'une de ses procédures de servitude.

temporaire court sur l'une des entrées à surveiller.
Il faut considérer que chaque valeur que l'on veut traiter (État des
broches, valeur des "Timers", données reçues sur un port série,
valeur analogique convertie etc) est mise à jour dans des registres
constamment rafraichis par les "événements extérieurs". C'est au
programme que revient la responsabilité de prendre en compte ces
valeurs fugitives avant leur modification, donc par du code suffisamment

réactif pour ne pas perdre un événement significatif.
Mis à part certaines Interruptions, il n'y a pas de tampons d'attente
dans Arduino. Les registres peuvent changer à tout moment sans
prévenir. Chaque fonction matérielle est un périphérique externe au

CPU, associée à plusieurs registres. Il revient au programme d'en vérifier

le contenu et de le traiter avec une fréquence suffisante.

Gestion des événements.

des périphériques connectés que ce soit en interne ou en externe.

(Timers, voie série etc) Dans la boucle de base, le listage ne montre

souvent que des instructions "simples" qui masquent la charge réelle de

travail du microcontrôleur. Cette charge de travail peut alors aboutir à

un ralentissement significatif de loop si l'on procède par examen cyclique

des nombreuses entrées du système. Pour les événements courts qui

peuvent être perdus, il faut alors procéder par Interruptions pour éviter

les pertes de leur traitement. C'est dans ce cas qu'une sortie qui bascule

dans les séquences d'interruption ISR ou dans la boucle de base loop
permet d'optimiser le code en phase de développement.

ans que nous en soyons forcément conscients, le microcontrôleur

est constamment sollicité par des requêtes d'Interruptions issuesSSSSS

Notes sur l'utilisation des interruptions. (Rappels)

LLLLL'''''
optimisation pour le choix du type des données et de

l'architecture adoptée pour la structure globale du programme

sont des incontournables à soigner pour minimiser les temps d'exécution

et ceux de réaction à un événement. Cette optimisation relève d'un

compromis engendré par l'utilisation de nombreuses procédures visant

à favoriser la lisibilité du programme.

Lisibilité du programme.
Si l'on désire dominer son logiciel, la logique conduit à ne trouver dans

la boucle de base pratiquement que des appels à des procédures ou

des fonctions dont les identificateurs sont parfaitement évocateurs. Il

en est de même pour les routines de servitude. Mais chaque invocation

se paye par le temps d'appel et celui de retour.

