LE G

Erik Bartmann

EYROLLES
—

RAN

D LIV

Q

’ARDUINO

violles,

> e

012

20

right ©

(B)"

22 montages a réaliser avec Arduino

Avec son petit microcontréleur hautement performant et
facilement programmable, la plate-forme libre Arduino
a révolutionné le mouvement Do /t Yourself. Se couplant
aisément avec d'autres composants (écrans LCD, cap-
teurs, moteurs...), elle est devenue aujourd’hui un élément
indispensable dans de nombreux dispositifs électronigues.
Sa simplicité d'utilisation, I'étendue de ses applications et
son prix modigue ont conguis un large public d’amateurs
et de professionnels : passionnés d'électronigue, designers,

ingénieurs, musiciens...

Remarguable par son approche pédagogique, cet ouvrage
de référence vous fera découvrir le formidable potentiel
d’Arduino, en vous délivrant un peu de théorie et surtout
beaucoup de pratigue avec ses 22 montages a réaliser. Mise
a jour avec les dernieres évolutions d’Arduino, cette deu-
xiéme édition s’est enrichie de deux nouveaux chapitres et

de projets 8 monter avec un Raspberry Pi ou une carte Yun.

A qui s’adresse ce livre ?
Aux électroniciens, bricoleurs, bidouilleurs, hobbyistes, inge-

nieurs, designers, artistes, makers...

Dans ce livre, vous apprendrez notamment a :

B créer un séquenceur de lumiére
B fabriquer un afficheur LCD

B commander un moteur pas-a-pas
=

réaliser un shield

Sur www.serialmakers.com

Téléchargez le code source des sketches Arduino

présentés dans cet ouvrage.

‘.-’;-.RIAL

eEDMAKERS

www.serialmakers.com

Electronicien de formation, Erik
Bartmann est aujourd’hui déve-
loppeur pour le principal fournisseur
européen d'infrastructures infor-
matiques. Passionné d'électronique
depuis toujours, il est 'auteur de
plusieurs ouvrages sur Arduino,
Processing et le Raspberry Pi, parus
aux éditions O'Reilly.

www.editions-eyrolles.com

LE GRAND LIVRE

D’ARDUINO

CHEZ LE MEME EDITEUR

Dans la collection « Serial Makers »

C. Prart. — L’¢électronique en pratique.
N°13507, 2013, 344 pages.

C. Bosqug, O. Noor et L. Ricarp. — FabLabs, ete. Les nouveaux lieux de fabrication numérique.
N°13938, 2015, 216 pages.

M. RICHARDSON et S. WALLACE. — A la découverte du Raspberry Pi.
N°13747, 2013, 176 pages.

B. PerTis, A. Kaziunas FrRancE et J. SHERGILL. — Imprimer en 3D avec la MakerBot.
N°13748, 2013, 226 pages.

M. BErcHON. — I’impression 3D (2¢ édition).
N°13946, 2014, 232 pages.

R. JoBARD. — Les drones. La nouvelle révolution.
N°13976, 2014, 190 pages.

J. Bover. — Réparez vous-méme vos appareils électroniques.
N°13936, 2014, 384 pages.

Erik Bartmann

LE GRAND LIVRE

D’ARDUINO

Deuxieme édition

EYROLLES RIAL

.

EDITIONS EYROLLES
61, bd Saint-Germain
75240 Paris Cedex 05

www.editions-eyrolles.com

Authorized French translation of the German edition of Die elektronische Welt mit Arduino entdecken, 2.Auflage by
Erik Bartmann, ISBN 978-3-95561-115-6 © 2014 by O’Reilly Verlag GmbH & Co. KG. This translation is published
and sold by permission of O’Reilly Media, Inc., which owns or controls all rights to publish and sell the same.

Traduction autorisée de 1’ouvrage en langue allemande intitulé Die elektronische Welt mit Arduino entdecken,

2.Auflage d’Erik Bartmann (ISBN : 978-3-95561-115-6)
Adapté¢ de I’allemand par Danielle Lafarge et Patrick Chantercau

L’éditeur remercie vivement Olivier Decelle pour sa validation technique de 1'ouvrage.

. En application de la loi du 11 mars 1957, il est interdit de reproduire intégralement ou partiellement le présent ouvrage,
< sur quelque support que ce soit, sans I’autorisation de I'Editeur ou du Centre Francais d’exploitation du droit de copie,
= 20, rue des Grands Augustins, 75006 Paris.

5 © Groupe Eyrolles, 2015, ISBN : 978-2-212-14117-7

Avant-propos

Il est frappant de constater qu’aujourd’hui, nous sommes entourés
d’objets préfabriqués qu’il n’est pas possible ou presque de modifier.
Ajouté a cela, les médias (journaux, télévision, Internet...) qui nous
assénent certaines pseudo-vérités que beaucoup tiennent pour
acquises sans chercher plus loin. D’ou le risque d’une mise sous
tutelle insidieuse de I'individu, que nous ne devons absolument pas
sous-estimer. Nous sommes tres peu sollicités pour comprendre notre
environnement quotidien : dans ce contexte, que reste-t-il de notre
créativité 7 En lisant ces lignes, vous vous demandez peut-étre quel
est le rapport avec Arduino et si vous avez en main le livre qu’il vous
faut. Pas d’inquiétude, si j’ai choisi de débuter cet avant-propos par
ce texte quelque peu provocateur mais somme toute réaliste, c’est
parce que cet ouvrage va vous donner les moyens d’exprimer toute
votre créativité.

L’électronique est un vaste domaine, idéal pour donner libre cours a
son imagination, selon son envie et son humeur. C’est pourquoi cet
ouvrage ne se contente pas de présenter des montages préts a
I’emploi. Certes, il en faut, mais son but premier est de fournir des
pistes au lecteur pour qu’il développe ses propres circuits. Les kits de
montage électrique, a assembler selon un «schéma F», sont
d’emblée efficaces et attrayants, et garantissent que tout fonctionne
comme son inventeur I’a souhaité. Mais soyons honnétes : monter un
tel circuit constitue-t-il un exploit remarquable ? Certainement pas.
En se présentant comme un creuset d’idées, ce livre va beaucoup plus
loin et favorisera I’inventivité de tout amateur d’électronique.

Cela étant, un petit coup de pouce sera nécessaire au départ, car pour
développer vos propres projets Arduino, vous devrez d’abord en

N
.

connaitre les bases. Mais ce processus est tout 4 fait normal : pour

apprendre 4 marcher, courir, lire ou écrire, nous avons dii aussi faire
appel a 1’aide d’autrui.

Arduino est un circuit imprimé open source. Vous connaissez déja
siirement ce qualificatif pour des logiciels gratuits, ol chacun peut
prendre part au développement du projet et y apporter sa contribution.
Ce mode de collaboration, réunissant beaucoup de personnes intéres-
sées et engagées, posséde un fort potentiel et fait clairement avancer
les choses. Les résultats parlent d’eux-mémes et n’ont rien a envier a
ceux des projets commerciaux.

Sous ce nom Arduino se cachent non seulement du matériel mais
aussi un logiciel. On parle alors de Physical Computing, qui désigne
la construction de systémes interactifs permettant de connecter le
monde physique a celui des ordinateurs. Le monde dans lequel nous
vivons est considéré comme un systéme analogique, alors que les
ordinateurs agissent dans un environnement numérique ne connais-
sant que les états logiques 0 et 1. C’est & nous, individus créatifs, qu’il
appartient d’établir une liaison entre ces deux mondes et de montrer
par des actions et des faits de quoi nous sommes capables.

Cet ouvrage traite de deux thématiques fondamentales, dont nous ne
pourrions nous affranchir :

» I’électronique (composants et fonctions) ;

¢ le microcontrdleur (la carte Arduino).

Naturellement, tout livre étant limité en volume, ces deux thémes
n’ont pu étre traités ici de maniere exhaustive. Si vous souhaitez en
savoir davantage, la littérature existante sur ce sujet est abondante,
sans compter toutes les informations disponibles sur Internet. Cet
ouvrage se veut juste étre l'instigateur, voire le déclencheur, d’une
irrépressible soif d’apprendre. Je serai donc trés heureux si j’en suis
un peu pour quelque chose. Mais concentrez-vous d’abord sur
I’ouvrage que vous avez dans les mains.

Au début, tout sera simple et facile au point que certains se demande-
ront quel est I’intérét de faire clignoter une diode. Pourtant, soyez
assuré que ce petit montage est lui aussi une pierre de 1'édifice.
N’oubliez pas qu’une phrase est composée de lettres qui, prises isolé-
ment, ne veulent pas dire grand-chose, mais qui, une fois assemblées,
nous permettent de communiquer. En électronique, ¢’est le méme
principe : tout circuit n’est ni plus ni moins qu’une association judi-
cieuse de composants électriques.

®

Avant-propos

Nouveautés de la deuxieme
édition

Depuis la sortie de la premiére édition de mon livre sur Arduino, les
choses ont quelque peu évolué : de nouvelles cartes Arduino sont
apparues sur le marché, ouvrant de nouvelles voies créatives. I’en

présenterai quelques-unes au chapitre 2 en détaillant leurs avantages
et inconvénients.

Il n’est pas facile pour Arduino de s’affirmer alors que vient d’arriver
I’ordinateur monocarte Raspberry Pi. Beaucoup d’entre nous se sont
déja laissé séduire par les promesses de ce nano-ordinateur qui, avec
son systeme d’exploitation Linux et son connecteur GPIO, offre des
possibilités infinies. Pourtant, je ne pense pas qu’il puisse détroner la
carte Arduino, qui posséde deux atouts majeurs : d’une part, elle est
spécifiquement destinée a la réalisation de montages électroniques et,
d’autre part, elle est trés facile & programmer au moyen du langage C/
C++. D’ailleurs, dans le domaine du profotypage — le montage rapide
de circuits interactifs —, Arduino a toujours une longueur d’avance.
Vous avez une idée, vous attrapez votre carte Arduino et vous
commencez a programmer et a connecter des composants.

Toutefois, il n’est pas étonnant que de nombreux fans d’Arduino se
sentent menacés par le Raspberry Pi qui fait figure d’étranger ou
d’intrus. Mais il me semble qu’il se base sur une tout autre approche.
11 est davantage destiné aux débutants en informatique qui souhaitent
s’initier a différents langages et découvrir les principes fondamentaux
de la programmation. Il convient parfaitement pour un premier
contact avec un mini-ordinateur qui, au fond, n’a rien a envier a un
véritable ordinateur : comme ses ainés, il est doté de ports pour un
clavier, une souris, un écran, une connexion réseau ou des péri-
phériques USB, de mémoire et d’un processeur.

Arduino, au contraire, a été congu pour offrir aux bricoleurs un outil
leur permettant de parvenir rapidement a un résultat exploitable.
L’interactivité est et demeure au premier plan. La carte Arduino est
imbattable dans le domaine de la collecte de données de capteurs
devant étre traitées quasiment en temps réel pour déclencher certaines
(ré)actions, comme le pilotage d’actionneurs (moteurs, servomoteurs).

Aujourd’hui, on a tendance a adopter des positions trés tranchées.
Tout est soit bon, soit mauvais, noir ou blanc. L’esprit de compétition
domine. Pourtant, pourquoi les deux environnements ne pourraient-
ils pas coexister ? Grace au Raspberry Pi, Arduino pourrait étendre le

Avant-propos

Vil

champ de ses possibilités créatives en repoussant encore les limites au
point que tout, ou presque, serait envisageable. Cela dit, nous nous
intéresserons essentiellement 4 Arduino dans ce livre, sinon il aurait
fallu lui donner un autre titre.

Ah, j’allais oublier un détail. Il existe une nouvelle carte Arduino
dotée d’un processeur additionnel sur lequel tourne une distribution
Linux. Il s’agit de I’ Arduino Yin. Comme vous pouvez le constater,
les développeurs d’ Arduino ne se reposent pas sur leurs lauriers et ils
ont senti le vent tourner ! Cette nouvelle carte allie la technologie
Arduino existante au systéme d’exploitation Linux : les deux univers
peuvent communiquer pour échanger des données ou des informa-
tions. Je parlerai aussi de cette nouvelle carte dans ce livre.

Cette deuxieme édition s’est également étoffée d’un nouveau chapitre
sur le logiciel de prototypage Fritzing, et de trois nouveaux montages
exploitant le Raspberry Pi et la carte Yun.

Structure de l'ouvrage

Vous allez certainement vite remarquer que le style employé dans cet
ouvrage différe un peu de ce qu’on peut lire habituellement. En effet,
j’ai opté pour un ton familier et complice. Au fil des pages, je vous ai
donné le roéle d’un candide qui pose ¢a et 1a des questions, qui vous
sembleront pertinentes dans certains cas, et stupides dans d’autres —
mais c’est totalement voulu. En raison de la clarté et de la simplicité de
certains sujets, on se refuse parfois 4 poser des questions de peur d’étre
ridicule. Dans ce livre, vous ne connaitrez pas ce sentiment puisque,
par chance, quelqu’un d’autre posera ces questions a votre place !

Par ailleurs, j’ai préféré ne pas vous confronter dés le début de
I’ouvrage aux principes de I’électronique et de la programmation
Arduino, car cela aurait donné au livre une approche trop scolaire que
je souhaitais précisément éviter. Aussi, les thématiques seront abor-
dées en temps voulu et intégrées dans des exemples. Vous ne dispo-
serez ainsi que du strict nécessaire au moment précis de
I’apprentissage. En outre, les principales instructions sont regroupées
a la fin du livre dans un référentiel que vous pourrez consulter a tout
moment si besoin.

La structure de chaque chapitre suit un déroulement relativement
classique. Je commence par présenter les différentes thématiques qui
y seront traitées, afin que vous ayez un aper¢u de ce qui vous attend,
puis j’entre dans le vif du sujet en développant et analysant le theme

Avant-propos

proprement dit. Je clos enfin le chapitre par un récapitulatif des
domaines abordés, ce qui permettra de renforcer encore un peu plus
les connaissances acquises.

La plupart des langages de programmation étant d’origine améri-
caine, toutes les instructions seront en anglais. Naturellement, j’expli-
querai tous les termes qui le méritent.

Voici comment sont présentés la plupart des 22 montages proposés
dans I’ouvrage. Vous y trouverez, dans 1’ordre :

* les composants nécessaires ;

* le code du programme ;

¢ larevue de code (1'analyse du code) ;

* le schéma électrique ;

¢ la conception des circuits ;

e les problemes couramment rencontrés (et que faire si cela ne
marche pas du premier coup ?) ;

e un récapitulatif de ce que nous avons appris ;

* un exercice complémentaire pour approfondir la thématique.

Certaines expériences sont accompagnées de relevés d’oscilloscope
ou d’enregistrements d’analyseur logique visant & mieux faire
comprendre le parcours du signal.

Pour aller plus loin

Dans ce type d'encadré, vous trouverez des informations utiles, des astuces et
des conseils liés au theme abordé. Je vous fournirai aussi des mots-clés pour
continuer votre recherche sur Google, ainsi que certaines adresses Internet
incontournables (comme des fiches techniques de composants électroniques),
les autres étant susceptibles de changer ou méme de disparaltre dans un futur
proche.

Attention!
Lorsque vous rencontrerez cet encadré, lisez-le attentivement afin de garantir
le succes de votre montage.

Pour certains montages, je proposerai des solutions Quick & Dirty qui
pourront surprendre 2 premiere vue. Mais elles seront suivies d’une
variante améliorée qui devrait vous faire dire : « Tiens, ¢ca marche
aussi comme c¢a et méme pas mal du tout ! Cette solution est encore
meilleure. » Si ¢’est le cas, alors j’aurai atteint le but que je m’étais
fixé. Sinon, ce n’est pas grave : tous les chemins meénent 4 Rome...

Avant-propos

Code source de l'ouvrage

Le code des sketches Arduino présentés dans cet ouvrage est dispo-
nible a 'adresse http://www.serialmakers.com/livres/le-grand-livre-
arduino. Vous y trouverez également des compléments et des liens
utiles.

Prérequis

Le seul prérequis personnel est d’aimer le bricolage et les expé-
riences. Nul besoin d’étre un freak de 1’électronique ou un expert en
informatique pour comprendre et reproduire les montages de ce livre.

Nous commencerons en douceur afin que chacun puisse suivre. Ne
vous mettez pas de pression, le premier objectif de cet ouvrage est de
vous distraire !

Composants nécessaires

Notre carte Arduino est certes bien sympathique, et nous apprécions
que tout y soit si bien pensé et si petit. Mais il faudra quand méme
passer a I’étape suivante et connaitre tout ce qu’il est possible d’y
raccorder. Si vous n’avez pas I'habitude de manipuler des compo-
sants électroniques (résistances, condensateurs, transistors,
diodes...), pas d’inquiétude. Chacun fera 1’objet d’une description
détaillée, afin que vous sachiez comment il réagit individuellement et
au sein du circuit. Pour chaque montage, j’indiquerai en outre la liste
des composants nécessaires. Naturellement, 1'élément-clé de tout
circuit sera toujours la carte Arduino, mais je ne la mentionnerai pas
forcément de maniére explicite. A ceux qui se demandent combien
cofite une carte Arduino et s’ils pourront conserver leur train de vie
apres un tel achat, je répondrai : « Yes, you can ! » Elle est trés bon
marché, aux alentours de 25 euros.

Dans tous les exemples, j’utilise la carte Arduino Uno, la plus popu-
laire. Je présenterai aussi la carte Arduino Yun qui utilise Linux, mais
qui cofite tout de méme la bagatelle de 60 € environ.

Dans tout ce livre, j’ai veillé a n’utiliser aucun composant rare,
sophistiqué ou cofiteux. D’ailleurs, vous qui ne jetez siirement rien,
vous avez peut-&tre encore a la cave ou au grenier des appareils élec-
troniques usagés (scanner, imprimante, lecteur de DVD, magnéto-
scope, radio, etc.) que vous pourrez démonter pour récupérer divers

Avant-propos

violles,

> i =

2015

20

(&)

yright

Yy

LS ¢

composants. Mais attention, assurez-vous que les appareils soient
toujours débranchés avant de les ouvrir : faute de quoi, vous risque-
riez de nous quitter avant la fin de I’ouvrage !

Toutes les expériences sont réalisées avec une tension d’alimentation
deSoul2V.

< Figure 1
La carte Arduino Uno

frod) WM. ARDUTNO . CC — MADE IN XTALY

< Figure?2
La carte Arduino Yiin

ARDUINO |

| I

[e |

Avant-propos

015

20

Figure 3 p

Utilisez de préférence un
concentrateur USB pour raccorder
le microcontréleur Arduino
al'ordinateur.

Recommandations

Arduino étant une carte permettant de réaliser toutes sortes d’expé-
riences en y branchant des composants et des cdbles d’une part, et
I’erreur étant humaine d’autre part, je réclame ici toute votre atten-
tion.

La carte est directement reliée a 1’ordinateur via 1'interface USB.
Autrement dit, une faute d’'inattention comme un court-circuit sur la
carte peut dans le pire des cas nuire a votre machine, notamment au
port USB, et endommager la carte mére. Pour éviter cela, branchez un
concentrateur USB entre I’ordinateur et la carte Arduino. Avec quatre
ports, il cofite souvent moins de 10 €.

Par ailleurs, la carte Arduino présente beaucoup de contacts sur sa
face inférieure ; ce sont des points de soudure par lesquels les compo-
sants sont fixés et reliés entre eux. Ils sont évidemment conducteurs
et particulierement sujets a des interconnexions indésirables. Dans le
pire des cas, la loi de Murphy s’applique et vous créez un court-
circuit. Je sais de quoi je parle, car j’ai déja « fusillé » plusieurs cartes
de cette maniére. Aussi, tirez parti des fautes des autres pour faire
mieux ! Méme si bien siir, vous avez aussi le droit a I’erreur, qui est
une étape obligée dans le déroulement d’un apprentissage réussi.

Carte Arduino Concentrateur USB

Cible USB entre Arduino
et concentrateur

Prise USB connectée
a I'ordinateur

Xil

Avant-propos

= < Figure 4
HNCRR W*@“@ EYRURRRAREEE RS &Q 2% O La carte Arduino Uno vue

W !CL
. BOARD: MODEL ‘ de dessous
' UNO g @ﬂ@ @
| GO e 86 e 0
- PROTOTYP L . :
*ARDUINO ©® [y
o MADE IN ITALY © 3

O @ o WHW.ARDUINO.CC @,] ¥ S

.nm-as CompLTANT -
ZEROD CARBON Foowﬂu'r
Inpaﬁo “ZERO*

Si vous posez la carte sur un support métallique ou sur une table
pleine de fils dénudés, c’est le court-circuit assuré. Pensez-y le jour
venu, sinon je vous souhaite bien du plaisir.

J’en profite ici pour vous donner un autre conseil. Peut-étre avez-
vous déja remarqué les quatre trous forés de 3 mm de diametre sur la
carte Arduino. Ils ne sont pas la pour une meilleure ventilation locale
de la carte, mais pour tout autre chose. Pour que la face soudée ne
repose pas directement sur le support de travail et n’entre pas, comme
nous 'avons dit, en contact avec des matériaux conducteurs, vous
pouvez y insérer des tampons en caoutchouc ou écarteurs pour
plaques conductrices. Ils garantissent un espace de sécurité entre
carte et support, protégeant ainsi de tout court-circuit.

Malgré tout, je vous recommande de demeurer prudent. Les circuits
électroniques, et en particulier les circuits intégrés avec microproces-
seur, sont trés sensibles aux décharges électrostatiques (ESD).
Marcher sur un tapis avec certaines chaussures peut ainsi charger par
frottement le corps en électricité statique, et un courant trés fort peut
ensuite circuler briévement au contact d’un composant électronique.
Le composant est alors généralement grillé. Avant d’approcher un
microcontroleur, vous devez donc vous assurer que vous n’étes pas
chargé. Le simple fait de toucher un tuyau de chauffage a nu permet
de décharger cette énergie. Restez vigilant.

vrolles

o

1L

|] o
| .

~

Avant-propos Xin

XIv

Remerciements

Impossible pour moi de clore cet avant-propos sans remercier ma
famille, mes amis, et d’une maniere générale, tous ceux qui m’ont
aidé dans la geneése de cet ouvrage. Libre a4 vous de sauter ce
passage !

Lorsque j’ai écrit mon premier livre sur le langage de programmation
Processing (paru chez O’Reilly) — j’en entends qui disent : « Voila
qu’il fait de la publicité maintenant... » —, cela m’a fait du bien et du
mal a la fois. Du bien, parce que j’ai pu atteindre, de mon vivant, le
but que je m’étais fixé dans la vie : écrire un manuel de programma-
tion. Mais aussi du mal, parce que j'ai di vivre en marge de ma
famille pendant un long moment. Mais heureusement, elle I'a
compris et m’a apporté de temps en temps de quoi me nourrir, si bien
que je n’en garde pas d’importantes séquelles, ni physiques ni spiri-
tuelles.

Peu avant la publication de ce premier livre, j'avais confié & mon
éditeur, Volker Bombien, combien j’appréciais le microcontréleur
Arduino. Ce n’est pas tombé dans I’oreille d’un sourd : il a aussitdt
sauté sur ’occasion et je lui en suis trés reconnaissant. L’intérét que
je portais a I'électronique dans mes jeunes années, qui stagnait
jusque-la, m’a soudainement repris pour ne plus me lacher. Il faut
dire que tout ce que nous pouvons entreprendre aujourd’hui en élec-
tronique n’était encore qu’un réve il y a trente ans.

Je remercie également ma famille, qui s’est certainement demandé :
« Le voila encore qui se coupe de nous, peut-étre est-ce de notre
faute 7 » Un grand merci aussi au validateur technique fribbe aka
Holger Liibkert, qui m’avait déja aidé sur mon livre sur le Raspberry
Pi. Je remercie par ailleurs Andreas Riedenauer, de la société Ineltek,
qui a relu mon manuscrit et m’a éclairé de ses lumiéres. Je ne saurai
oublier ma correctrice Dorothée Leidig qui a débarrassé mon manus-
crit de ses fautes et qui en a fait un ouvrage lisible. Un grand merci
pour votre aide ! Vous étes des travailleurs de I'ombre, un peu
comme les souffleurs au théitre. On ne vous voit jamais de visu, mais
votre action se fait sentir sur la qualité de I’ouvrage. Vous étes indis-
pensables et incontournables !

Pour finir, je vous présente votre guide, qui se prénomme Ardus. Il
sera présent a vos cOtés tout au long de ce livre et posera les questions
que personne n’ose poser.

Avant-propos

Copyright © 2015 Eyrolles.

Cool mec ! J'ai hite de voir ¢a. On va s’en occuper, nous, du bébé. ..
euh... de la carte Arduino, pas vrai ?

Bien siir, Ardus !

Il est désormais temps que je vous abandonne a votre destin et que je
me retire sur la pointe des pieds.

Amusez-vous bien avec votre carte Arduino !

f:n'h. Muw

Avant-propos

'$9](04A3 §T0Z @ 1ybLAdOD

Table des matiéres

Partie | : Les bases

Chapitre 1 : Qu'est-ce qu’'un microcontroleur? 3
A qUOoi Sert-il 2 L. 4
Structure d’un microcontrdleur. 5

Chapitre 2 : La famille Arduino 11
Les différentes cartes Arduino 11
Arduino Uno. ..o 12
Arduino Leonardo. e 13
Arduino Mega 2560 15
Arduino BEsplora 16
Boarduino V2.0, e 18
Arduino Nanoo 20
Arduino LilyPad e 21
Arduino Due 22
Arduino YUn. 24

Chapitre 3:Lacarte Arduino.. 27
Lalimentation €leCtriqUeot i it et e e e et e e 31
Les modes de communicationttt 32
Les langages de programmation C/CH++ i 34
Comment puis-je programmer une carte Arduino ?. 36
L’environnement de développement d’Arduino 48
La communication Par POIL. . .. vttt et e et e et et 59
Ordre et ODEISSANCE.o\ttt e e e e e 63

i

Chapitre 4 : Les bases de I'électronique. 67

Vous avez dit €lectronique 7 67
Principaux composants éleCtroniqUesottt e n e 78
AULIeS COMPOSANLS . . o ottt et et e et e et e et et e e et 101
Chapitre 5 : Circuits électroniques simples............................ 115
Les circuits résistifs 115
Les circuits capacitifs (avec condensateurs)ttt 123
Les CIrCuits avec transiStors o ottt e et e et 125
Chapitre 6 : Fritzing 131
L’interface du logiciel 132
Le Fritzing Creator Kit. e 149
Chapitre 7 : L'assemblage des composants 153
Qu’est-ce qU'UNE CATTE 7. oo e 153
La plaque d’essais sans soudure (breadboard). 155
Les cébles et leurs caractéristiques.ottt e 157
Les cavaliers flexibles 160
Test de continuité avec un multimetrettt 163
Chapitre 8 : Le matériel utile.............. 165
Pinces diverses o 165
Pince adénuder 166
TOUMNEVIS . . .o e e 166
Extracteur de circumit intégréttt e 168
Troisi@me Main.ttt et e e 168
Multimeétre nUMEriqUettt e e 169
OSCIllOSCOPE - . . ot ettt e 171
AlIMentation @XIEINEottt et e et e e 173
Gabarit de pliage pour réSiStanCeso\t e e et 176
Fer a souder et soudure a I’étain. 178
Pompe adessouder 179
EEBoard. 180
Chapitre 9 : Les bases de la programmation...................... ... 185
Qu’est-ce qu'un programme ousketch ? e 185
Que signifie traitement des données ? 187
Structure d’un sketch Arduino. 204
Combien de temps dure un sketch surlacarte ? 206

Xvin Table des matiéres

Chapitre 10 : Programmation de la carte Arduino..................... 211

Les ports DUMETIQUES oottt e et e e e e e et et e 211
Les ports analogiqUeso vttt e e e e 213
Llinterface S€rie 219

Partie Il : Les montages

Montage 1 : Le premiersketch..... 221
Le phare "Hello World" 221
CompoSants NECESSAITES o vttt et e e e et et et et e 222
Code dusketch e 223
Revuede code.o 224
Schéma . .. 227
Réalisation du circuit e 227
Problémes courants. 229
QU aAVEZ-VOUS APPIIS o ottt e e 229
Exercice complémentaireottt ittt e e e 230

Montage 2 : Interrogation d'un capteur 231
Appuyez surle bouton 231
CodedusketCh 232
Revuede code.o 233
SChema . . 236
Réalisation du circuit e 240
Problémes courants. 241
Autres possibilités pour des niveaux d’entrée définis 242
QU aAVEZ-VOUS APPIIS o ottt e e 245
Exercice complémentaireottt ittt e e e 245

Montage 3 : Clignotement avec gestion des intervalles 247
Appuyez sur le bouton-poussoiretilréagit, 247
Composants NECESSAITES ottt ittt e ettt et e et ettt 248
CodedusketCh 248
Revuedecode. 250
SChema . . 255
Réalisation du circuit e 255
Problémes courants. e 256
QU’avez-vous appris 7 . ..o e 256
Exercice complémentaire 257

Table des matiéres XIX

Montage 4 : Le bouton-poussoir récalcitrant 259

Une histoirederebond 259
ComPOSANTS NECESSAIIES . . o o v vttt ettt ettt et ettt ienens 261
Codedusketch. e 262
Revuedecode e 262
Schéma e 265
Autres possibilités de compenserlerebond. il 266
Réalisation du CirCuit e 268
Probléemes courants e 268
QU AVEZ-VOUS APPTIS 7 . . ottt et e 269
Exercice complémentaire. 269
ASTUCE. . o ottt e e 270
Montage 5 : Le séquenceur de lumiére 271
Qu’est-ce qu'un séquenceurde lumi€re 7 e 271
Composants NECESSAIIES ot ittt et et e et e e e 273
Codedusketch. 273
Revuedecode e 274
Schéma. . .. 281
Réalisation du CirCuito e 281
Problemes courants 282
QU’avezZ-vous apPris 7 . ..o 282
Exercice complémentaire. 283
Montage 6 : Extensionde port.. 285
Leregistre adécalage. it 285
Composants NECESSAIIES ot ittt et et e et e e e 288
Codedusketch. 289
Revuedecode e 290
Schéma. . .. 293
Réalisation du CirCuito e 294
Extension du sketch : premiere partie i 295
Extension du sketch : deuxiéme partie 299
Problémes courants 301
QUTaVeZ-VOUS APPIIS 7 o oottt e 302
Exercice cOmplEMENtaAIre. v\ttt et e et 302
Montage 7 : La machineaétats. 305
Des feux de circulation.t e 305
Composants NECESSAITES ot ittt ettt et e e e e 307

@ Table des matiéres

Sketch élargi (circuit interactif pour feux de circulation).
Autre sketch élargi
Problémes courants
QU aAVEZ-VOUS APPIIS o ottt e e
Exercice complémentaireottt ittt e e e
Cadeau ! e

Montage 8 : Le dé électronique

Qu’est-ce qu’un dé électronique ?
CompoSants NECESSAITES o vttt et e e e et et et et e
CodedusketCh e

Problemes courants. i e
QU aAVEZ-VOUS APPIIS o ottt e e
Exercice complémentaire

Montage 9 : Comment créer une bibliotheque?..............

Les bibliotheques
Qu’est-ce qu’une bibliothéque exactement ? ottt
En quoi les bibliothéques sont-elles utiles 7.

Composants NECESSAITES ottt ittt e ettt et e et ettt
Codedusketch

Table des matiéres

338
345
346
346

347
347
348
349
350

Schéma. . .. 372
Réalisation du CirCuito e 375
Nous devenons communicatifs. 375
Arduino IPémetteur e 377
Processing le récepteur. 378
Problémes courants 381
QU AVEZ-VOUS APPIIS J o ottt et e ettt e e 382
Exercice cOmplEMENtaAIre. v\ttt et e et 382
Montage 11 : L'afficheur septsegments 383
Qu’est-ce qu’un afficheur sept segments ? 383
Composants NECESSAITES ot ittt ettt et e e e e 386
Codedusketch 386
Revuedecode e 387
Schéma. . ..o 389
Réalisation du CirCUIt o ittt e e 389
Sketch am@lOTe e e 390
Problémes courants 395
QUTaVeZ-VOUS APPIIS 7 o oottt e 395
Exercice cOmplEMENtaAIre. v\ttt et e et 395
Montage 12 : Le clavier numérique 397
Qu’est-ce qu’un clavier numérique ? 397
Composants NECESSAITES . .« . . vttt ettt e e e et e e 399
Réflexions préliminairesttt ittt ne s 399
Code dusketch e 402
SChéma e 409
Réalisation dushield 410
Problémes courants 411
QU AVEZ-VOUS APPIIS J o ottt et e ettt e e 411
Exercice cOmplEMENtaAIre. v\ttt et e et 412
Montage 13 : Un afficheur alphanumérique 413
Qu’est-ce qu'un afficheur LCD 2. 413
Composants NECESSAITESo vttt et e ettt et e e 415
Remarque préliminaire sur I"utilisation de 'afficheur LCD 415
Code dusketch e 418
Revuedecode o i e 419
Schéma e 421

XXn Table des matiéres

Réalisation du Circuit e 422

Jeu:devinerun nombre 422
Problemes courants. i e 429
QU aAVEZ-VOUS APPIIS o ottt e e 429
Exercice complémentairettt 429
Montage 14 : Le moteur pas-a-pas.....................ccoiiiiiiii... 431
Encore plusde mouvement 431
COmPOSANLS NECESSAITES . . o v v vttt ettt et e et et e et e e e e e 435
Codedusketch i e 436
Revuedecode e 437
Problémes courants. 440
QU’avez-vous appris 7 . ..o e 441
Exercice complémentaire 441
Montage 15 : Latempérature 443
Chaud ou froid 7. e 443
Comment peut-on mesurer la température 7. 444
CompoSants NECESSAITES o vttt et e e e et et et et e 445
Code du sketch Arduino 445
Revue de code Arduino e 446
Revue de code Processing i 446
Schéma . .. 447
Sketch élargi (maintenant avec toutlereste) 448
CompoSants NECESSAITES o vttt et e e e et et et et e 450
Problemes courants. i e 456
QU avezZ-VouS apPris 7 . ..ot e 456
Exercice complémentaire 457
Montage 16 : Lesonetplusencore................................... 459
Y apas le son 7. .. e 459
COmPOSANLS NECESSAITES . . o v v vttt ettt et e et et e et e e e e e 460
Codedusketch i e 460
Revuedecode e 461
Réalisation du circuit e 463
Sketch élargi : jeude la séquence descouleurs, 464
CompoSants NECESSAITES o vttt et e e e et et et et e 465
Montage 17 : Communicationréseau................................. 473
Qu’est-ce qU UNTESCAL 7ttt e 473
Composants NECESSAITES ottt ittt e ettt et e et ettt 478

Table des matiéres XXi

Code dusketch 480

Revuedecode 482
Problemes courants 487
QU AVEZ-VOUS APPIIS J o ottt et e ettt e e 488
Exercice complémentaire. 488
Montage 18 : Numérique appelle analogique. 489
Comment convertir des signaux numériques en signaux analogiques ? 489
ComPOSANTS NECESSAIIES . . o o v vttt ettt ettt et ettt ienens 492
Réflexions préliminairesuiinene et i 492
Codedusketch e 493
Revuedecode 493
Schéma. e 494
Réalisationdushield 495
Commande du registre de poTt.ottt e 495
Problémes courants 501
QU’avezZ-vous apPris 7 . ..o 502
Exercice complémentaire. 502
Montage 19 : Interactions entre Arduino et Raspberry Pi 503
Réveillons 1’ Arduino sommeillant dans tout Raspberry Pi 503
Installation de I'IDE Arduino surle Raspberry Pi. 505
Firmata 506
Préparationde PArduino 508
Préparations du Raspberry Pi. 508
Commande par MLI. e 512
Commande d’ un SErVOMOLEUTttt ettt e e e 515
Interrogation d’un bouton-poussoir 516
Interrogation d’un port analogique. 517
Liaison série entre le Raspberry Piet 'Arduino 519
Montage 20 : Temboo et la carte Yun — API Twitter................... 523
ComPOSANTS NECESSAIIES . . o o v vttt ettt ettt et ettt ienens 524
Lm0, . ..o 524
Votre compte TWItter.o e s 528
Deretourdans Temboo 532
Autourde la YUn. 536
QU AVEZ-VOUS APPIIS J o ottt et e ettt e e 547
Exercice cOmplEMENtaAIre. v\ttt et e et 547

XXIv Table des matiéres

Montage 21 : Temboo et la carte Yin — Tableur Google
CompoSants NECESSAITES o vttt et e e e et et et et e
GOOZle DIOCS . .ttt
Procédure pas A pas.o
QU avezZ-VouS apPris 7 . ..ot e
Exercice complémentaire

Montage 22 : Réalisation d'unshield.

Shield de prototypage fait maisSonttt
De quoi avons-nous besoin ?

CompoSants NECESSAITES o vttt et e e e et et et et e
Code dusketch e
Réalisation du shield. e

Annexe : Référentiel des instructions.

Structure d’un sketch
Structures de contrle.
BOUCIES . . .t e e
Constantes IMPOTTANIES vttt et e ettt e ettt e e e e e enens
FonCHOnS.
Directives de prétraitement.

Table des matiéres

'$9](04A3 §T0Z @ 1ybLAdOD

Partie |

Les bases

‘'S9]|0JA3 STO

C

® 3ybluAdo)d

'$9](04A3 §T0Z @ 1ybLAdOD

Qu’est-ce qu'un
microcontroleur ?

Si vous n’y tenez plus et que vous voulez déja brancher votre Arduino
et procéder a la premiere expérimentation, vous pouvez sauter alle-
grement ce chapitre, qui décrit les principes du microcontroleur, et y
revenir peut-étre plus tard.

Un microcontrdleur est un circuit intégré (ou 1C, Integrated Circuit),
qui rassemble sur une puce plusieurs éléments complexes dans un
espace réduit. Au temps des pionniers de 1’électronique, on soudait un
grand nombre de composants encombrants, tels que les transistors, les
résistances ou les condensateurs, sur des cartes plus ou moins
grandes. Aujourd’hui, tout peut loger dans un petit boitier en plas-
tique noir muni d’un certain nombre de broches. Ces dernieres sont
les connexions du circuit intégré au moyen desquelles s’effectue
la communication. La figure I-1 montre un microcontroleur
ATmega328, qu’on trouve sur la carte Arduino.

Avec ses dimensions réduites, il dispose pourtant d’une grande puis-
sance de calcul. En fait, il suffit de le souder sur une carte et de le
mettre sous tension pour pouvoir I'utiliser. Certes, il manque encore
quelques composants (par exemple, des stabilisateurs de tension, des

Chapitre

4 Figure 1-1

Microcontroleur ATmega328

(source : Atmel)

connexions pour la programmation, et d’autres sur lesquels nous
reviendrons plus tard), mais il est cependant sous cette forme déja
(presque) prét a I’'emploi.

A quoi sert-il ?

Maintenant, vous vous demandez peut-&tre i quoi sert un microcon-
troleur et ce qu’on peut faire avec. A cela, je peux répondre que les
possibilités sont innombrables et dépendent uniquement de votre
créativité.

Les microcontrdleurs jouent un réle prépondérant dans les domaines
suivants — cette liste est loin d’étre exhaustive et sert surtout a se faire
une idée des diverses possibilités d’utilisation.

* Fonctions de surveillance dans des environnements critiques, par
exemple dans des cages thoraciques (température, humidité,
fréquence cardiaque, pression sanguine du prématuré...).

* Commande de chauffage : contréle de la température externe ou
interne pour le chauffage optimal de locaux.

« Stimulateurs cardiaques : surveillance de la fréquence cardiaque
et, le cas échéant, stimulation du coeur.

¢ Appareils ménagers : par exemple, commande par programme
enregistré dans des lave-linge ou lave-vaisselle modernes.

* Electronique de loisirs : lecteurs MP3, téléphones portables,
appareils photo...

* Robotique : par exemple, commande de robots industriels pour
le montage de pi¢ces automobiles.

Cette liste peut ainsi se poursuivre a I’infini, mais nous pouvons
d’ores et déja remarquer une chose : les microcontroleurs pergoivent
des influences extérieures par le biais de capteurs, les traitent en
interne a l'aide d’un programme, puis envoient des ordres de
commande correspondants vers 1’extérieur. Ils font donc preuve
d’une certaine intelligence, qui dépend bien évidemment du
programme mis en ceuvre. Un microcontroleur peut assurer des fonc-
tions de mesure, de commande et de régulation.

Regardons maintenant de plus prés le fonctionnement d’une boucle
de régulation. Elle se compose d'un processus en boucle fermée
comportant une perturbation. Un capteur transmet cette derniére au
microcontroleur qui réagit alors en fonction de son programme.

Partie | : Les bases

Imaginez le scénario suivant. Vous vous trouvez au sein du systeme
de contrdle de chauffage qui régule la température de votre local de
travail. Le capteur dit au microcontréleur : « Dis donc, il fait plutdt
chaud dans le local de travail ! » Le microcontréleur réagit alors en
régulant la température. Le chauffage apporte donc moins d’énergie
sous forme de chaleur dans le local. Le capteur le remarque et dit au
microcontroleur : « La température est maintenant celle souhaitée,
soit 20 °C. » De I'air froid provenant de 1'extérieur rentre petit a petit.
Le capteur donne 1’alerte et dit au microcontrdleur : « I1 commence a
faire froid ici et mon bonhomme va tomber malade, il faut faire
quelque chose ! » Le microcontréleur augmente la température en
conséquence. Vous voyez, ¢’est un jeu de ping-pong : ici, en I’occur-
rence, une boucle de régulation qui réagit a des influences perturba-
trices extérieures liées a des variations de température.

Structure d'un microcontréoleur

Venons-en maintenant a la structure générale d’un microcontroleur et
regardons les différents composants de la puce.

Stop, jai déja une question ! Vous nous avez dit tout a I'heure que le 1y 3
microcontroleur était déja prét & 'emploi. Mais ot se (rouve son = =
programme et ou stocke-t-il ses données ? Vous avez sGrement oublié B

de parler des modules de stockage qui doivent encore étre raccordés. lﬁ'

Bonne question, mais vous ne savez pas encore tout sur notre
microcontroleur | Pris comme tel — et ¢’est ce que nous faisons -, —
¢’est un ordinateur complet sur un espace réduit au maximum, avec 7
donc les éléments suivants :

¢ unité centrale (CPU) ;
+ mémoire de travail ;
« mémoire de données ;
* horloge interne ;
* ports d’entrée et de sortie.
Un microcontréleur se divise grossi€rement en trois parties :
¢ unité centrale (CPU) ;
* mémoires (ROM et RAM) ;

* ports d’entrée et de sortie.

Chapitre 1 : Qu'est-ce qu‘un microcontroleur ? @

yrolles,

5

|] o
| .

J15

20
Ll

right ©

s
—opy

L

Figure 1-2 p
Schéma fonctionnel
d’un microcontrdleur

L’horloge interne, ou I’oscillateur qui permet de piloter 1’unité centrale, a
été laissée de cOté pour le moment. Les éléments qui composent un
microcontroleur sont comparables aux périphériques d’un ordinateur. La
différence réside dans le fait que les trois parties citées précédemment
sont intégrées au microcontrdleur. Elles se trouvent toutes dans le méme
boitier, ce qui est plus simple et plus compact.

Jetons maintenant un coup d’ceil au schéma fonctionnel de notre
microcontroleur.

Bus de données |

!

Unité centrale
(CPU)

Oscillateur I

Bus de données |

Vous vous demandez maintenant ce que signifient les différents blocs
dans le schéma et quelle est leur fonction exacte, pas vrai ?

L'unité centrale (CPU)

L’élément le plus important dans un microcontréleur est 1'unité
centrale, appelée également CPU (Central Processing Unit). Sa fonc-
tion principale consiste 4 décoder et a exécuter des instructions. Elle
peut adresser des mémoires, gérer des entrées ou sorties et réagir a
des interruptions (interrupts). Une interruption (IRQ, ou Interrupt
Reguest) est un signal qui demande au CPU d’interrompre un cycle
de calcul en cours pour pouvoir réagir a un certain événement.

Le bus de données

Le bus de données sert a transporter les données d’un bloc a un autre.
Par exemple, le CPU demande des données provenant de la mémoire,
qui sont prises en charge par le bus et immédiatement mises a disposi-

Partie | : Les bases

yrolles,

5E

201

ght ©

Copyri

tion pour traitement. Lorsque le résultat du calcul est disponible, il est
4 nouveau transféré sur le bus et transmis a un port de sortie qui, par
exemple, pilote un moteur de robot pour atteindre un but précis. Cette
structure de bus est une autoroute de données utilisable en commun
par tous ceux qui sont desservis.

4 Figure 1-3
Sur l"autoroute des données :
« Prochain arrét, mémoire ! »

Les zones de mémoire

En principe, il existe deux types de mémoires d’un microcontréleur :
¢ la mémoire de programme ;
* la mémoire de données.

La premiére accueille le programme que le CPU doit exploiter, alors
que la seconde est utilisée pour gérer les résultats de calcul du
moment.

11 y a un probléme quelque part. Quand j’éteins mon ordinateur, tous les
programmes qui se trouvent dans la mémoire s’effacent et je dois les
recharger depuis mon disque dur pour pouvoir travailler avec.

C’est vrai et ¢’est en cela que la mémoire de programme d’un micro-
controleur est particuliere. Un microcontrleur n’a bien slir pas de
disque dur, mais il garde son programme en mémoire en 1’absence de
tension d’alimentation externe. Un type de mémoire particulier est
utilisé a cet effet, qu’on appelle mémoire flash. Comme son nom
I'indique, ¢’est une mémoire non volatile, ¢’est-a-dire que bits et
octets ne « s’envolent » pas en cas de coupure d’alimentation et
restent disponibles.

Vous avez déja utilisé cette forme de mémoire des milliers de fois sur
votre ordinateur. Le BIOS est hébergé dans une mémoire flash de

Chapitre 1 : Qu'est-ce qu‘un microcontrdleur ? @

Eyrolles.

)

201

ight ©

type EEPROM, et ses données peuvent étre €crasées au besoin par
I'insertion d’une nouvelle version. On dit alors que le BIOS est
« reflashé ». Le contraire se produit dans les mémoires de données
dites SRAM. Ces dispositifs sont volatils et les données mémorisées
sont perdues des qu’il y a coupure d’alimentation. Mais rien de grave
puisque ces derniéres ne sont nécessaires que lorsque le programme
est exécuté. Quand le microcontrdleur est sans courant, il n’a rien
besoin de calculer. Mais la mémoire SRAM a sur la mémoire flash un
avantage tres important : elle offre un acces plus rapide.

Les ports d'entrées-sorties

Les ports d’entrées-sorties sont les connexions qui relient le micro-
contréleur au monde extérieur. Ils constituent une interface a laquelle
la périphérie peut étre connectée. On entend par périphérie tout ce qui
peut étre avantageusement raccordé a I'interface. Il peut s’agir, par
exemple, des composants électroniques ou €lectriques suivants :

¢ LED (diode électroluminescente) ;

* bouton-poussoir ;

* commutateur ;

e LDR (Light Dependant Resistor ou photorésistance) ;

* transistor ;

* résistance ;

* haut-parleur ou élément piézoélectrique ;

* elc.
Nous reviendrons sur ces éléments et aussi sur leur raccordement aux
différents ports.

Figure 1-4 p
Ports d’entrée et de sortie

Copyr

Partie | : Les bases

En principe, les ports d’entrées-sorties sont soit numériques, soit
analogiques — nous verrons plus loin ce qui les différencie.

Le contréleur d'interruption

Un microcontrdleur est équipé d’un contréleur dit d’interruption.
Qu’est-ce que c’est et a quoi sert-il ? Imaginez le scénario suivant.

Vous allez vous coucher le soir et vous voulez vous lever le lendemain a
61 00 pour avoir le temps de vous laver, de prendre votre petit déjeuner
et d’arriver 4 I’heure a votre travail. Mais comment faire ? Deux possibi-
lités s’ offrent a vous, qui donnent des résultats différents.

* Cas n’ 1. Vous réglez votre réveil sur 6 h 00 avant d’aller vous
coucher. Vous pouvez ainsi dormir tranquille, sans la crainte
d’oublier de vous réveiller le lendemain. Le réveil se déclenche a
I’heure souhaitée, et vous arrivez frais et dispo sur votre lieu de
travail.

* Casn’ 2. Vous allez vous coucher et, comme vous n’avez pas de
réveil, vous vous relevez toutes les 30 minutes pour vérifier
I’heure qu’il est pour ne pas rater le moment de vous lever. A
6 h 00 du matin, vous étes crevé et incapable de travailler car
vous avez passé votre nuit a vous réveiller.

Je pense que pour tout le monde le choix est vite fait : le cas n° 1 est
préférable et plus économe en ressources.

Transposons maintenant cet exemple a notre microcontrdleur. Un
commutateur surveillant I’état d’une vanne est raccordé au port
d’entrée numérique. Notre microcontrOleur pourrait ainsi étre
programmé pour interroger 1’état du commutateur a intervalles brefs
et réguliers. Cette interrogation cyclique appelée polling (ou interro-
gation) est, dans ce cas, plutot inefficace car 1’unité centrale est solli-
citée pour rien. Une surveillance par interruption s’avére ici bien plus
avantageuse. L’unité centrale suit le cours normal de son programme
et ne réagit que si une interruption se produit. Le travail de fond
s’interrompt un court instant et bascule dans une routine d’interrup-
tion (ISR, ou Interrupt Service Routine). Celle-ci contient des instruc-
tions qui indiquent 1’action a effectuer. Aprés cela, on revient au
travail de fond et a I’endroit précis ou I’interruption s’est produite,

comme si rien ne s’était passé.

Chapitre 1 : Qu’est-ce qu’un microcontréleur ?

Arduino est-il un microcontroleur ?

Ce chapitre est consacré aux principes généraux d’un microcontro-
leur. Vous en connaissez maintenant les principaux composants
(unité centrale, mémoires, ports) et vous savez a quoi ils servent.
Mais vous étes désormais en droit de vous poser la question suivante :
« Arduino est-il un microcontrleur a4 proprement parler ? » La
réponse est oui, sans aucun doute ! Il possede bien tous les compo-
sants dont nous avons parlé et les réunit en son sein. Mais il cohabite
aussi avec d’autres composants sur une carte compacte, dont nous
allons parler dans le prochain chapitre.

Pour aller plus loin
Pour compléter ce chapitre, vous pouvez effectuer une recherche sur Internet
sur les mots-clés :

+ microcontroleur ;
« microcontroleur AVR ;

- Atmel.

Partie | : Les bases

La famille Arduino

Les différentes cartes Arduino

Les cartes Arduino doivent satisfaire des exigences diverses et
variées. Certains utilisateurs souhaiteront effectuer du prototypage et
tester de nouveaux montages ou idées, la carte Arduino Uno dispo-
sant d’assez d’entrées-sorties pour les projets d’envergure
raisonnable. De part sa taille, la carte devrait aussi pouvoir étre
utilisée a ’avenir dans des projets plus ambitieux. D’autres auront
besoin d’un grand nombre de ports afin de pouvoir raccorder de
nombreux capteurs ou actionneurs. Une troisieme catégorie d’utilisa-
teurs ne cherchera qu’ attirer 1’attention et a transmettre des signaux
a leurs semblables a 1’aide de diodes clignotantes. Ces exemples ne
constituent qu’une partie des attentes que les makers auront vis-a-vis
de leur carte Arduino.

La forme, la taille ou les possibilités de connexion jouent un rdle
décisif dans le choix de la carte adaptée. C’est pourquoi les dévelop-
peurs d’Arduino ont mis au point un vaste choix de cartes a micro-
controleur afin que chacun trouve le modele qui réponde a ses
besoins.

Dans ce chapitre, nous allons donc passer en revue les principaux
membres de la famille Arduino. Méme si nous ne détaillerons pas
tous les modeles, cette présentation vous sera certainement utile
lorsque vous devrez choisir votre carte tout en ménageant votre porte-
monnaie. Pourquoi se ruiner en achetant la carte originale quand de
nombreux fabricants proposent des clones dont les fonctionnalités
sont similaires ? Je me limiterai (le plus souvent) aux modeles
d’origine, mais libre & vous de choisir une autre voie. Je vais
commencer ce petit tour d’horizon par la piéce maitresse.

Chapitre

vrolles.

P
2015 E

right ©

!

Arduino Uno

A mes yeux, la carte indispensable pour débuter demeure la carte
Arduino Uno dont le prix est trés abordable. Elle s’est hissée au rang
de standard de fait et elle convient parfaitement a tous ceux qui
veulent faire leurs premiéres armes avec un microcontroleur. C’est
une valeur sfre.

Figure 2-1 p
La carte Arduino Uno

xsu - ARDUINO

1 ol

TR At)

ITALY

Voici un résumé des spécifications de la carte Arduino Uno :

Tableau 2-1 p- Catégorie Valeur

La carte Arduino Uno

Microcontréleur ATmega 328

Fréquence d'horloge 16 MHz

Tension de service 5Y

Tension d'entrée (recommandée) 7-12V

Tension d'entrée (limites) 6-20V

Ports numériques 14 entrées et sorties (6 sorties commutables en MLI)
Ports-analogiques 6 entrées analogiques

Courant maxi. par broche d'E/S(c.c) 40mA

Courant maxi. par broche 3,3 V 50mA

Mémoire 32 Ko Flash, 2 Ko SRAM, 1 Ko EEPROM
Chargeur d'amorcage 0,5 Ko (en mémaire Flash)

Interface USB

Dimensions 6,86 cm % 5,3 cm

Prix (approximatif) 24€

_opy

L

Partie | : Les bases

Examinons maintenant les avantages et les inconvénients de la carte :

¢ Avantages

— carte Arduino par excellence pour laquelle de nombreux exem-
ples de montage sont disponibles sur Internet ;
— nombre suffisant de broches d’entrées-sorties pour les projets
élémentaires ;
— vaste choix de shields ;
— bon marché
¢ Inconvénients

— nombre insuffisant de broches d’entrées-sorties pour les projets
ambitieux :

— la mémoire disponible risque d’étre un peu juste pour les gros
projets ;

—ne peut pas étre utilisée comme hote USB pour simuler un
clavier ou une souris, par exemple (voir Arduino Leonardo).

Vous trouverez de plus amples informations a la page http.:/arduino.
cc/en/Main/arduinoBoardUno.

Arduino Leonardo

La carte Arduino Leonardo est considérée comme le successeur
officiel de I’Arduino Uno. Elle est équipée du microcontrleur
ATmega 32U4 qui communique aussi via I'interface USB, de sorte
qu’un processeur supplémentaire est inutile. La carte peut étre
programmée en tant qu hdte USB pour lequel différentes classes de
clavier et souris sont disponibles. D’ailleurs, la carte Arduino
Leonardo peut aussi étre programmée en tant que HID (Human Inter-
face Device). En plus du port matériel UART, auquel le microcon-
trdleur a acces depuis la classe Seriall, un port COM virtuel (VCP :
Virtual COM-Port) est accessible via USB et peut étre sollicité par le
biais de Serial.

Chapitre 2 : La famille Arduino

Figure 2-2 p
La carte Arduino Leonardo

I-:_j K.‘ i
ARDUINO

Voici un résumé des spécifications de la carte Arduino Leonardo :

Tableau2-2 b ErvFReen Valeur

La carte Arduino Leonardo

Microcontréleur ATmega 32U4

Fréquence d'horloge 16 MHz

Tension de service 5V

Tension d'entrée (recommandée) 7-12V

Tension d'entrée (limites) 6-20V

Ports numériques 20 entrées et sorties (7 sorties commutables en MLI)
Ports analogiques 12 entrées analogiques

Courant maxi. par broche d'E/S (c.c) 40mA

Courant maxi. par broche 3,3V 50mA

Mémoire 32 Ko Flash, 2,5 Ko SRAM, 1 Ko EEPROM
Chargeur d'amorcage 4 Ko (en mémoire Flash)

Interface UsB

Dimensions 6,86 cm 5,3 cm

Prix (approximatif) 20€

Examinons les avantages et les inconvénients de la carte :

¢ Avantages
— port COM virtuel supplémentaire ;
o — broche MLI de plus que sur 1’ Arduino Uno ;
— 6 entrées analogiques supplémentaires par rapport a la carte

~ Arduino Uno, sur les broches numériques 4, 6, 8,9, 10et 12 ;

@ Partie | : Les bases

— 6 ports numériques supplémentaires par rapport a la carte
Arduino Uno, sur les broches analogiques A0 a AS ;
— meilleur marché que 1’ Arduino Uno.

* Inconvénients

— les entrées analogiques supplémentaires sont bloquées en cas
d’utilisation des broches numériques, car elles sont utilisées au
méme moment ;

— les entrées numériques supplémentaires sont bloquées en cas
d’utilisation des broches analogiques, car elles sont utilisées au
méme moment ;

Vous trouverez de plus amples informations a la page http://arduino.
cc/en/Main/ArduinoBoardLeonardo.

Arduino Mega 2560

J’ai mentionné plus haut que le nombre de broches d’E/S pouvait étre
insuffisant pour certains projets. Pour y remédier, vous pouvez envi-
sager de passer a la carte Arduino Mega 2560. Vous ne manquerez
pas de remarquer sur la figure 2-3 les nombreuses rangées de prises
qui viennent compléter les ports d’entrée-sortie. La carte est inévita-
blement plus grande que I’ Arduino Uno.

-

N K-8

| 3 b ARDUING . CC

'] 3 WADE IN ITALY
.

v
Oy

AL

-

Voici un résumé des spécifications de la carte Arduino Mega 2560 :

(Catégorie Valeur

Microcontréleur ATmega 2560
Fréquence d'horloge 16 MHz
Tension de service 5Y

Tension d'entrée (recommandée) 7-12V
Tension d'entrée (limites) 6-20V

Chapitre 2 : La famille Arduino

< Figure 2-3
La carte Arduino Mega 2560

<4 Tableau 2-3
La carte Arduino Mega 2560

)

Tableau 2-3 (suite) p
La carte Arduino Mega 2560

Ports numériques

Ports analogiques

Courant maxi. par broche d'E/S (c.c.)
Courant maxi. par broche 3,3V
Mémoire

Chargeur d'amorcage

Interface

Dimensions

Prix (approximatif)

54 entrées et sorties (15 sorties commutables en MLI)
16 entrées analogiques

40 mA

50 mA

256 Ko Flash, 8 Ko SRAM, 4 Ko EEPROM

8 Ko (en mémoire Flash)

UsB

10,16 cm x 5,3 cm

47 €

Examinons maintenant les avantages et les inconvénients de la carte :

* Avantages

— nombreuses entrées et sorties pour raccorder des capteurs ou

des actionneurs ;

— capacité de mémoire suffisante pour les gros projets ;
— plus de broches UART (4 ports de communication série) ;
— plus de broches MLI (15 sorties numériques peuvent étre ufili-

sées comme MLI) ;

— compatible avec la plupart des shields congus pour I' Arduino

Uno, par exemple ;

— il existe des shields spéciaux pour le prototypage qui, en raison
de leur surface supérieure, peuvent recevoir plus de

composants ;

—de nombreux schémas et exemples sont disponibles sur

Internet.

* Inconvénients

— facteur de forme plus élevé que pour 1I’Arduino Uno, par

exemple ;

— deux fois plus chere que I’ Arduino Uno.

Vous trouverez de plus amples informations a la page http:/arduino.
cc/en/Main/arduinoBoardMega2560.

Arduino Esplora

L’Arduino Esplora est une carte sur laquelle est basée 1’Arduino
Leonardo. Si vous I’examinez de plus prés, vous constaterez qu’elle
est doté d’un certain nombre de capteurs, qui ne sont pas présents sur
la carte Arduino Uno ni sur d’autres cartes.

Partie | : Les bases

yrolles.

5

|] o
| .

)1E

20
Ll

T

right ©

s
—opy

L

< Figure 2-4
La carte Arduino Esplora

Les capteurs suivants sont préinstallés :

.

.

un joystick avec un bouton-poussoir central ;
un microphone ;

un potentiometre (linéaire) ;

un capteur de température ;

un accélérometre 3 axes (X, y et z) ;

quatre boutons-poussoir disposés en diamant ;

un capteur de lumiere.

La carte comporte aussi les sorties suivantes :

un buzzer ;
une LED RVB.

Comme vous pouvez le remarquer, cette carte est donc équipée de
nombreux capteurs que vous devrez acheter en plus si vous choisissez
un autre modele Arduino. Sur le bord supérieur, vous trouverez
également :

-

deux entrées Tinker pour relier des modules de capteurs Tinker-
Kit a I’aide des connecteurs 3 broches (broches jaunes)

¢ deux sorties Tinker pour relier des modules d’actionneurs Tinker-

Kit & I’aide des connecteurs 3 broches (broches oranges)

* un connecteur pour écran couleur TFT avec lecteur de carte SD

utilisant le protocole SPI

Voici un résumé des spécifications de la carte Arduino Esplora :

Catégorie Valeur <« Tableau 2-4

Microcontroleur ATmega 3204 L e Adupic Eplors
Fréquence d'horloge 16 MHz
Tension de service 5V

Chapitre 2 : La famille Arduino

Tableau 2-4 (suite) p
La carte Arduino Esplora

Mémoire 32 Ko Flash, 2,5 Ko SRAM, 1 Ko EEPROM
Chargeur d'amorcage 4 Ko (en mémoire Flash)

Interface USB

Dimensions 16,51 cm < 6 cm

Prix (approximatif) 50€

Examinons maintenant les avantages et les inconvénients de la carte :
* Avantages
— nombreux capteurs préinstallés ;
— connecteurs pour modules TinkerKit.
¢ Inconvénients

— il n’est pas possible d’utiliser des shields ;

— possibilités d’extension limitées ;

— relativement peu de circuits ou d’exemples de montages dispo-
nibles sur Internet (par rapport aux cartes Arduino Uno ou
Arduino Mega 2560) ;

— prix assez élevé.

Vous trouverez de plus amples informations 2 la page hetp.://arduino.
cc/en/Guide/ArduinoEsplora.

Boarduino V2.0

Si vous envisagez d’acheter une carte Boarduino, sachez que vous
devez avoir un fer a souder sous la main, car elle est livrée en pieces
détachées a assembler soi-méme, a savoir :

¢ un microcontrdleur ;

¢ un support de circuit a 28 broches ;

* une carte ;

* des connecteurs.
J avais annoncé que je ne présenterai que des modeles Arduino origi-
naux, mais je vais tout de méme faire une exception. Comme la
plupart des clones, celui-ci est compatible avec Arduino. Il a été
congu pour étre monté sur une plaque d’essais sans soudure. Vous
trouverez des notes d’assemblage détaillées a la page http:/learn.
adafruit.com/boarduino-kits/usb-boarduino-assembly.

Partie | : Les bases

< Figure 2-5
Le kit Boarduino

Voici un résumé des spécifications de la carte Boarduino :

(atégorie Valeur < Tableau 2-5

La carte Boarduino

Microcontréleur ATmega 328

Fréquence d'horloge 16 MHz

Tension de service 5V

Tension d'entrée (recommandée) 717V

Ports numériques 14 entrées et sorties (6 sorties commutables en MLI)
Ports analogiques 6 entrées analogiques

Courant maxi. par broche d'E/S (c.c.) 40mA

Mémoire 32 Ko Flash, 2 Ko SRAM, 1 Ko EEPROM
Chargeur d'amorcage 0,5 Ko (en mémoire Flash)

Interface USB

Dimensions 75mx2mm

Prix (approximatif) 3€

Examinons maintenant les avantages et les inconvénients de la carte :

* Avantages
— encombrement réduit ;
— peut étre enfichée directement sur la plaque d’essais.
¢ Inconvénients
— nécessite un peu de soudure avant d’étre préte a ’emploi (ce
n’est évidemment pas un probléme pour les experts).

Chapitre 2 : La famille Arduino

Arduino Nano

La carte Arduino Nano posseéde des connecteurs au dos qui permet-
tent de I’enficher facilement sur une plaque d’essais, ce qui évite
d’avoir recours a des cavaliers flexibles, comme pour I’ Arduino Uno.
Ne vous laissez pas abuser par les dimensions de cette minicarte dont
les performances n’ont (presque) rien a envier a I’ Arduino Uno.

Figure 2-6 p» , -
La carte A?duino Nano 20 f\ f’ r‘\ t‘ e ! ®
Voici un résumé des spécifications de la carte Arduino Nano :
Tableu 26>
La carte Arduino Nano Microcontroleur ATmega 168 ou 328
Fréquence d'horloge 16 MHz
Tension de service 5V
Tension d'entrée (recommandée) 712V
Tension d'entrée (limites) 6-20V
Ports numériques 14 entrées et sorties (6 sorties commutables en MLI)
Ports analogiques 8 entrées analogiques
Courant maxi. par broche d'E/S (c.c) 40mA
Mémaire ATmega 168 :
16 Ko mémoire Flash
1 Ko SRAM
512 octets d'EEPROM
ATmega 328 :
32 Ko mémoire Flash
2 Ko SRAM
1 Ko EEPROM
.“ Chargeur d'amorcage 2 Ko (en mémoire Flash)
L Interface uss
GO Dimensions 1,9cmx43
2l Prix (approximatif) 40€

= @ Partie | : Les bases

Examinons maintenant les avantages et les inconvénients de la carte :

* Avantages

— encombrement réduit ;
— peut étre enfichée directement sur la plaque d’essais.

* Inconvénients

— il n’est pas possible d’utiliser des shields.

Vous trouverez de plus amples informations a la page hrtp.://arduino.
cc/en/Main/ArduinoBoardNano.

Arduino LilyPad

La plateforme Arduino LilyPad est destinée aux plus créatifs d’entre
nous qui veulent coudre des circuits électroniques sur leurs véte-
ments, par exemple. Les raccordements électriques ne se font pas par
cébles, mais par des fils conducteurs. D’aprés le fabricant, le compo-
sant est lavable. Toutefois, je vous déconseille de le passer en
machine. Lavez-le délicatement 4 la main avec un détergent doux.
Autre précaution : pensez bien a débrancher 1’alimentation électrique
avant le nettoyage !

< Figure 2-7
La carte Arduino LilyPad

frRrEIn:
T

[P |

%.d.ﬂhdww”;

viee

Chapitre 2 : La famille Arduino

yrolles.

2015

Copyright ©

Tableau 2-7 p
La carte Arduino LilyPad

Voici un résumé des spécifications de la carte Arduino LilyPad :

(Catégorie Valeur

Microcontréleur ATmega 168 Vou 328V

Fréquence d'horloge 8 MHz

Tension de service 2,7-55V

Tension d'entrée (recommandée) 2,7-5,5V

Ports numériques 14 entrées et sorties (6 sorties commutables en MLI)
Ports analogiques 6 entrées analogiques

Courant maxi. par broche d’E/S (c.c.) 40mA

Mémoire 16 Ko Flash, 1 Ko SRAM, 512 octets EEPROM
Chargeur d'amorcage 2 Ko (en mémoire Flash)

Dimensions 5 cm de diamétre

Prix (approximatif) 20€

Examinons maintenant les avantages et les inconvénients de la carte :

* Avantages

— fringable : carte extraplate conc¢ue pour étre intégrée a des
vétements.

* Inconvénients

— la programmation ne se fait pas par USB, mais par un module
adaptateur FTDI (5 V). Vous trouverez plus d’infos sur ce
module en saisissant les criteres de recherche suivants:
LilyPad FTDI Basic Breakout - 5V DEV-10275

— Comme les raccordements électriques peuvent uniquement étre
soudés sur la plateforme LilyPad, cette carte se préte davantage
aux montages qui ne nécessitent pas d’ajustements fréquents.

Vous trouverez de plus amples informations a la page http://arduino.
ce/en/Main/ArduinoBoardLilyPad.

Arduino Due

L’ Arduino Due est la premiére carte Arduino équipée d’un processeur
32 bits. La fréquence d’horloge de 84 MHz permet de réaliser des
calculs complexes en un temps record. De plus, les programmes les
plus lourds disposent désormais d’une capacité de mémoire suffisante,
ce qui évite d’avoir a faire attention au moindre octet, comme sur une
Arduino Uno. Comme toutes les cartes Arduino antérieures utilisent
une tension d’entrée de 5 V, des problémes risquent de se poser si I’on
ne sait pas que les entrées de la carte Arduino Due sont limitées a une
tension de 3,3 V. La carte risque d’étre irrémédiablement détruite.

Partie | : Les bases

()

Au lieu de la résolution 8 bits habituelle (analogWrite(0...255)), les
12 broches numériques, qui peuvent étre utilisées comme sorties
MLI, ont désormais une résolution étendue a 12 bits (analogWrite
(0...4095)), qui peut étre changée par analogWriteResolution(12).

Encore quelques mots sur les protocoles des interfaces. En plus d’I>C,
TWI (Two-Wire-Interface) et SPI (Serial-Peripheral-Interface), on
trouve aussi le bus CAN (Controller Area Network) qui est utilisé
aussi bien dans 1’automatisation de maquettes de chemin de fer que
pour la mise en réseau de systémes divers ou d’organes de commande
dans les automobiles. L’interface USB OTG permet aussi de
raccorder une souris, un clavier ou un smartphone.

ARDUIND’

Voici un résumé des spécifications de la carte Arduino Due :

(Catégorie Valeur

Microcontréleur ATmega SAM3X8E basé sur une architecture ARM Cortex
M3 a 32 bits

Fréquence d'horloge 84 MHz

Tension de service 3,3V (attention, ce n'est pasdu 5 V)

Tension d'entrée (recommandée) 7-12V

Tension d'entrée (limite) 6-20V

Ports numériques 54 entrées et sorties (12 sorties commutables en MLI)

Ports analogiques 12 entrées analogiques

Courant maxi. par broche 3,3V (c.c) 800mA
Courant maxi. par broche 5V (c.c.) 800 mA

Mémoire 512 Ko Flash, 94 Ko SRAM (2 bancs : 64 Ko + 32 Ko),
512 octets EEPROM

Dimensions 10,2ecm %53 ¢m

Prix (approximatif) 47€

< Figure 2-8
La carte Arduino Due

< Tableau 2-8
La carte Arduino Due

Chapitre 2 : La famille Arduino

Examinons maintenant les avantages et les inconvénients de la carte :

* Avantages

— processeur ARM 32 bits ;

— nombreuses entrées et sorties pour raccorder des capteurs ou
des actionneurs ;

— broches UART étendues (4 ports de communication série
matériels) ;

— connexion USB-OTG (On-The-Go) ;

— deux CNA (convertisseur numérique-analogique) qui peuvent
étres utilisés pour générer des signaux audio, par exemple ;

— deux bus TWI (Two Wire Interface) ;

— peut recevoir des shields Arduino a condition qu’ils fonction-
nent en 3,3V et qu’ils soient conformes avec le brochage de
I’ Arduino 1.0 (a vérifier absolument).

* Inconvénients

— Tension de fonctionnement de 3,3 V !
— Ne pas utiliser de shields Arduino qui fonctionnenten 5 V.

Vous trouverez de plus amples informations a la page http.:/arduino.
cc/de/Main/ArduinoBoardDue.

Arduino Yun

La carte Arduino Yiin est la premiere & étre équipée de deux proces-
seurs. Du c6té Arduino, il y a un microcontrdleur de type ATmega
32U4 qui se charge de I’exécution des sketches. De 1'autre, il y a la
machine Linux. Eh oui, vous avez bien lu: ¢’est un processeur du
type Atheros AR9331 fonctionnant sous Linino, une distribution
Linux basée sur OpenWRT. Les deux couches — comme je me plais a
les appeler — sont interconnectées par un bridge afin d’échanger des
informations ou des données. Ce bridge est un logiciel qui peut étre
utilisé par les deux processeurs.

Partie | : Les bases

@

yrolles.

L

|] o
| .

01:

20

right ©

5

! =

_opy

< Figure 2-9

-~ La carte Arduino Y1n
.| ARDUINO |
:
ST
Voici un résumé des spécifications de la carte Arduino Yun :
Microcontrileur AVR :
Catégorie Valeur 4 Tableau =
Microcontroleur ATmega 3204 b Farte F\rdtnna U
(microcontréleur AVR)
Fréquence d'horloge 16 MHz
Tension de service 5V
Tension d'entrée 5V
Ports numériques 20 entrées et sorties (7 sorties commutables en MLI)
Ports analogiques 12 entrées analogiques
Courant maxi. parbroche 33V (c.c) 50mA
Courant maxi. par broche 5V (c.c.) 40mA
Mémoire 32 Ko Flash, 2,5 Ko SRAM, 1 Ko EEPROM
Dimensions 7emx53cm
Prix (approximatif) 62€

Processeur Linux :

Catégorie Valeur < Tableau 2-10

Processeur Atheros AR9331 La arte Ardu?no Yin
(processeur Linux)

Architecture/fréquence d'horloge MIPS @400MHz

Tension de service 33V

Ethernet IEEE 802.3 10/100 Mbit/s

Chapitre 2 : La famille Arduino

Tableau 2-10 (suite) p

T Wi-Fi EEE 802.11b/g/n
La carte Arduino Yin USB Tvoe-A 2.0 Host/Devi
(pracesseur Linux) ype- O Tost/Device
Lecteur de cartes Pour Micro-SD uniguement
Mémoire 64 Mo DDR2 RAM, 16 Mo Flash

Examinons maintenant les avantages et les inconvénients de la carte :
* Avantages

— combinaison d’une carte Arduino standard basée sur une carte
Leonardo avec un microprocesseur Linux (systeme d’exploita-
tion Linino basé sur OpenWRT) ;

— module Wi-Fi préinstallé ;

— interface Ethernet préinstallée ;

— les environnements Arduino et Linux peuvent échanger des
données ou des informations via un bridge ;

— nombreuses possibilités d’extension par le biais d”API prépro-
grammées disponibles gratuitement sur le site Temboo
(https://temboo.com/). Voir le montage n° 20. 11 s’agit notam-
ment de collections de services web, comme Twitter ou
Google+, facilement accessibles via une couche d’abstraction
normalisée a I’aide de fonctions homogenes. Les bibliothe-
ques disponibles réunissent plus d’une centaine d’API ;

— possibilités d’extension logicielle par carte micro SD.

¢ Inconvénients

— plus énergivore de sorte que le port USB 2.0 peut vite atteindre

ses limites.

Vous trouverez de plus amples informations a la page http:/arduino.
cc/en/Main/ArduinoBoardYun.

Partie | : Les bases

@

Chapitre
La carte Arduino

Je vais commencer par vous présenter la piece maitresse de tous les
montages de ce livre : la carte 2 microcontroleur Arduino.

< Figure 3-1
La carte a microcontroleur Arduino

Sur cette image, vous ne pouvez évidemment pas vous rendre compte
a quel point les dimensions de la carte Arduino sont réduites (environ
7 cm de large et 5 cm de long) ; elle est vraiment trés maniable, tient
sans probleme dans une main et s’ avere vraiment compacte.

Au fil des années, plusieurs cartes Arduino ont été développées. I’ai
choisi de prendre I’exemple de la Uno, car ¢’est la plus populaire.

®

Les composants les plus divers y sont reconnaissables (voir figure 3-2),
lesquels feront 1’objet d’une explication détaillée. Certains penseront
certainement qu’on ne peut pas concevoir quelque chose de sérieux
sur une surface aussi réduite. Mais grice a la miniaturisation des
composants ces dernieres années, ce qui nécessitait auparavant cing
puces électroniques n’en requiert aujourd’hui plus qu’une.

Le plus gros élément qui saute directement aux yeux est le microcon-
troleur proprement dit. Il est de type ATmega328.

J’ai choisi la carte Arduino Uno R3 car, méme si d’autres modeles ont
suivi depuis, comme Arduino Due ou Arduino Yin, elle s’est quasiment
hissée au rang de standard. Elle convient tout particulierement a ceux qui
veulent faire leurs premiers pas dans le monde des microcontroleurs.

Figure3-2 p- Bouton . . L.
Que trouve-t-on de réinitialisation Entrées-sorties numeériques
surla carte Arduino ? l

Prisc USB

d'alimentation

LED
d’alimentation

Prise

Contréleur

Alimentation Entrées
analogiques

Ces éléments sont les plus importants de la carte Arduino mais, bien
entendu, cela ne veut pas dire que les autres sont a négliger.

Voici les principales caractéristiques de la carte Arduino :

microcontroleur ATmega328 ;

tension de service 5V ;

14 entrées et sorties numériques (6 sorties commutables en
MLI) ;

6 entrées analogiques (résolution 10 bits) ;

32 Ko de mémoire flash (0,5 Ko occupé par le chargeur d’amor-
cage ou bootloader) ;

Partie | : Les bases

vrolles

o

1L

|] o
| .

~

2 Ko de SRAM ;

1 Ko d’EEPROM ;

» fréquence d’horloge 16 MHz ;
* interface USB.

Une question simple me vient & I’esprit. Quand je regarde la carte, je me
demande ce qu’elle peut bien avoir de spécial. Puis-je communiquer
d’une maniere quelconque avec le microcontrdleur et, si oui,
comment 7

Comme vous pouvez le constater, un certain nombre d’entrées ou de
sorties sont disponibles pour communiquer avec la carte Arduino.
Elles constituent 1’interface avec le monde extérieur et permettent
d’échanger des données avec le microcontroleur, comme I’indique le
schéma 3-3.

-"/.,]L. - .
'\ Entrées (analogiques)
Microcontrdleur N
Arduino
Entrées et sorties (numériques)
I‘.\ /z"

Le microcontrdleur Arduino, représenté en bleu a gauche, peut commu-
niquer avec nous via certaines interfaces. Certains ports servent
d’entrées (fleche rose), et d’autres d’entrées et de sorties (fleche verte).
Un port est ici un chemin d’accés défini au microcontréleur, pratique-
ment une porte vers I'intérieur qu’il est possible d’actionner.

Vous apercevez également des réglettes de raccordement noires sur
ses bords supérieur et inférieur.

4 Figure 3-3
Entrées et sorties
de la carte Arduino

Chapitre 3 : La carte Arduino

virolles

015 E

20

(&)

right

!

Copy

ques. Or, je ne vois sur ce schéma que des entrées comme ports analogi-

Pas si vite ! Quelque chose ne colle pas. Notre microcontroleur doit
avoir des ports d’entrée et de sortie aussi bien analogiques que numéri-
22: ques. Ou sont les sorties ?

Bien observé, Ardus ! Mais le schéma est tout a fait correct. La raison
en est la suivante et fera 1’objet d’une explication plus détaillée :
notre carte Arduino n’est pas équipée de sorties analogiques séparées.
Cela peut paraitre bizarre au premier abord, mais certaines broches
numériques sont détournées de leur destination premiére et servent de
sorties analogiques.

Maintenant, vous devez vous demander comment tout cela fonctionne !
Voici donc un avant-gofit de ce qui sera expliqué dans la section « Que
signifie MLI 7 » du chapitre 10, page 214, consacrée a la modulation de
largeur d’impulsion. 1l s’agit d’un procédé dans lequel le signal présente
des phases a niveau haut et des phases a niveau bas plus ou moins
longues. Si la phase & niveau haut, dans laquelle le courant circule, est
plus longue que celle & niveau bas, une lampe branchée par exemple sur
la broche correspondante éclairera visiblement plus fort que si la phase a
niveau bas était la plus longue. Plus d’énergie sera donc apportée en un
temps donné sous forme de courant électrique. A cause de la persistance
rétinienne de notre ceil, nous ne pouvons différencier des événements
changeant rapidement que sous certaines conditions, et un certain retard
se produit aussi lorsque la lampe passe de 1’état allumé a celui éteint, et
réciproquement. Cela m’a tout I'air d’'une tension de sortie qui se
modifie, bizarre non ?

En tout cas, ce mode de gestion des ports présente d’emblée un incon-
vénient. Quand vous utilisez une ou plusieurs sorties analogiques,
c’est au détriment de la disponibilité des ports numériques — il y en a
alors d’autant moins a disposition — mais cela ne saurait nous géner
outre mesure, car nous n’atteignons pratiquement pas les limites de la
carte. De ce fait, nous n’avons pas de restriction sur les montages
expérimentaux a tester.

Une question encore, avant que vous ne poursuiviez sur votre lancée :
qu’est-ce que le chargeur d’amorcage (ou bootloader) que vous avez
mentionné dans I'énumération des caractéristiques de la carte Arduino ?

Ah oui Ardus, j’allais oublier ! Un chargeur d’amorcage est un petit
logiciel qui a sa place dans une certaine zone de la mémoire flash du
microcontréleur et assure le chargement du programme proprement
dit. Normalement, un microcontréleur recoit son programme de
travail d’un matériel informatique supplémentaire, par exemple un

@ Partie | : Les bases

programmateur ISP (In System Progamming). Le chargeur d’amor-
cage évite cela, ce qui rend le téléchargement du logiciel vraiment
facile. Sit6t dans la mémoire de travail du contréleur, le programme
de travail est exécuté. Si jamais vous deviez changer, pour une raison
quelconque, votre microcontroleur ATmega328 sur la carte, le
nouveau circuit ne saurait pas ce qu’il doit faire car le chargeur
d’amorg¢age n’est pas chargé par défaut. Cette procédure peut étre
menée au moyen de différents procédés que je ne peux pas expliquer
ici faute de place. Cependant, vous trouverez sur Internet suffisam-
ment d’informations pour vous permettre d’installer le chargeur
d’amorc¢age approprié au microcontroleur.

L'alimentation électrique

Notre carte Arduino doit étre alimentée en énergie pour pouvoir
travailler.

Cette alimentation peut s’effectuer tout d’abord via I’interface USB qui
relie la carte a I’ordinateur — ce chemin sert aussi a I’échange de données
entre la carte et I'ordinateur. En phase de développement avec votre
Arduino, la connexion USB va servir d’alimentation primaire de la carte.
La seconde possibilité consiste a brancher une batterie ou un bloc secteur
au connecteur, appelé prise jack. Vous pouvez, par exemple, employer
cette variante si vous avez construit un engin manceuvrable, commandé
par la carte Arduino. Le véhicule doit pouvoir évoluer librement dans
I’espace, sans céible. En effet, I’utilisation d’un cible USB, généralement
trop court, limiterait alors la mobilité de 1’engin. L’emploi d’une batterie
rend le dispositif autonome.

Prise USB

. Tension + données

Prise d’alimentation

Tension

Je vous montre ici les différentes prises. Attention, elles ne peuvent pas
étre interverties, car elles ont des formes et des fonctions différentes.

Chapitre 3 : La carte Arduino

< Figure 3-4
Alimentation
de la carte Arduino

Tableau 3-1 p
Valeurs de courant
ou de tension

Prise USB Prise jack

Des qu’il s’agit de courant ou de tension, il convient de consulter le
tableau 3-1.

(atégorie Valeur

Tension de service 5V (DC)
Alimentation depuis |'extérieur (recommandée) 7-12V (DC)
Alimentation depuis I'extérieur (valeur limite) 6-20V (DC)
Courant continu par broche (maximal) 40mA

DC: Direct Courant ou courant continu

L’interface USB peut fournir un courant maximal de 500 mA ; c’est
en principe suffisant pour réaliser la plupart des circuits d’essai de ce
livre. Elle est protégée contre les courts-circuits et les courants forts
grice a un polyfusible. Mais attention, cela ne doit pas vous empécher
de construire votre circuit avec le plus grand soin.

Rappelez-vous ce que j’ai dit dans I’introduction sur le concentrateur
USB et ne perdez jamais cela de vue (voir page XII).

Les modes de communication

Un microcontrdleur de type Arduino a déja beaucoup de connexions
qu’il s’agit de bien distinguer.

Le port USB

Sans le port USB, vous ne seriez pas en mesure d’initialiser une
communication.

Le travail avec la carte Arduino peut se diviser en deux étapes : le
temps consacré i la mise en ceuvre du montage et celui dédié a la
programmation, appelé phase de développement (design time).

Partie | : Les bases

La programmation s’effectue dans un environnement de développe-
ment que vous allez apprendre & connaitre trés rapidement. C’est dans
cet environnement que vous allez saisir le programme créé par vos
soins pour le transmettre au microcontroleur. Si tout s’est bien passé,
le temps de 1’exécution (runtime) commence. Vous n’avez pas besoin
de dire explicitement au microcontroleur : « Maintenant mon ami,
vous vous mettez au travail ! » Il démarre en effet immédiatement
apres avoir recu toutes les instructions de votre part. Vous pouvez en
outre échanger des données avec votre ordinateur via le port USB.
Nous verrons plus tard comment cela fonctionne.

Les ports d’entrée ou de sortie (E/S)

Les ports E/S représentent I’interface du microcontrbleur. Il existe
plusieurs chemins ou canaux pour échanger des données, comme
chez ’'Homme avec les yeux, les oreilles et la bouche. Il se produit,
grice et par le biais de ces canaux de communication, une interaction
avec ’environnement.

Votre carte Arduino utilise des données provenant de capteurs (par
exemple, de température, de lumiére ou d’humidité) pour réagir en
conséquence et entreprendre des actions appropriées. Elle peut aussi
activer des dispositifs lumineux et sonores, ou agir sur des action-
neurs (moteurs et capteurs).

Vous avez certainement compris que nous avons affaire & deux types
de signaux de commande. Des capteurs fournissent des données, et
des actionneurs convertissent des grandeurs d’entrée en grandeurs de
sortie. Ce processus se déroule selon le principe ETS (Entrée, Traite-
ment, Sortie).

Entrée Traitement Sortie <« Figure 3-5

Le principe ETS

Ou se trouvent ces ports d’entrée et de sortie sur la carte Arduino ?
Quand vous la tenez de maniére a pouvoir lire I’inscription « UNO »,
vous verrez les ports d’entrée et de sortie sur le bord supérieur (un
bloc de dix broches et un autre de huit broches).

Entrées et sorties numériques

MmN~ oo @ N~ YW Mmoo
E.—c.—w?-?e R ? v
o BN

By
g DIGITAL (PWM~)

Chapitre 3 : La carte Arduino @

Figure 3-7 p
Alimentation et entrées
analogiques

Il est bien entendu important de savoir pour chaque port quelle est son
adresse afin de pouvoir communiquer avec lui au cours de la
programmation. C’est pour cela que chaque broche posséde un
numéro. La numérotation de la premiére broche commence par 0 —en
programmation, presque toutes les numérotations commencent par (.
Sous certains chiffres se trouve un tilde (~) indiquant que la broche
peut étre commutée en sortie analogique. 11 s’agit 14 d’une broche
MLI (rappelez-vous la modulation de largeur d’impulsion; on y
reviendra un peu plus loin). A I'extrémité inférieure de la carte se
situent les ports d’alimentation (2 gauche) et les ports d’entrée analo-
giques (un bloc de huit broches et un autre de six broches).

Eb POWER ANALOG IN
w m a [«

§->zg-ﬂ O - N MW
min 0 e T T L T T

La numérotation du port analogique commence par 0 mais, cette fois-
ci, en partant de la gauche.

Pour aller plus loin

Avant de cabler les différentes broches, orientez-vous toujours a l'aide des dési-
gnations correspondantes gui se trouvent soit au-dessus, soit en dessous. Les
broches étant trés proches les unes des autres, vous risquez vite de mal les lire,
voire carrément de vous tromper en cablant la broche voisine de gauche ou de
droite. Cela peut étre trés grave si vous reliez deux broches avoisinantes ou
plus, car vous allez alors provoquer un court-circuit. Dans ce cas, il se peut
gu'un élément ou deux se mettent éventuellement a fumer dans le circuit. Le
mieux est donc de lire les barrettes a la verticale a partir du haut, car une
lecture en biais et de coté est risquée.

Attention, ne cablez jamais une carte sous tension alimentée par le port USB.
Prenez le temps de bien cabler le circuit — une ligne mal cablée peut endom-
mager la carte -, et évitez de penser sans cesse a I'étape suivante, a savoir le
test du circuit. Il est impératif de rester concentré sur son travail et tout ira pour
le mieux.

Les langages de programmation
C/C++

Pour que la communication avec la carte Arduino se déroule sans
probléme, les développeurs doivent convenir d’une base de langage,
afin qu’ils puissent se comprendre entre eux et exploiter un flux
d’informations. C’est la méme chose que lorsque vous allez i
I’étranger et que vous ne maitrisez pas la langue. Dans ce cas, vous

Partie | : Les bases

devez vous adapter d’'une facon ou d’une autre, peu importe la
manilre (gestes...).

Le microcontréleur ne connait a son niveau d’interprétation que le
langage machine, appelé aussi code natif, composé exclusivement de
valeurs numériques. I1 est tres difficile a comprendre, car nous avons
appris tout petit 2 échanger a 1’aide de mots et de phrases, et non de
valeurs numériques. Nous devons donc trouver un moyen de pouvoir
communiquer de maniére compréhensible avec le microcontroleur.
C’est pourquoi un environnement de développement traduisant les
commandes dans un langage dit évolué — autrement dit, se présentant
sous une forme semblable & notre langage — a été créé. Pour autant,
nous ne sommes pas plus avancés puisque le microcontrdleur ne
comprend pas ce langage. En effet, il manque une sorte de traducteur
servant de lien entre lui et I’environnement de développement. C’est
le rdle du compilateur qui convertit un programme écrit en langage
évolué en un langage cible compréhensible par le destinataire (ici, le
CPU, ou Central Processing Unit, de notre microcontrbleur).

Langage évolué Traduction Langage cible

I+ (Cnmpilateur) (langage mathina

Presque tous les langages de programmation font appel au vocabu-
laire anglais ; nous n’avons donc pas d’autre choix que de nous y
mettre. Une autre étape de traduction sera donc nécessaire, mais je
pense que ’anglais scolaire suffira ici dans la plupart des cas. Les
instructions — autrement dit, les ordres — que l’environnement de

développement comprend sont concises et semblables a celles du
langage militaire, et représentent ce qu’il faut faire.

[Micro ! Branchez la lampe au port 13, exécution ! >

Ne vous en faites pas, elles vous seront enseignées au fur et & mesure.
Comme I'indique fort justement le titre de cette section, C et C++
sont également des langages évolués. Aujourd’hui, tous les
programmes professionnels sont écrits en C/C++ ou dans des
langages apparentés tels que C# ou Java, qui ont tous une forme de
syntaxe similaire.

A tous les programmeurs qui s’offusquent de ne pas voir ici leur
langage favori, je tiens a préciser que cela ne signifie pas que je
considere tous les autres langages (et il y en a beaucoup) comme non

Chapitre 3 : La carte Arduino

< Figure 3-8
Le compilateur sert de traducteur,

professionnels. Nous en restons ici 8 C/C++ car Arduino, tout comme
le compilateur, dispose d’une partie de la fonctionnalité des langages
C/CC++. Ainsi, ceux qui ont déja programmé avec ne se sentiront pas
perdus, et nous ferons en sorte que les autres se sentent eux aussi rapi-
dement a 1'aise. Par ailleurs, beaucoup d’autres packs de développe-
ment avec microcontrdleur utilisent des compilateurs compatibles C/
C++ ; autrement dit, I’étude de ces langages va bientdt se révéler
utile. Mais concentrons-nous maintenant sur Arduino.

Je voudrais bien voir un peu de code maintenant. Allez, juste un
exemple pour voir, d'accord ?

En voila un qui ne sait pas attendre ! Voici juste un exemple simple
que nous retrouverons bient6t de toute fagon :

int ledPin = 13;

void setup(){
pinMode(ledPin, OUTPUT); //Broche numérigue 13 comme sortie

void loop(){

digitalWrite(ledPin, HIGH); //LED au niveau ha
delay(1000) ; //Attendre une sece
digitalWrite(ledPin, LOW); //LED au niveau bas (0
delay(1000); //Attendre une seconde

}

Dans cet exemple, vous faites clignoter une diode branchée a la
broche de sortie numérique 13. Ne me dites pas que vous voulez déja
essayer, car je n'ai méme pas encore expliqué les principes de
I’installation du pilote ! Pour cela, vous devez attendre et, avant tout,
configurer correctement 1’environnement de développement. On y
va?

Comment puis-je programmer
une carte Arduino ?

Comme je I’ai dit déja, nous disposons, pour la programmation du
microcontréleur Arduino, d’un environnement de développement —
appelé également IDE (Integrated Development Environment) —, au
moyen duquel on entre directement en contact avec la carte et on
charge le programme dans le microcontroleur. Un programme est

Partie | : Les bases

appelé sketch dans le contexte Arduino, qu’on peut traduire approxi-
mativement par esquisse. A 1’avenir, nous parlerons donc de sketches
pour désigner les programmes Arduino.

Pour toucher un large public avec Arduino, des environnements de
développement qui se ressemblent ont été créés pour les plates-
formes les plus diverses. Le systéme d’exploitation le plus connu et le
plus répandu est Windows. C’est pourquoi j’ai décidé de développer
tous les sketches de cet ouvrage sous Windows — ce qui ne veut pas
dire, bien évidemment, que les autres plates-formes sont mauvaises !
Les différentes versions pour les systemes d’exploitation suivants
sont disponibles sur le site Internet htip.://www.arduino.cc/en/Main/
Software :

¢ Windows ;
* MacOS X ;
¢ Linux (32 bits) .

Vous y trouverez également des Release Notes (ou notes de valida-
tion) contenant des informations importantes sur la version de I'IDE
concernée. Il est question, par exemple, de nouvelles caractéristiques
ou d’erreurs éliminées qui se sont produites dans la version précé-
dente. Il est intéressant d’y jeter un coup d’ceil.

Installation de I'environnement
de développement, pilote inclus

J’en ai déja tellement dit sur I’environnement de développement qu’il
est temps maintenant de le voir d’un peu plus pres. Je commencerai
par Windows (en traitant 1’installation sous Windows 7, mais 1’opéra-
tion demeure similaire avec une autre version de Windows), puis je
passerai 8 Mac OS X et terminerai par Linux. Cet ordre n’est évidem-
ment pas lié a la valeur de ces systémes d’exploitation. Attention, si
vous connectez votre carte Arduino Uno a votre ordinateur sans avoir
préalablement installé I’environnement de développement, le systéme
d’exploitation recherchera automatiquement le pilote correspondant
et la tentative échouera, accompagnée du message d’erreur suivant.

Chapitre 3 : La carte Arduino

Figure3-9 p
Le pilote Arduino -
est introuvable. {€) [l Mettre a jour le pilote - Périphérique inconnu

Windows n'a pas pu installer votre Périphérigue inconnu.

Windows n'a trouvé aucun pilote pour votre péniphérique.

Sivous connaissez le fabricant de votre périphérique, vous pouvez visiter son site Web et
consulter la section Support technique ou Téléchargements pour rechercher le pilote pour ce
périphérique.

: Fermer

Les versions de I’environnement de développement évoluent vite et
vous devez régulierement procéder a des mises a jour. Quand vous
lirez ce livre, il est possible que la version décrite soit déja dépassée,
mais cela ne signifie pas pour autant que les sketches présentés ne
fonctionnent plus : la rétrocompatibilité est généralement assurée.

Figure 3-10 p-
Lenvironnementde | A 1 du 1 no IDE

développement Arduino pour les
différents systemes d'exploitation

Arduino 1.0.6

Dawnload Next steps

Arduino 1.0.6 (release notes)

instalf)

Windows Installer, Windows Z1P file (for non-ad

- MacOSX

= Linux: 32 bit 64 bit

Foundations

- 50urce

FAG

8 Installation sous Windows 7

o Etape 1

= Pour Tinstallation sous Windows, j'ai choisi 1'option Windows
2 Installer qui installe automatiquement les pilotes requis sur 1’ordina-
teur.

@ Partie | : Les bases

Copyright © 2015 Eyrolles,

Ouverture de arduino-1.0.6-windows.exe i x|

Vous avez choisi d'ouvrir :

& i
qui estun fichier de type : Binary File (52,6 Ma)
& partir de : hitp://downloads.arduine.cc

Voulez-vous enregistrer ce fichier ?

Cliquez sur le bouton Enregistrer le fichier pour enregistrer le fichier
d’installation sur votre ordinateur.

Etape 2

Ouvrez le fichier d’installation et suivez les instructions qui s’affi-
chent dans les boites de dialogue. Commencez par cliquer sur le
bouton I Agree.

ooy e oy v =y |

Please review the license agreement before instafing Arduino. If you
oo accept all terms of the agreement, dick I Agree.

I',.‘MJ LESSER GEMERAL PUBLIC LICENSE -
Version 3, 29 June 2007 |
Copyright (C) 2007 Free Software Foundation, Inc. <htto://fsf.ora/>

Everyone is permitted to copy and distribute verbatim copies of this icense
document, but changing it is not allowed,

This version of the GMLI Lesser General Public License incorporates the terms

and conditions of version 3 of the GNU General Public License, supplemented
by the additional permissions listed below,

Cancel | Nullsoft Install Systemvz 56 1 Agree

Vous voyez alors la liste des composants qui seront installés. Cliquez
sur le bouton Next.

@A P m iAo R =1 = sl

Check the components you want to install and uncheck the components
0 you don't want to install. Click Next to continue.

Select components to install:

Assodate .ino files

Space required: 254.9M8

Cancel | Mullsoft Install Syster vE. 46 < Back | Next > I

< Figure 3-11
Téléchargement du fichier
d'installation pour Windows

4 Figure 3-12
Acceptation du contrat de licence

<« Figure3-13
Choix des composants a installer

Chapitre 3 : La carte Arduino

Figure 3-14 p
Choix de I'emplacement
des fichiers du programme

Figure 3-15 p
Progression de l'installation

Vous pouvez ensuite changer d’emplacement pour le dossier d’instal-
lation. Cliquez sur Install pour valider le chemin d’accés proposé.

25 Arduine Setup: Installation Folder = ==

P Setup will install Arduing in the following folder, To install in a different
o0 folder, dick Browse and select another folder. Click Install to start the
installation.

Destination Folder

Browse. ..

Space required: 254.9MB
Space available: 133.4GB

Cancel | . <Back || mstal |

L’installation commence. Vous pouvez en suivre la progression grice
a une barre.

&2 Arduino Setup: Installing ool B =}

Size: 180417 Kb Files:3363 Folders:383
@

_ Goncel |

Un message de sécurité de Windows surgit en cours d’installation. Ne
vous laissez pas troubler. Fermez la boite de dialogue en cliquant sur
Installer. Ce message apparait lorsque 1’éditeur du pilote est inconnu.
Ici, vous ne courez aucun risque.

@

Partie | : Les bases

<« Figure 3-16
[Sécurité de Windows == 9)
Message de sécurité de Windows
Vaoulez-vous installer ce logiciel de périphérique ?
Mom : Arduino USE Driver

= Editeur ; Arduine LLC

Teujours faire confiance aux logiciels provenant de | Installer : _ Nepas installe_r__i
« Arduino LLC »

Vous ne devez installer que les pilotes des éditeurs que vous approuvez, Comment détesminer si un logiciel
de périphérique peut &re installé sans ricques ?

Une fois 'installation terminée, cliquez sur le bouton Close.

5 < Figure3-17
L'installation est terminée.

@ Arduino Setup: Completed

Completed

of B || 23

: . /5t : | I Close

Etape 3

Lorsque vous raccordez votre carte Arduino Uno a votre ordinateur
via un cible USB, elle doit désormais apparaitre dans le gestionnaire
de périphériques. La carte Uno n’est pas livrée avec un cidble USB.
Par conséquent, pensez aussi a vous en procurer un, sinon la carte ne
présentera pas grand intérét.

4 Figure 3-18
Cable USB pour relier la carte
Arduino a l'ordinateur

Chapitre 3 : La carte Arduino @

La prise de type B est reliée a la carte, et celle de type A a I'ordina-
teur. Rappelez-vous ce que j'ai mentionné dans I’avant-propos :
I’utilisation d’un concentrateur USB est conseillée.

Allez maintenant dans le gestionnaire de périphériques de 1’ordina-
teur. Pour cela, cliquez droit sur 1’icone du Bureau, puis sélectionnez
Gestion. OQuvrez le gestionnaire de périphériques. Dans 1'arbores-
cence qui apparait, vous trouverez une entrée sous Ports (COM &
LPT).

Figure 3-19 p> 4 "7 Ports (COM et LPT)
La carte Arduino Uno est reconnue, LB Arduino Uno (COM3)

Vous pouvez maintenant ouvrir 1’environnement de développement
depuis le menu Démarrer de Windows.

Installation sous Mac OS X (Mavericks)

Pour installer I’environnement de développement Arduino sous Mac
OS X, ouvrez la page Internet correspondante dans votre navigateur
Safari.

Figure 3-20 p-
La page de téléchargement
du logiciel Arduino dans Safari

Arduino IDE

Axduino 1.0.6

[Mt

Cliquez sur le lien Mac OS X et enregistrez le fichier. Une fois le télé-
chargement terminé, le fichier se trouve dans le dossier Télécharge-

memnts.
b+ Figure 3-21 p- - R o
= Le dossier Téléchargements e e 2
O ; R o
: dans le Finder
I_IJ U Dhades Siare
LN i ——
™ Grapleri e st
' T ¥y Agoic i
g P,
:"-\J e et
._'} -

g BT —

= @ Partie | : Les bases

Etape 1

Pour lancer I’environnement de développement Arduino, dézippez le
fichier téléchargé et sur le fichier Arduino. Un message de sécurité appa-
rait pour vous signaler que le fichier a été téléchargé sur Internet. Cette
question ne réapparaitra plus lorsque vous aurez accepté d’ouvrir le
programme.

= Arduing = #1t wnd apolation provenan
L e sibhargemeat depuls Minmel
q | Veules-veus weaimant Towaris ¢

5 Anrlar Oueie

Cliquez sur le bouton Ouvrir. Pour accéder plus rapidement a 1’inter-
face, placez le fichier téléchargé dans le dossier Programmes.

Etape 2

Connectez votre carte Arduino Uno a votre Mac a 1’aide de son cible
USB. Avant de commencer, vous devez encore configurer deux
choses sur lesquelles je reviendrai dans la suite de ce chapitre :

+ via quel port I’ Arduino est-elle raccordée au Mac ?
* de quelle carte Arduino s’agit-il ?

Dans le menu Outils>Port série, sélectionnez 1'entrée /dev/ity.
usbmodem14441.

T Ade .
Tormatage sutomaliqes KT s LOG
Archiver e croguis
Bigarer encodage & recharger
Momiteur vérie L 40

Typt de carte .
fdbee ety Bluetooth-Serial- |
JdewcuBuetooth-Serial- |
Poprnmatens. . ® ey Bustooth-Serial -2
Crmver & shquence Jsiialisison [awefcu Biuetooth-Serai- 2
Jebe/try Blustenth-Modem
Iew [cu Blustoarh-Moden
[dew mty Biuetooth-POA-Sync
[oreicu Bhuetooth- POR-Syne

[dew/cu usbmodemiai]

Si cette entrée n’est pas proposée, débranchez le cible USB de la
carte Arduino de votre Mac et parcourez la liste des ports disponibles.
Puis branchez a nouveau le cible USB et examinez la liste. L’entrée
qui s’est ajoutée est la bonne.

I ne vous reste plus choisir la bonne carte Arduino. Affichez la liste
des cartes Arduino prises en charge dans le menu Qutils>Type de
carte et sélectionnez 'entrée Arduino Uno.

Chapitre 3 : La carte Arduino

< Figure 3-22

Message de sécurité affiché
au démarrage de |'application

< Figure 3-23
Sélection du port USB

@

© 2015 Eyrolles,

yright

Cop

Figure 3-24 p

Sélection de la carte Arduino Uno

Figure 3-25 p-

L'interface de Muon sous KUbuntu

| Outss HLELE

Formatage automaticue
Archiver le croguis

Reoarer encodage & recharger

Moniteur sdrie

Port sévie
Progr amimatews

Craver |2 séquence dinniabsation

Arduano [h Dusemi w/ 4

Arduing Nano w/ ATmegailll
Arduinsg Nano w/ ATmegal 68
Ardigen Meos 2560 o Megs ADY

L’environnement de développement est prét et vous pouvez
commencer !

Installation sous Ubuntu

Un pack d’installation de la version Arduino 1.0.5 existe déja pour la
version KUbuntu 13.04 de Linux. Je vous montre ici une méthode
d’installation simple par le biais de Muon. J’ai installé KUbuntu sur
mon ordinateur. Il s’agit d’Ubuntu avec I’environnement de travail
KDE au lieu de Gnome.

I:Itape 1

Sélectionnez Muon dans le menu Applications>Systeme et cliquez sur
la catégorie Electronique, i gauche.

Filter

Peir catégorie

Langage de prodgmmmat
Largage e programanat
Langage de progranmmat)
Langage de programmat
Langane e proge et
Largages de programma
Lotalsation

Logaint de wiido
Mathématiques
Multi-plate-loemes
Multicnecha
Mita-paquets

Moy =t Modules.
Pelices

Périphenques mbegrés
Radiz-pmarour

Selenze

Sarvmars web

Systame & analysn SEATIC
SyRtemas e consrdle Ge
Traitement de texte
Utilzames

Fozeury

Echucation

For dt3t
Par origine
Par achitectune

Ian-g\lr de I‘-N.Nrmﬂl‘ 8

Gestionnalre de paquets de Muon

Hlo §dt Wew Settogs welp

#% Vi |3 disponibiits de mises 3 jour L Mise A niveas complats -

et . Demandé
ahance
s e cap s
= Sarr
\hilitaires et fremware Altus Metrum

- d e ingtialiny * Prrd il |
g Mlmnocore - :

code, exernples el bitholhauwes pour la plate-forme Ardusig
a ardusino-mrighty-1 2iidp

Fattorm Ries for Arduing te run on ATmegaligsr

a ardng-mi
Pregrammar vetrs Arduing 5 partis de 15 igne de commands

i
B Ciciein de BT T ErATEMESSION artitraines
Al eAIMpIes

= poar i calculateis de de e adbatraire f

o vance

Détadls | Daails Wit des rodificats

EDI st ques paur carte o axp v Basguer pour - | B installation

Adddume est oive plate-borime bbie powr prototypages dlectiongues. basse sur du matensl e logiciel Besibles of faciles
dutisahon. F4 est destine S SITICLRS, CONCAPIAUE, PASHIGNNSS B fOULE PRCTONNS Itemsoae Dar la crdation d'objers oo
Fenuironnammnts inkeratifc

Ce paguet stafiona Menvironnement de développement intbgré qui permet &'denire des progranmemes. de winfier e code. de le
compber ot da le transibver sur la carle de devih Ardang, Dus iy ol den wivs de (ode seront
[T e

Canonetal g fourmd Jutunt Mise § jour de ardwino || se pout QuE CEtanes Mises & our Sownt fourtes par la communautd
Wurdu

A3 206 pagiets want dizpondhlos, 2 000 instalitds], 17 poavant dtre mis 8 jou

L’environnement de développement d’Arduino apparait et vous
pouvez démarrer son installation en cliquant sur le bouton Installer.

Partie | : Les bases

Eyrolles.

)

201

yright ©

!

Cop

Etape 2
L’installation du pack modifie aussi d’autres fichiers.

P=ae—

Confirmer les changements additionnels 4 Figure 3-26

Marquer les changements additionnels ?
Cette action nécessite des changements vers d‘autres paquets :

[Installer
w librxtx-java
binutils-avr
arduino-core
avrdude
gcc-avr
avr-libc
libftdil
libmpc2
libjna-java

BERDREDER

[. ¥ OK J| @ Cancel |

Cliquez sur OK.

Etape 3

Tous les packs devant étre installés sont affichés.

..m.,;m.r. . & Etat Deerraariches ‘ Figure 3-27

e - : atatia iz ind b tngraler Les packs sont présélectionnés,

f o arduirg-core

rore. pyamnles #t hihlinthémas nrir bn nlate-farme Srdiing 3t installer

Etape 4

Pour démarrer I'installation du pack, il ne vous reste plus qu’a cliquer
sur le bouton Appliquer les modifications dans la partie supérieure de
la fenétre.

. | < Figure 3-28
%" Appliquer les modifications | Démarrage de linstallation

hercha Appliquer les
. modifications - -

Etape 5
La gestion des logiciels étant la chasse gardée de 1’administrateur,
vous devez saisir le mot de passe correspondant.

Les modifications supplémentaires

Chapitre 3 : La carte Arduino

Copyright © 2015 Eyrolles.

Figl.lre 3-29 ’ S'authentifier *

Saisie du mot de passe racine _ | Toinstall or ftware you need to authenticate.

Une application tente d'effectuer une action qui nécessite des privilsges. Pour effectuer
cekte action. un utiisateur de fa liste ci-dessous doit s'authentifier.

| 2, oivier {olvier) -

Mot de passe : | |

p Detalls

Annuler S'authentifier

L’installation du pack commence enfin.

Figure 3-30 0 Gastionnaire de paquets de Muon
- i Ple ot Wew Semings el

L'installation commence. . v = 2
Téléchargement des paguets
[Lerplacsommet Tuilie Progisisian
g Bt i . i £xATBunDl Sacyimasin BUMd 1386 0351 s bk s
litpergee 2 PEp et oo s Sepistaels ¢omcsba b ARy v b A2 (390 0 9-8buddy u R
] SRt Amrurrons Dguidest comasunt waucyfhnersa IBea v 1386 32 74 Lo)
TorEtejava g o Sguidwed Comubonty Saucyiuniere ISnEava 166 2 2pel 11 191758
herndits e PAID AT DS Aquatend COMABUTIG SIICY AT Dinutils v 386 2301 F 41 A
e-av st i s higusdrent C0m/Abunt EAUCYAUNveres gEc-av (188 14722 123 Mig =
== o @ dorrder
43 196 paguats sont Gsponibles. 2000 metaliets), 13 poovant i mis b i, 18 b inctaler | mettce 3 dhesu P50 VBE & tbcharges, 816 ME deigace b Ibboir
L
Etape 6

Pour pouvoir communiquer avec la carte, I’environnement de déve-
loppement Arduino doit faire partie du groupe Dialout. Cliquez sur le
bouton Add pour 'y autoriser.

Figure3-31 » Arduino Permission Checker - +

A}wtau groupe Dialout You need to be added to the "dialout”
group to upload code to an Arduino
microcontroller over the USB or
serial ports.

Click "Add" below to be added.
You must log out and log in again

before any group changes
will take effect,

Ignore ‘1' Add ‘

@ Partie | : Les bases

Etape 7
Tout est prét maintenant et vous pouvez lancer 1’environnement de

développement Arduino depuis la commande Applications>Electro-
nique.

sketch decl9a | Arduine 1:1.0.5+dfsg2-1 — & 4 Flgure 3-32
Fichier Edition Croquis Outils Aide L'environnement
1.0 " de développement Arduino

sketch_decl9a

Arduino Uri

Si vous jetez un ceil en bas a droite de la fenétre de I’environnement
de développement, vous pouvez y lire la mention Arduino Uno on
COM]1. Ce n’est pas tout a fait exact, car la dénomination COM n’est
pas utilisée sous Linux pour un port série. Vous devez donc sélec-
tionner le bon port.

Etape 8

Dans le menu Outils>Port série, sélectionnez I’entrée /dev/ttyACMO.

Chapitre 3 : La carte Arduino @

Figure 3-33 p sketch decl9a | Arduino 1:1.0.5+dfsg2-1

Affectation du bon port Fichier Edition Croquis ||| Aide
Formatage automatique Cerl+T I

archiver |e croquls
sketch_declSa Réparer encodage & recharger
Moniteur série ChrlaMaj+ i

Type de carte

Programmateur
Graver la séquence d'initialisation

Arcuns Line o

Attention!

Il arrive parfois que la commande Port série soit grisée, ce qui vous empéche
d'affecter un nouveau port. Réinitialisez Linux — manceuvre cependant rare-
ment nécessaire — et vous pourrez ensuite sélectionner le port série adapté.

®

Lenvironnement de
développement d’Arduino

Qu’est-ce qu’un environnement de développement et que peut-on
faire avec ? Eh bien, il permet, au développeur ou a I’expert Arduino
que vous allez bient6t étre, de transposer ses idées de programmation
sur des objets matériels (hardware), avec comme composant prin-
cipal la carte Arduino, 4 laquelle peuvent étre raccordés les éléments
électroniques ou électriques les plus divers. Ce sont la des choses
simples, mais hard par leur structure, d’ol le terme hardware
employé.

Seulement, a4 quoi sert ce matériel si on ne lui dit pas ce qu’il doit
faire ? Il y a en effet quelque chose qui manque, et ce quelque chose,
> c’est le logiciel (software), le monde des données et des
programmes — ou des skefches dans le cas d’ Arduino. Le logiciel est

@ Partie | : Les bases

soft, autrement dit immatériel, 2 moins de I'imprimer sur papier. Il
permet au matériel d’interpréter et d’exécuter des instructions.

Le hard et le soft forment une entité indissociable, ils ne sont rien 1’un
sans [’ autre.

Lancement de |'environnement
de développement

Venons-en maintenant aux choses concréetes. Le démarrage de ’envi-
ronnement de développement, que j’appellerai dorénavant IDE, est
proche. Sous Windows, vous y accédez depuis le menu du bouton
Démarrer dans lequel vous reconnaitrez 1’icone spécifique
d’ Arduino.

La fenétre suivante apparait au démarrage.

@@ sketch_dec19a | Arduino 1.0.6 . =10} x|

Fichier Ediion Croquis Oufils Aide

skefch_dec19a

Arduing Uno on

En I’observant de plus prés, vous pourrez remarquer différentes
zones, dans lesquelles il se passera peut-étre quelque chose plus
tard... Nous allons les passer toutes en revue, en partant du haut de la
fenétre vers le bas.

< Figure 3-34
La fenétre IDE vide (sous Windows)

Chapitre 3 : La carte Arduino

@

violles,

{ s
| .

)18

o

20
Ll

(&)

right

Y
DY

La barre de titre

La barre de titre, qui se situe tout en haut de la fenétre, comprend
deux informations :

* le nom du sketch (ici, sketch_sep22a). Il est attribué automatique-
ment et commence toujours par sketch. Viennent ensuite le mois,
le jour et une lettre prise dans 1’ordre, entre a et z, dans le cas ou
d’autres sketches seraient créés ce jour-la. Notre sketch a été
créé le 19 décembre, dans sa premiere version ;

¢ le numéro de version de I'IDE Arduino (ici, la version 1.0.6),
qui augmentera au fil du temps dés que des erreurs auront été
¢liminées ou de nouvelles fonctions ajoutées.

La barre de menus

Dans la barre de menus, vous trouverez les différents menus grice
auxquels vous pourrez appeler certaines fonctions de I'IDE.

Fichier Edition Croquis Outls Aide

La barre d’icones

La barre d’icOnes se situe sous celle des menus.

La zone des onglets
La zone des onglets indique combien de fichiers de code source font
partie du projet Arduino actuellement ouvert.

Pour le moment, seul un onglet ayant pour nom sketch_dec19a appa-
rait. Cependant, d’autres peuvent étre ajoutés au gré de la program-
mation. Pour cela, il faut se servir de 1’icone située sur le c6té droit.

sketch_dec18a

L’éditeur

C’est le ceeur de I'IDE. La zone d’édition, qui est pour le moment
encore complétement vierge, est le lieu central ot vous pouvez étaler
vos idées. Vous y saisissez le code source, ainsi que les instructions
qui conduiront le microcontrdleur a faire ce que vous voulez.

Partie | : Les bases

Ble]

L

5 Eyrolles.

)1E

=
| .

o

20
Ll

L

right ©

T

! =

_opy

La ligne d’information

La ligne d’information vous renseigne sur certaines actions entre-
prises par I'IDE. Tout est en anglais naturellement.

Par exemple, si vous avez enregistré avec succés un sketch sur le
disque dur, c’est ici que vous en €tes informé. En outre, si, par
exemple, le compilateur a détecté une erreur de saisie dans le sketch
lors de la transcription, vous étes prévenu par un message. D’autres
détails sur les erreurs détectées s’affichent dans la fenétre de messa-
gerie (voir la capture précédente).

La fenétre de messagerie

L’IDE vous fournit, dans la fenétre de messagerie, tout un tas
d’informations :

* sur le transfert d’un sketch sur la carte Arduino (succes ou échec) ;
* sur les activités de traduction du compilateur (succes ou échec) ;

¢ sur le moniteur série (succes ou port COM non trouvé).

La ligne d’état
La ligne d’état indique soit le numéro de ligne du curseur (ici,
ligne 3) :

Arduine Une on COMZ

Arduine Uno on COMS

Chapitre 3 : La carte Arduino

A droite, vous pouvez voir en plus le nom de votre carte Arduino et le
port COM utilisé par votre interface série.

La barre d'icOnes en détail

A force d’utiliser quotidiennement I'IDE, vous vous apercevrez que
la barre d’icones est votre compagnon le plus précieux. Méme si la
barre ne contient pas beaucoup d’icones, il vous faut néanmoins en
maitriser les fonctionnalités.

Tableau3-2 > ISR
Fonctions des icones . ’ o erer—— >
de la barre d'icénes Pour vérifier la syntaxe‘du sketch qui se trouve dans I'éditeur (Verify signifie ici contrd-
ler la syntaxe) et compiler le programme.

Une barre horizontale s'affiche au début de la vérification/compilation, laquelle indi-
que la progression.

Siaucune erreur n'est constatée, 'opération se termine par le message Done Compi-
Ling. Dans la fenétre d'édition se trouve une indication relative aux besoins en
mémoire du sketch.

. Pour créer un nouveau sketch.
Souvenez-vous que I'1DE ne peut gérer qu'un seul sketch a la fois. Si vous en démarrez
un nouveau, n'oubliez surtout pas d’enregistrer I'ancien, faute de quoi vous perdrez
toutes les informations.

Tous les sketches sont consignés dans un livre de sketches qui se trouve dans le réper-
toire C:\Utilisateur\<Nom d'utilisateur>\Mes documents\
Arduino. Le nom d'utilisateur a saisir est le vétre,

Cette icne sert a charger un sketch enregistré sur le disque dur dans I'IDE. Elle vous
permet aussi d'accéder aux nombreux exemples de sketches livrés avec I'IDE. Regar-
dez-les car ls peuvent vous aider.

Pour enregistrer votre sketch sur un support de données. L'enregistrement s'effectue
par défaut dans le répertoire du livre de sketches mentionné plus haut.

. Pour transmettre le sketch compilé avec succes sur la carte Arduino dans le microcon-
troleur.

Pendant ledit téléchargement du sketch, voici ce qui se produit — sur la carte se trou-
vent des petites diodes lumineuses qui vous tiennent au courant de certaines activités,

L

X! n'%l
ax i@ ARDUINO

— LED L : reliée a la broche 13, Elle s'allume briévement quand la transmission com-
mence.

Partie | : Les bases

20

015

»

1

Icone Fonction

— LEDTX: ligne émettrice de l'interface série de la carte. Elle clignote pendant la trans-
mission.

— LEDRX : ligne réceptrice de l'interface série de la carte. Elle dignote pendant la trans-
mission.

La ligne émettrice (TX) est matériellement reliée a la broche numérique 1, etla ligne
réceptrice (RX) a la broche numérique 0.

Le moniteur série peut &tre ouvert avec cette icdne. Une boite de dialogue ressemblant
a un terminal s'ouvre,

2 com3 - =] [
[[send |
a
£

V] Autoscrol Carriagereburn » 9600baud ||

! : [}

Dans le champ de saisie supérieur, vous pouvez entrer des commandes qui seront envoyées a
la carte quand vous appuierez sur la touche Send. La zone centrale de la fenétre est consacrée
aux données envoyées par la carte via l'interface série. Certaines valeurs auxquelles vous
vous intéressez peuvent y étre affichées. Dans la partie inférieure, vous pouvez, grace a une
liste déroulante & droite, régler la vitesse de transmission (baud) qui doit correspondre & la
valeur que vous avez employée pour programmer le sketch. Si ces valeurs ne correspondent
pas, aucune communication n'est possible,

Pour aller plus loin

Dans le cas ol vous auriez oublié la fonction qui se cache derriere I'une de ces
six icones, il vous suffit de passer la souris devant I'une d'elles et de regarder a
droite de la barre d'icones pour y lire sa signification.

'éditeur en détail

L’éditeur, dans lequel vous saisissez votre code source, vous assistera
a maintes reprises dans la programmation. La figure 3-35 vous
présente le contenu de la fenétre : il s’agit d’un code source qu’il est
inutile de chercher a comprendre pour I'instant. 11 s’agit simplement
de montrer comment et sous quelle forme celui-ci est représenté.

<« Tableau 3-2 (suite)
Fonctions des icones de |a barre
d'icénes

Chapitre 3 : La carte Arduino

Figure 3-35 p
Code source d'un sketch Arduino

|n;-. id setup()
{
Serial.begin(9600) ;

}

vold loopi)
{
Serial.printin{"Bonjour mon ami Arduino™):

}

Quelles sont les caractéristiques qui vous sautent tout de suite aux
yeux ? En voici un petit résumé.

1. L’IDE est capable de faire ressortir certains mots en couleurs
dans 1'éditeur. Lesquels ?

Les caractéres sont plus ou moins gras selon les mots.

3. Certains éléments ressortent plus particulierement. 11 s’ agit ici de
I’accolade finale.

4. La représentation du code source obéit 4 une certaine hiérarchi-
sation visuelle. Certaines zones sont plus décalées a droite que
d’autres. Bien évidemment, ce n’est pas pour rien, ni seulement
pour faire beau : tout a une raison d’étre.

Point 1

Certains mots, appelés également mots-clés, apparaissent en
couleurs. Il s’agit de noms réservés qui ont été, par exemple, attribués
a des instructions. Notre environnement de développement ou le
compilateur dispose d’un certain vocabulaire que nous pouvons
utiliser pour programmer notre sketch. Quand on saisit un mot (ou un
mot-clé) qu’il connait, I'IDE réagit en le faisant aussitdt ressortir en
couleurs.

Dans le cas présent, les mots-clés apparaissent toujours en orange. Ainsi,
vous conserverez une meilleure vue d’ensemble et vous pourrez visua-
liser immédiatement si une instruction a été mal orthographiée. En effet,
si tel est le cas, elle napparaitra pas dans la couleur appropriée.

Point 2

L’IDE représente en gras certains mots reconnus en tant que mots-clés. 11
s’agit ici, par exemple, des mots setup et loop, qui sont appelés a jouer un
role fondamental dans un sketch. Ce sont des noms de fonctions. Pour le
moment, peu importe ce que c’est exactement et ce qu’ils veulent dire,
disons simplement qu’ils sont en gras pour mieux attirer 1’ attention.

Partie | : Les bases

£2

Point 3

Les instructions sont toujours présentées par blocs dans ’environne-
ment de programmation IDE. Cela signifie que les instructions affi-
chées I'une en dessous de I’autre font partie d’un bloc d’exécution,
signalé par une paire d’accolades : I’accolade initiale marque le début
du bloc, et l'accolade finale la fin. Ces deux accolades sont
indissociables : si I'une des deux vient a manquer, il s’ensuit obliga-
toirement une erreur car la structure du bloc n’est pas compleéte.

Si vous placez le curseur derriere une accolade, I'autre accolade de la
paire se retrouve automatiquement encadrée. Sur la figure 3-35, on le
remarque pour la fonction setup : j’ai placé le curseur derriére 1’accolade
initiale et I'accolade finale correspondante s’est alors dotée d’un cadre.
Ceci est également valable pour les parenthéses. Nous reviendrons bien
entendu plus tard sur la différence entre accolades et parenthéses.

Point 4

Dans un bloc d’exécution, le code source est généralement décalé a
droite par rapport au bloc ou libellé du bloc proprement dit. Ainsi, la
vue d’ensemble est bien meilleure et la recherche d’erreurs en est
facilitée. Cette distinction visuelle permet par ailleurs de mieux diffé-
rencier les blocs quand il y en a plusieurs.

Bien entendu, rien ne vous empéche d’écrire I'intégralité du code source
sur une seule ligne. Méme si le compilateur ne détecterait aucune erreur
de syntaxe, la vue d’ensemble serait néanmoins catastrophique. De
méme, vous pourriez aligner toutes les lignes de code a gauche, mais le
style de programmation ne serait alors pas terrible. Notez qu’il existe une
option pour indenter automatiquement le code, via Tools>Auto format.

Pour aller plus loin

Si vous avez déja fait de la programmation avec un environnement de dévelop-
pement dans un autre langage, par exemple C#, vous trouverez a coup sUr que
I'environnement de développement Arduino est bien différent. La configuration
est ici beaucoup plus spartiate et ne posséde pas toutes les fonctions des autres
IDE — cela est bien évidemment volontaire. Les développeurs de la carte Arduino
ont tenu a ce que facilité et simplicité riment aussi avec maniement et program-
mation du logiciel.

Beaucoup reculent des qu'il s'agit de domaines compliqués propres au monde
technique, tels que microcontréleur ou programmation, car ils les jugent beau-
coup trop difficiles et ne sont pas strs d'y arriver. Ne vous faites pas de soudi,
vous allez y arriver. Laissez-vous seulement surprendre et séduire par le charme
de la carte Arduino !

Chapitre 3 : La carte Arduino

Figure 3-36 p

Sélection de votre carte Arduino

dans I'IDE

Transmission du sketch sur la carte
Arduino

Une fois votre sketch programmé, vérifié et compilé avec succes, les
choses deviennent sérieuses. Il s’agit maintenant de le transmettre au
microcontroéleur. Néanmoins, une petite chose n’a pas encore €té dite.
Du fait qu’il existe sur le marché des cartes Arduino tres diverses, qui
toutes different plus ou moins par le matériel mais sont alimentées en
données par un seul IDE, vous devez effectuer un réglage de base. Ce
n’est pas bien compliqué. Avant tout, connectez votre carte Arduino a
votre ordinateur

Sélection de la carte Arduino

Choisissez donc 1'option Type de carte dans le menu Outils pour
obtenir la liste de toutes les cartes prises en charge par I'IDE. Comme
vous travaillez avec la derniére carte Uno, il vous faut sélectionner la
premiere entrée de la liste, qui est déja cochée dans mon cas, car
javais effectué au préalable le réglage.

Formatage automatique Cirl+T
Archiver le croquis

Réparer encodage & recharger

Moniteur série Cirl+Maj+M

Type de carte & Arduino Uno

Port série » Arduino Duemilanove w/ ATmega328

Arduino Diecimia or Duemilanove w/ ATmega 168
Arduino Nano w/ ATmega328

Arduine Nano w/ ATmega 168

Arduino Mega 2560 or Mega ADK

Arduino Mega (ATmega 1280)

Arduino Leonardo

Arduino Esplora

Arduino Micro

Arduino Mini w/ ATmega328

Arduino Mini w/ ATmega 168

Arduino Ethernet

Arduing Fio

Arduino BT w/ ATmega328

Arduino BT w/ ATmega168

LilyPad Arduino USB

LilyPad Arduino w/ ATmega328

LilyPad Arduine wf ATmega 168

Arduino Pro or Pro Mini (SV, 16 MHz) w/ ATmega328
Arduino Pro or Pro Mini (SV, 16 MHz) w/ ATmega 168
Arduino Pro or Pro Mini {3.3V, 8 MHz) w/ ATmega323
Arduino Pro or Pro Mini (3.3V, 8 MHzZ) w/ ATmega 168
Arduino NG or older w/ ATmega168

Arduino NG or older w/ ATmegagd

Arduino Robot Control

Arduino Robot Motor

Programmateur »
Graver la séquence dinitialisation

Partie | : Les bases

Sélection du port série

Sélectionnez maintenant le port COM pour I'interface série a I’aide
de la commande Outils>Port série. La liste comporte plusieurs
entrées parmi lesquelles vous devez choisir la bonne. Au besoin, jetez
un coup d’eeil dans le gestionnaire de périphériques pour vous aider
dans votre choix.

“Outis Aide
Formatage automatique Clrl+T
Archiver le croquis
Réparer encodage & recharger
Moniteur série Cirl-+Maj+M

Type de carte »

Port série

Graver la séquence d'initialisation

Le port COM3, sur lequel ma carte est branchée, a été détecté. Avez-
vous compris ?

Non, ¢’est le contraire ! Vous avez du mal & vous exprimer. D un coté,
vous parlez d’une interface série et d’un port COM, et de I’autre, vous
reliez la carte 4 ’ordinateur via une prise USB. Ce sont pourtant deux
choses complétement différentes, non ?

Vous avez évidemment raison et j allais oublier d’en parler. Heureu-
sement que vous étes attentif ! Les anciennes cartes Arduino posse-
dent effectivement encore une interface série (RS232) sous la forme
d’un connecteur D-sub a 9 broches, reli¢ a I’ordinateur via un cible
série. Les ordinateurs récents disposent tous d’une prise USB, ce qui
rend peu a peu l'interface série inutile ; d’autres n’ont carrément plus
aucune possibilité de connexion série standard. Cependant, le traite-
ment interne suppose un composant série. Alors comment faire ? La
carte Arduino dispose, entre autres, de son propre petit microcontrd-
leur de type ATMEGA8U2-MU, programmé pour servir de conver-
tisseur USB série. Une carte plus ancienne, appelée Duemilanove,
était déja pourvue d’un cirduit FTDI qui remplissait la méme fonc-
tion. La nouvelle carte présente les avantages suivants :
* elle a des temps de latence plus courts (temps entre une action et
une réaction attendue) ;
* elle est programmable ;

* elle peut se connecter en tant que clavier USB sur le systeme.

<« Figure 3-37
Sélection du port série dans 'IDE

Chapitre 3 : La carte Arduino

yrolles,

5

|] o
| .

J15

20
Ll

right ©

s
—opy

L

Figure 3-38 p-

Que se passe-t-il en arriére-plan
lors de la transmission du sketch

sur la carte Arduino ?

Dans la variante Linux, il n’y a pas de port COM mais une entrée de
type :
/dev/ttyACMo

dev est I’abréviation de device (appareil en francais). Vous trouverez
d’autres informations sur Internet.

Pouvez-vous m’expliquer un peu ce qui se passe lors de la transmission
du code du skelch sur la carte Arduino 7 Ou la question est-elle un peu
prématurée ?

Non, Ardus, la question n’est pas du tout prématurée et a le mérite
d’étre posée. Je vous ai déja parlé un peu de 'environnement de
développement, du compilateur et des langages de programmation C/
C++. Certains écoutent sans rien dire, vous au moins, vous posez des
questions, et ¢’est bien !

La transmission du sketch s’effectue en quatre étapes.

Etape 1
Une vérification du code du sketch est faite par I’environnement de
développement, afin de garantir que la syntaxe C/C++ est correcte.

Etape 2
Le code est ensuite envoyé au compilateur (avr-gec), qui le transerit en un
langage lisible par le microcontrdleur : ¢’est le langage machine.

Etape 3

Le code compilé fusionne avec certaines bibliotheques Arduino qui
apportent les fonctionnalités de base, ce qui aboutit a la création d’un

Partie | : Les bases

fichier au format Intel HEX. Il s’agit d’un fichier texte qui contient
des informations binaires pour le microcontroleur. Voici un court
extrait du premier sketch, dont vous avez déja eu un avant-gofit.

ErsterSketch.cppihex 38

1100000000C9461000C247E00OCI4TEDOOCS47EOGSS
+100010000C847EQQ0OCS4T7TEQOOOCY4TECQOCS47EQOGE
:100020000C94TEODOCS47EOOOC94TEQOOCS47EQOSE
1100030000C24TEQQOOC94TEQOOCS4TEOOOCY47EQOO4E
100040000C349D000CS4TECOOCS4TEOODOCS4TEOOLS
+100050000C947TEQQOC947TEQOQOCY4TEOOOCI47EQD28
:100060000C947E0DOCS47E00O00000002400270002
+100070002R0000000000250028002B0000000000DE
:1000800023002600290004040404040404040202DA

o

0 om = & N

Le microcontréleur comprend ce format, car c’est son Native
Language, ¢’est-a-dire sa langue maternelle.

Etape 4

Le chargeur d’amorcage (bootloader) transmet le fichier Intel HEX,
via USB, a la mémoire flash du microcontrdleur. Ledit processus de
téléchargement — donc la transmission sur la carte — est assuré par le
programme avrdude, qui fait partie intégrante de [’installation
Arduino. Vous le trouverez sous arduino\hardware\tools\avr\bin.
D’autres informations sur les paramétres a entrer lors de 1’appel sont
disponibles sur Internet.

La communication par port

Jusqu’ici, vous ne connaissez de la communication avec votre carte
Arduino que le cOté programmation. Un sketch est programmé par
vous et envoyé sur la carte via le port USB. Immédiatement aprés son
chargement, le sketch s’exécute et traite les données. Mais ces
données doivent ensuite parvenir au microcontroleur via des inter-
faces, sous forme de valeurs fournies par des capteurs. Si besoin, elles
seront enfin renvoyées plus tard vers I’extérieur, pour commander un
moteur par exemple. Ce sujet a été juste évoqué au début du chapitre,
dans les explications sur les ports analogiques et numériques.

Vous avez dit interfaces ?

Le terme interface est déja revenu si souvent dans le livre qu’il est
temps a présent d’en donner une définition claire et valable. Une
interface permet de faire communiquer un systéme fermé avec le
monde extérieur. Voyons a ce sujet la figure suivante.

< Figure 3-39
Extrait d'un fichier Intel HEX

Chapitre 3 : La carte Arduino

Figure 3-40 p
Les interfaces sont des dispositifs de
liaison entre deux mondes voisins.

Monde intérieur | Monde extérieur

(Arduino \

{haite rioire)

Données

) L Interfaces

Avec un pied dans le monde intérieur et un autre dans le monde exté-
rieur, I'interface maintient ainsi le contact entre les deux systemes,
qui s’échangent mutuellement des informations sous forme de
données. Dans ce contexte, votre carte Arduino pourrait &tre assi-
milée a une boite noire, car il n’est pas utile de connaitre en détail les
différents éléments et fonctions qui la constituent.

Qu’est-ce qu’'une boite noire ?

Une boite noire est un systeme plus ou moins complexe dont la struc-
ture interne n’est pas accessible de I’extérieur a cause de son encapsu-
lation. Mais ici, tout ce qui nous intéresse en tant qu’utilisateur, ¢’est
ce que la bofte noire est capable de faire et comment nous pouvons la
commander. Aussi est-elle accompagnée d’une description détaillée
de ses interfaces, dans laquelle les fonctionnalités sont expliquées.
Votre carte Arduino peut étre comparée a une telle boite.

Ce livre va vous aider & comprendre le fonctionnement des interfaces,
leurs particularités et leur comportement.

) .
B \1< Bah, nous verrons bien !)
b

Quelle est la différence

entre le numérique et I'analogique ?
Puisque nous parlons de la boite noire et de la communication par
port, et que notre carte Arduino est dotée de ports numériques et
analogiques, c’est I'occasion d’expliquer les différences entre ces
deux modes.

Le mode numérique (ou digital, du latin digitus signifiant « doigt »)
fait appel a deux états bien définis :

Partie | : Les bases

¢ le niveau LOW ou niveau bas (forme abrégée L ou 0) ;

¢ le niveau HIGH ou niveau haut (forme abrégée H ou 1).

Vous voyez ici un signal de type numérique.

+5V

oV

Des valeurs de tension peuvent étre attribuées a ces deux états logi-
ques. Dans le cas présent, il s’agit de la logique +5 V pour les signaux
numériques. Qu’est-ce que cela signifie ? Dans la technique numé-
rique, des niveaux de tension sont affectés aux états binaires. En prin-
cipe, la valeur de tension 0 V correspond a la valeur LOW (niveau
bas) binaire et la valeur de tension +5 V a la valeur HIGH (niveau
haut) binaire. Etant donné qu’il peut y avoir de légers écarts dus aux
différentes tolérances des composants, il est nécessaire de définir une
plage de tolérance pour les états logiques. Si nous ne mesurions que
+4,5V au lieu de +5 V, ce serait un niveau LOW au sens strict du
terme. C’est pour cette raison que des plages de tolérance ont été
créées avec les valeurs suivantes.

Miveau HIGH (niveau haut)

< 2V
} Indéfini
% 08Y

} Niveau LOW (niveau bas)
— (Y

Les signaux analogiques ont, quant a eux, une tout autre caractéris-
tique. Avec le temps, ils évoluent de facon continue entre deux
valeurs extrémes (un maximum et un minimum).

< Figure 3-41

Evolution d'un signal numérique

(signal rectangulaire)

<« Figure 3-42
Plages de tolérance

Chapitre 3 : La carte Arduino

)

Figure3-43 » max
Evolution d’un signal analogique
(signal sinusoidal)

oV
min

Nos exemples porteront sur ces deux types de signaux.

Lentrée (INPUT)

Un flux d’informations peut circuler de facon bidirectionnelle et
produire ainsi un échange de données. La carte Arduino dispose de
ports qui ont des comportements différents. Il faut naturellement faire
encore ici la distinction entre numérique et analogique. Commencons
par les entrées.

Entrées numériques

Les entrées numériques de la carte sont alimentées par des capteurs &
caractéristique numérique.

Le capteur numérique le plus simple est ’interrupteur. Il peut étre soit
ouvert et, dans ce cas, il ne délivre aucun signal (niveau LOW ou
niveau bas), soit fermé et il délivre un signal (niveau HIGH ou niveau
haut). Il en va de méme pour un transistor employé en commutation
électronique, qui fournit un signal de type numérique.

Entrées analogiques

Les entrées analogiques de la carte peuvent étre alimentées par des
capteurs qui ont des caractéristiques aussi bien analogiques que
numériques.

Prenons le cas d’un capteur de température, dont la résistance varie
en fonction de la température ambiante. Ce capteur délivre A 1’entrée
une certaine tension, dont la valeur peut permettre de calculer la
température réelle. Chaque valeur de tension sera traduite en valeur
de température et pourra éventuellement étre affichée ou servir a
commander un ventilateur pour assurer un meilleur refroidissement.

5 La sortie (OUTPUT)
~ Ce qui rentre doit sortir d’une maniere ou d’une autre ; ¢’est dans la

nature des choses. 1l est donc logique que la carte Arduino soit
i pourvue d’un certain nombre de sorties, a I'aide desquelles des

@ Partie | : Les bases

commandes ou affichages sont exécutés. En entrée, on parle de
capteur et, en sortie, d’actionneur comme un moteur ou un relais.

Sorties numériques

Vous pouvez, par exemple, utiliser les sorties numériques pour
raccorder des indicateurs de signaux optiques qui refletent des états
internes. Il s’agit en général de diodes électroluminescentes (ou LED,
Light Emitting Diode), qui sont connectées aux broches en question a
travers une résistance appropriée. Bien entendu, une sortie numérique
peut aussi commander un transistor, qui pourra piloter une charge
plus importante que ce que le port Arduino serait 8 méme de faire.

Sorties analogiques

Sur votre carte Arduino, les sorties analogiques ne sont pas une mince
affaire. Il n’existe pas de port dédié, autrement dit configuré pour cet
usage. Certains ports numériques prennent quasiment la fonction en
charge et simulent un signal analogique généré par la modulation de
largeur d’impulsion (MLI). Vous en saurez plus au moment de
programmer une sortie analogique.

Ordre et obéissance

Sans logiciel, votre magnifique matériel informatique ne servirait a
rien. Seul un logiciel intelligent lui donnera vie et lui permettra
d’accomplir les tiches pour lesquelles il a été congu. Ces derniéres
doivent cependant étre confiées a votre microcontroleur Arduino.

Fais ce que je te dis

La communication est assurée par des instructions données au micro-
controleur, que ce dernier comprend en raison de sa spécification et
convertit en actions correspondantes. Voici une instruction pour bien
comprendre de quoi je parle. Le sens n’a ici aucune importance.

pinMode (13, OUTPUT);

Si vous tapez cette instruction dans I’environnement de développe-
ment, la surbrillance de syntaxe entre en action et les mots-clés
reconnus s’affichent en couleurs, instructions incluses. La vue
d’ensemble est meilleure et vous voyez tout de suite si, par exemple,
une instruction a été mal écrite.

Chapitre 3 : La carte Arduino

@)

Figure 3-44 p
L'instruction pinMode

Ecrivez la ligne suivante.
pinMode(13, OUTPUT);

L’instruction n’est pas reconnue et elle est écrite en noir, ce qui doit
vous mettre la puce a I’oreille. Par ailleurs, la structure de 1’instruc-
tion pinMode mérite que I’on si attarde. A sa suite, vous pouvez voir
des parentheses. Ce sont des arguments qui sont transmis lors de
I’exécution de I'instruction, a la maniére d’un sac dans lequel vous
enveloppez des objets pour les emporter.

Instruction Rrache Mode

((13, OUTPUT) ;)

Les arguments sont des informations supplémentaires dont une
instruction a besoin. Ici, ils indiquent que le port 13 doit servir de
sortie.

Nous avons cependant oublié quelque chose de décisif : chaque
instruction doit se terminer par un point-virgule. C’est le signe, pour
le compilateur, que 'instruction est terminée et qu’une autre suit le
cas échéant. Méme si toutes les instructions n’ont pas besoin d’argu-
ments, la paire de parenthéses reste nécessaire — dans ce cas, il n'y a
simplement rien entre les deux.

Respectez aussi toujours les minuscules et les majuscules. Tout
comme dans les langages de programmation C/C++, cette distinction
est importante. De tels langages sont dits case sensitive ; autrement
dit, pinMode n’est pas égal a pinmode !

Que se passe-t-il si une instruction
a été mal formulée ?

Une instruction envoyée au microcontrdleur est toujours exécutée a
moins qu’elle ait été mal rédigée. C’est pourquoi, vous devez vous
familiariser avec le vocabulaire du microcontroleur ou de 1’environ-
nement de développement — qui est apparenté 3 C++ — et le maitriser.
Bien évidemment, cela ne viendra pas du jour au lendemain !

C’est comme une langue étrangere : plus vous pratiquez, plus vite
vous la maitrisez. Si, par exemple, dans un e-mail a un interlocuteur
étranger, vous orthographiez mal un mot, il se peut que le destinataire

Partie | : Les bases

@

comprenne quand méme le sens de votre phrase. Avec un ordinateur,
c’est différent : il ne veut rien savoir. Soit vous vous exprimez claire-
ment et utilisez le mode d’écriture exact, soit il refuse catégorique-
ment I’instruction et se met en gréeve. Comment peut-il savoir ce que
vous voulez dire ? On ne saurait lui préter cette intelligence... Si une
instruction est mal écrite ou si les minuscules et majuscules n’ont pas
été respectées, une erreur se produit au niveau du compilateur. Par
chance, on sait dans la plupart des cas de quoi il s’agit. On a en effet
des indications sur I’endroit et la cause de cette erreur.

Les erreurs sont de trois types :

* erreurs de syntaxe ;
* erreurs logiques ;

¢ erreurs chronologiques.

L'erreur de syntaxe

Par chance, le compilateur détecte les erreurs de syntaxe. Elles sont
par ailleurs faciles a localiser.

Regardons maintenant le message d’erreur suivant.

‘Binmode was not declared inthis scopa

J’ai écrit pinMode tout en minuscules. Bien évidemment, il s’agit d’une
erreur que le compilateur a remarquée. En conséquence, il signale
qu’il ne connaft pas I'instruction pinmode.

Lerreur logique

Les erreurs logiques sont plus problématiques car plus insidieuses.
Elles ne donnent pas lieu a un message d’erreur puisque tout est en
ordre du c6té des instructions. Pourtant, quelque chose ne va pas : le
sketch programmé ne se déroule pas comme vous I’aviez imaginé.

Le compilateur n’est ici pas en cause. Il peut s’agir, par exemple,
d’une formule ou d’une valeur erronée que vous avez saisie quelque
part, ou d’un port nécessairement de sortie dont vous avez fait une
entrée. Les sources d’erreurs sont nombreuses et variées.

Chapitre 3 : La carte Arduino

es.

E'}”-OH

)

201

ght ©

zt'cN:lc Carré Triongle Ellipse
b e ey —

- e

cooge 1- e ‘-I
scsee |[jo® @ e
eypoeg (oo o »)
ceo o

Fouge Very Bloy Jeune

Nous verrons comment détecter ces erreurs quand nous aborderons le
theme du déverminage. Il s’agit en I"occurrence d’une méthode qui
sert & trouver des erreurs dans le programme.

Lerreur chronologique

Une erreur chronologique est un probléme qui affecte d’abord la
durée d’exécution du sketch. Tout est en ordre au niveau de la
syntaxe et du compilateur, mais une bombe cachée attend son heure
pour exploser. Tout peut trés bien aller un temps et vous pensez alors
que c’est bon, et un beau jour, plus rien...

Voici un exemple tiré du monde Windows. Imaginez que vous ayez
stocké votre collection de musique MP3 sur un disque externe D:. Un
programme de musique y accéde régulierement et exécute les
morceaux stockés. Tout marche a merveille quand soudain, pour une
raison quelconque, le disque ne répond plus, soit parce qu’il est en
panne, soit que le cdble USB est débranché. Le programme essaie
toujours d’accéder aux fichiers de musique, car le programmeur,
négligent, n’a pas cru bon de doter ’appel au lecteur d’un traitement
des erreurs. L’accés demandé n’aboutit pas et le programme est irré-
médiablement muet. Cela semble tiré par les cheveux, mais plus d’un
programme réagit en s’interrompant simplement au lieu d’émettre un
message d’erreur. Ces interruptions intempestives ont de quoi irriter.

Pour aller plus loin

Pour compléter ce chapitre, vous pouvez effectuer une recherche sur Internet
sur les mots-clés :

« Arduino;
« Freeduino;

- Arduino Projects.

Partie | : Les bases

Copyri

Les bases
de I'électronique

Pour utiliser une carte Arduino, il est préférable d’avoir quelques
connaissances en électronique. Ce chapitre en rappelle les principales
notions :

¢ les grands principes de 1’électronique ;

¢ les notions de courant, tension et résistance ;

s laloid’Ohm ;

* le circuit fermé ;

¢ les composants passifs et actifs ;

¢ les principaux composants électriques et électroniques ;

¢ le circuit intégré.
Mais si vous connaissez déja les bases de 1’électronique, vous pouvez
passer au chapitre suivant.

Vous avez dit électronique ?

On entend souvent dire que notre monde ne serait pas ce qu’il est
aujourd’hui sans I’électronique, qu’on retrouve désormais dans tous
les domaines. Mais, en définitive, que sait-on vraiment de
I’électronique ?

Dans le terme électronique, on retrouve le mot « électron ». Les élec-
trons circulent dans un conducteur, par exemple un fil de cuivre, et
leur mouvement donne naissance a un courant €lectrique. Le but est
de faire suivre a ce dernier certains trajets, d’établir ou d’interrompre
sa circulation, autrement dit d’en garder le contr6le. Quand on y
parvient, il est possible de réaliser des choses fantastiques.

Ici, on maitrise un phénomene qu’on ne voit pas a I’ceil nu et qui n’est
reconnaissable qu’aux effets produits. Nous modélisons les processus

Chapitre

O

&)

Figure 4-1 p
Electrons parcourant
un conducteur en cuivre

Figure4-2 p

Parcours a travers un conducteur en

cuivre sur une durée d'1 seconde

les plus divers, que nous commandons ou controlons a volonté. Sur
un espace microscopique, nous amenons les électrons a effectuer les
trajets souhaités. En fait, c’est ca 1’électronique.

Le flux d'électrons

Les é€lectrons sont d’infimes particules élémentaires qui circulent a
vitesse élevée dans un conducteur. Voici quelques-unes de ces
propriétés caractéristiques :

» charge négative (—1,602176 x 10 C) ;

 pratiquement sans masse (9,109382 x 10~ kg) ;

¢ stable (durée de vie supérieure 4 10* ans).
Je n’ai pas hésité a filmer pour vous, a 1’aide d’une caméra ultraperfec-
tionnée, un conducteur traversé par un courant pour que vous puissiez

visualiser ces minuscules particules (voir figure 4-1). Elles vont toutes
dans le méme sens et sont responsables de la circulation du courant.

@. w

Quand j’ai mentionné la charge négative de 1’électron, vous aurez
peut-étre remarqué que la valeur —1,602176 x 10" C était tres petite.
L’unité de mesure est le coulomb (C). La charge Q circulant en un
temps donné a travers un conducteur ayant une certaine section est
exprimée a I’aide de la relation suivante :

Q=11

Il s’agit du produit entre I’intensité du courant / (en amperes) et le
temps ¢ (en secondes).

Partie | : Les bases

Sur cette vue de la migration des électrons a travers un conducteur en
cuivre, j’ai marqué un trongon que les électrons parcourent en
1 seconde. On peut retenir qu’une charge d’un coulomb a été trans-
portée lorsqu’il y a eu le passage d’un courant d’un ampere pendant
1 seconde.

J’ai déja utilisé tellement de fois le mot courant que je me dois main-
tenant d’en dire plus sur cette grandeur physique.

Le courant

Comme vous avez pu le voir dans la derniére formule, la charge et le
courant sont reliés entre eux. On peut assimiler le courant a la circula-
tion d’une charge électrique. Plus la charge circulant par unité de
temps est importante, plus le courant électrique 7 est élevé.

La figure 4-3 représente un faible flux d’électrons. Seuls quelques
porteurs de charge circulent par unité de temps; on aura donc un
faible courant.

A Tinverse, la figure 4-4 représente beaucoup de porteurs de charge
circulant par unité de temps, qui donnent naissance a un fort courant
dans le conducteur.

L’intensité de courant / est mesurée en ampeéres (A) ; 1’ampére cons-
titue une trés forte intensité pour des microcontroleurs. La charge
maximale d’une sortie numérique de votre carte Arduino est de

Chapitre 4 : Les bases de I'électronique

4 Figure 4-3

Faible flux d'électrons : un petit
nombre d'électrons générent peu
de courant électrique.

4 Figure 4-4

Flux d'électrons élevé : un grand
nombre d'électrons générent

un courant électrique important.

O

Figure 4-5 p

Les électrons se déplacent
en raison d'une différence
de potentiel.

’ordre de 40 mA (ou 40 milliamperes). Un milliampere représente un
milliéme d’ampéere (1 000 mA =1 A).

La tension

Si I'on jette un ceil aux dessins précédents schématisant des électrons
parcourant un conducteur, il y a quelque chose que nous ne prenons
pas en considération : pourquoi se déplacent-ils 7 Notre monde est
ainsi fait : chaque action a sa raison ou sa finalité correspondante ;
nos gestes sont toujours commandés ou motivés par quelque chose. 11
en va de méme pour les électrons : ils vont tous dans le méme sens et
vers le méme but. Une force motrice doit par conséquent agir. La
comparaison de ce phénomene avec de 1’eau qui s’écoule est trés
parlante. C’est cette analogie que j’ai utilisée dans ce chapitre.

Ici, je devrais plutdt parler de différence de charge et non de diffé-
rence de potentiel. Les charges électriques tendent toujours a
compenser les différences de charge.

Prenons, par exemple, une pile chargée. Elle a deux bornes (ou pdles)
entre lesquelles il existe une différence de charge. L'une de ces
bornes présente un excés de charge et ’autre un manque de charge.
Faute de liaison é€lectrique entre les deux pdles, aucune charge ne
peut se déplacer pour rétablir 1’ équilibre, si bien qu’aucun courant ne
circule.

La tension U se mesure en volts (V) et sert a estimer la différence de
potentiel entre deux points.

Partie | : Les bases

&)

es.

2015 Eyrol

ght ©

Copyri

< Figure 4-6
La différence de charge ne peut étre

@L ‘9;? compensée, faute de liaison.
@ e
] e e —

> O @

L o e l ‘@ .3
@J = { e

L’absence de liaison entre les deux potentiels empéche toute égalisa-
tion des charges et aucun courant ne circule.

x < Figure 4-7
EX ces Mangue Une compensation de la différence
de charge se produit.

C’est seulement quand une liaison est établie que les porteurs de
charge peuvent se déplacer et qu'un courant peut circuler.

Combien de temps circule le courant jusqu’a ce que le c6té gauche soit
vide et le c6té droit plein ?

Le courant circule tant que la charge n’est pas équilibrée, autrement dit
jusqu’a ce que les deux poles aient autant de porteurs de charge I'un que
I’autre. Si tous les électrons étaient passés du cdté droit, il y aurait eu de
nouveau un déséquilibre, et I’opération se serait répétée dans I’autre sens.
Par ailleurs, une séparation de charge ne peut étre rétablie que par un
apport d’énergie aprés une égalisation de charge. Or, ce n’est pas le cas,
et c’est donc aussi pour cette raison qu’une pile normale est vide apres
une égalisation de charge.

Jai souvent entendu dire qu’il existe différentes formes de courant. Il y
a le courant continu et le courant alternatif. Pourrais-je en savoir plus la-
dessus ?

Bien siir ! Votre carte Arduino fonctionne avec du courant continu,
caractérisé par une intensité et une direction qui ne varient pas au fil
du temps. En électronique, ce type de courant est symbolisé par les
lettres DC (Direct Current) ou, en France, par CC (courant continu).
La figure 4-8 montre I’évolution d’une tension continue au cours du

Chapitre 4 : Les bases de I'électronique @

temps. Le courant alternatif est, quant &4 lui, noté AC (Alternating
Current) ou CA (courant alternatif).

Figure 4-8 p-
Evolution d’une tension continue +
au cours du temps

L’axe horizontal des abscisses (X) représente le tempst et 1’axe
vertical des ordonnées (Y) indique la tension U. On voit que la valeur
de tension ne varie pas au cours du temps. Analysons maintenant
I’évolution de la tension alternative, représentée ici par une sinusoide.

Figure 4-9 p- U
Evolution d’une tension alternative +
au cours du temps

La valeur de la tension varie en permanence et oscille entre deux
valeurs limites, 1’'une positive et 1’autre négative. Notez que la lettre
U indique qu’on a affaire a une tension. Sachez aussi qu’il existe,
dans la plupart des cas, une relation de proportionnalité entre la
tension et le courant.

/rolles.

2015 Ey

\

Copyright €

@ Partie | : Les bases

La notion de résistance

Les électrons circulant dans un conducteur peuvent avoir plus ou moins
de mal a arriver au bout. Sur leur chemin, ils rencontrent en effet des
résistances trés différentes les unes des autres. On peut établir une classi-
fication des matériaux en fonction de leur conductibilité :
« isolants (trés haute résistance). Par exemple : la céramique ;
* mauvais conducteurs (haute résistance). Par exemple : le verre ;
* bons conducteurs (faible résistance). Par exemple : le cuivre ;
 trés bons conducteurs (supraconductivité & de trés basses tempé-
ratures ou la résistance électrique tend vers 0) ;
¢ semi-conducteurs (la résistance peut étre commandée). Par
exemple : silicium ou germanium.

Il existe ainsi deux grandeurs électriques, inversement proportion-
nelles : la résistance R — dont la valeur est exprimée en ohms (L) ;
elle se déduit a partir du code couleur peint directement sur son
corps — et la conductance G.

Plus la résistance est élevée, plus la conductance est faible, et inversement.
La relation qui lie une résistance & une conductance est donnée par :

R 1

G

La résistance est la valeur inverse de la conductance. Une résistance
élevée s’oppose au passage des électrons ; on peut la comparer 4 un
goulet d’étranglement.

Lorsque 1la résistance est élevée, le courant qui la traverse est faible.
Imaginez que vous couriez sur une surface lisse. Avancer ne devrait
pas vous poser trop de problemes. En revanche, si vous essayez de
courir dans du sable en gardant la méme allure, ¢’est fatigant. Vous
dépensez de I’énergie sous forme de chaleur et votre vitesse diminue.
I1 en va de méme pour des €lectrons qui doivent traverser par exemple
du verre (isolant) au lieu du cuivre (conducteur).

<« Figure 4-10
Résistance freinant le flux
d'électrons

Chapitre 4 : Les bases de I'électronique

)

Le frottement plus intense des €lectrons, par exemple sur la paroi
externe ou bien entre eux, dégage une énergie sous forme de chaleur
que la résistance transmet a I’extérieur.

Il existe plusieurs types de résistances (par exemple, 4 couche de
carbone ou a couche métallique). Dans la plupart des circuits électro-
niques, elles sont utilisées pour limiter 1'intensité des courants.

Lorsque j'examine de plus prés le schéma du flux d’électrons, j'ai
I"impression que les électrons sur le coté droit avancent plus vite que
ceux du coté gauche.

Je comprends bien ce que tu veux dire et je sais ce qui a pu te faire
arriver a cette conclusion erronée. Le courant qui circule dans un
circuit fermé est toujours le méme. Certes, il est influencé par la résis-
tance illustrée ici. Mais, au final, le courant avant ou apres la résis-
tance est toujours le méme. A chaque unité de temps, le méme
nombre d’électrons passe dans le conducteur ou dans la résistance.
Mais tu as bien fait de poser la question.

Nous avons maintenant fait le tour de toutes les grandeurs électriques
nécessaires a la compréhension d’une loi trés importante, la loi
d’Ohm.

La loi d'Ohm

La loi d’Ohm décrit le rapport entre la tension U aux bornes d’une
résistance R et le courant I qui la traverse. Voici la relation qui la
définit :
R U

T
La résistance s’obtient en divisant la tension par le courant ; comme

dit précédemment, elle s’exprime en ohms (Q) et elle est désignée par
la lettre R.

Nous utiliserons cette loi pour calculer la résistance de limitation pour
une diode électroluminescente qui ne saurait fonctionner sans elle.

Le circuit fermé

Vous savez maintenant qu’une circulation de courant ne peut aboutir
qu’a condition que le circuit soit fermé et qu'une force électromotrice

Partie | : Les bases

agisse. C’est le cas aussi pour les électrons et également pour des
molécules d’eau par exemple. Etudions le schéma d’un circuit simple.

Circuit de courant continu < Figure 4-11
avec une pile et une résistance Circuit fermé simple avec une pile
et une résistance
+,
—

<

Sur le ¢6té gauche du plan de ciblage se trouve une source de tension
continue sous la forme d’une pile dont les deux pdles + et — sont
raccordés a une résistance. Le circuit est ainsi fermé et un courant /
peut circuler deés lors que la pile est chargée. Cette circulation de
courant engendre une certaine chute de tension U aux bornes de la
résistance R. Je vais maintenant expliquer les rapports qui existent
entre U, Ret].

Ces grandeurs sont précisément celles de la loi d’Ohm. Je suppose que
nous allons 1’appliquer, non ?

Tout juste Ardus ! Nous allons nous livrer a un petit exercice avec les
valeurs suivantes.
* La tension U de la pile est de 9 V.

¢ La résistance R a une valeur de 1000Q (1000Q = 1kQ=
1 kilo-ohm).

Question : quelle est la valeur du courant / qui traverse la résistance et
bien entendu la pile ?

Si on tire [de la formule :

R_U
il

on obtient :

yrolles,

|] o
| .

J15

5

20
Ll

L

right ©

Y
DY

Ble]

!_U
"R

Chapitre 4 : Les bases de I'électronique

En remplagant les différentes grandeurs par leur valeur numérique, on
obtient le résultat suivant :

Un courant / de 9 mA circule donc dans le circuit. Si vous avez monté
un tel circuit, cette valeur peut étre mesurée grice a4 un multimeétre. La
mesure d’une tension s’effectue en branchant cet appareil en paralléle
sur le composant et la mesure d’un courant [s’obtient par sa mise en
série (en position amperemetre) avec le composant en question.

Figure 4-12 p- Circuit de courant continu
Mesure des valeurs du courant
etdela tension

Chaque conducteur a bien une certaine résistance, donc probablement
aussi ’ampéremeétre. La mesure de I'intensité du courant n’en est-elle
pas faussée ?

Bien dit Ardus ! C’est vrai et ¢’est pour cette raison que les appareils
de mesure réglés sur la mesure de 1’intensité du courant ont une résis-
tance interne treés faible. Le résultat de la mesure n’est alors pratique-
ment pas influencé.

Dans les circuits représentés, j’ai utilisé le symbole de la pile pour
indiquer la source de tension. Cependant, il en existe d’autres
variantes selon les schémas (voir figure 4-13).

Figure 4-13 p
Divers symboles de sources ‘ 4 () ()

- de tension

T 1

E—

im

=l Le symbole de gauche représente une pile ; celui du centre est aussi
»:J bien utilisé pour des piles que pour d’autres alimentations en courant
continu ; sur celui de droite, le pdle négatif a été remplacé par le
E. symbole de masse. Ce dernier est surtout employé dans les schémas

Partie | : Les bases

v
opy
-]
@

virolles

015 E

20

(&)

right

!

Copy

complexes, pour éviter d’avoir a représenter le fil de la borne néga-
tive sur ’ensemble du circuit.

Nous reviendrons plus loin dans ce chapitre sur les circuits €lectroniques
de base, dont je souhaite encore préciser certains détails. Je pense qu’il
est maintenant temps de vous débrouiller un peu tout seul. Ne craignez
rien, la solution de I’énigme vous sera donnée d’ici la fin de ce chapitre !

Attention !
En électronique, il existe deux conventions de sens du courant, qui sont oppo-
sées, Vous devez par conséguent savoir en quoi réside la différence.

N’importe quoi ! Voila maintenant que les électrons peuvent choisir
dans quel sens ils parcourent le conducteur. C’est I'anarchie !

Non Ardus, vous pouvez étre tranquille car le courant ne circule en
vérité que dans un seul sens. La cause de cette confusion — si on peut
I’appeler ainsi — remonte a 1’ignorance de nos précurseurs. Avant que
les scientifiques ne puissent se faire une idée exacte de la théorie du
mouvement des électrons, ils avaient tout bonnement décrété que le
pble positif présentait un exceés d’électrons et le pdle négatif un
manque. Sur la base de cette définition, les €lectrons émigrent du pole
positif vers le pole négatif quand une liaison conductrice est établie
entre les deux poéles. Les recherches ultérieures devaient apporter la
lumieére : les électrons nous donnaient tort et circulaient précisément
dans le sens opposé. Mais comme une mauvaise habitude ne se perd
pas si facilement et puisque tout avait été fait jusqu’alors en dépit du
bon sens, une parade a été trouvée : le sens incorrect de jadis serait
appelé sens technique du courant. Le sens correct actuel prendrait le
nom de sens physique du courant, qui indique le déplacement propre-
ment dit des électrons.

Sens technique du courant Sens physique du courant

Mouvement des électrons

+|I—
|

T+

Chapitre 4 : Les bases de I'électronique

Principaux composants
électroniques

Le composant électronique le plus simple est la résistance, mais il en
existe beaucoup d’autres. Dans ce chapitre, nous nous limiterons aux
composants de base, qui peuvent étre rangés en deux catégories : les
composants passifs et les composants actifs.

Composants passifs et actifs
Composants passifs

Les composants passifs sont des composants qui n’ont aucune action
d’amplification sur le signal concerné. Dans cette catégorie, on trouve :

* les résistances ;

* les condensateurs ;

* les inductances (bobines).

Composants actifs

Les composants actifs ont de I'influence sur un signal. Ils peuvent agir,
par exemple, sur son amplitude en I’augmentant. En voici quelques-uns :

* les transistors ;
¢ les thyristors ;

* les photocoupleurs.

La résistance fixe

La résistance fixe, appelée plus simplement résistance, est un compo-
sant dont la valeur est constante (méme si elle demeure sensible aux
variations de température).

Un code couleur a ét€ défini pour connaitre la valeur d’une résistance : en
effet, elles sont trop petites pour recevoir un marquage explicite et elles
ont par ailleurs des tailles différentes. Sachez que la taille d’une résis-
tance est fonction de la puissance maximale qu’elle peut dissiper.

Partie | : Les bases

™

es.

E'}”-OH

)

201

ght ©

Copyri

Quand on débute, il semble souvent compliqué de déterminer la
valeur de la résistance, et on ne sait pas toujours dans quel sens il faut
lire les anneaux de couleur. Aussi vais-je vous donner quelques
astuces pour y arriver.

Compte tenu de la précision du processus de fabrication, la valeur
réelle d’une résistance peut légerement différer de celle indiquée sur
le composant. Aussi les anneaux précisant la valeur de la résistance
sont complétés par un anneau dit de tolérance, argenté ou doré.
L’anneau de tolérance se situe a droite des trois anneaux de couleur
traduisant la valeur de la résistance (voir figure 4-15).

1% anneau ; marron = 1
2tanneau:vert =5

3 anneau : rouge = 100
4 anneau:or=259%

Voici la valeur de la résistance obtenue quand on écrit ces chiffres les
uns a coté des autres.

1= chiffre 2:chiffre Multiplicateur Tolérance Valeur
1 5 100 + 5% 1500Q =15K

Le tableau 4-1 donne tous les codes couleurs avec leurs valeurs
correspondantes.

Chapitre 4 : Les bases de I'électronique

< Figure 4-14

Plusieurs types de résistances

< Figure 4-15
Détermination de la valeur

de la résistance au moyen du code

couleur

2015 Eyrolles.

Copyright ©

Tableau 4-1 p

) 1"anneau 2°anneau 3®anneau 4 anneau
Code couleur pour les résistances EF@HHP (1 chiffre) (2¢chiffre) (multiplicateur) (tolérance)

Noir ¥ 0 10=1

| Marron i i 10'=10 +1%

I Rouge 2 2 107 =100 +2%
Orange 3 3 10°=1000
Jaune 4 4 10"=10000
Vert 5 5 10°= 100000 +05%

| Bleu b 6 10¢ = 1000000 +0,25%

I viotet 7 7 107 = 10000 000 +0,1%
(aris g 8 107 = 100000 000 +0,05%

OBlanc 9 9 10°= 1000000 000
Or 107=01 +5%
Argent 107 =001 +10%

Voici comment sont représentées les résistances dans les schémas

électriques.
Figure 4-16 p \ariante européenne Variante américaine
Symboles de la résistance fixe {selon DIN EN 60617) {selon ANSI)

dans un schéma électrique =~ —— —

R R

e Il peut s’agir d’un rectangle selon la représentation DIN
(Deutsche Industrie Norm) avec les raccordements électriques a
gauche et a droite. La valeur de la résistance peut se trouver soit
carrément dans le symbole, soit juste au-dessus ou en dessous.

e Il peut aussi s’agir de la variante américaine selon 1’ANSI
(American National Standards Institute), dans laquelle la résis-
tance est représentée par une ligne en zigzag. Ce symbole date
du temps ol les résistances consistaient en un enroulement de fil
plus ou moins épais. Le symbole de 1’ohm est en principe absent
et seul le nombre est indiqué si la valeur est inférieure a 1 k€2
(1 000 ohms), suivi éventuellement d’un K pour kilo si la valeur
est supérieure ou €gale a 1 k€ ou d’'un M pour méga si la valeur
est supérieure ou égale a 1 M. Voici quelques exemples.

Tableau 4-2 » Valeur Marquage

Différentes valeurs de résistance

330 O 330

1000 O 1K

4700 O 4,7K ou 4K7
22 M0 2,2M

@ Partie | : Les bases

Pour que la dissipation de la puissance P ne devienne pas un
probleme, celle-ci peut étre calculée a 1’aide de la formule suivante :

P=U-I

L’unité de puissance est le watt (W). Les résistances que nous utili-

sons pour nos expérimentations sont toutes a4 couche de carbone
aggloméré, avec une dissipation d’énergie admise de !/4 de watt.

La résistance variable

Outre les résistances fixes, il existe toute une gamme de résistances
variables. Par exemple, pour régler le volume de votre radio, vous
avez besoin d’une résistance dont la valeur varie en fonction de
I’angle de rotation de 1’axe de commande.

Résistance ajustable et potentiométre

Il existe deux sortes de résistances réglables manuellement : la résis-
tance ajustable et le potentiometre (ou potard en langage familier) —
la valeur de leur résistance varie en fonction de la rotation de leur axe
mobile. En principe, elles fonctionnent toutes deux de la méme
maniére.

La figure 4-17 montre le schéma de ce type de dispositif. Sur un
support non conducteur se trouve une couche de matériau résistant
présentant des contacts (A et B) a ses deux extrémités. Entre ces deux
contacts, il y a une résistance de valeur fixe. Pour que cette derniére
puisse étre modifiée, on a un troisiéme contact mobile (C) capable de
se déplacer dans les deux sens sur la couche résistante. Entre ce
curseur C et I’un des contacts (A ou B), la valeur de la résistance est
variable.

Position 1 Position 2

Dans la position 1, la résistance entre les points A et C est inférieure a
celle entre les points C et B. Dans la position 2 en revanche, le
curseur se trouve plus loin vers la droite ; la valeur de résistance entre
les points A et C a augmenté et celle entre les points C et B a diminué.

< Figure 4-17

Schéma d'une résistance ajustable
ou d'un potentiomeétre dans deux
positions différentes

Chapitre 4 : Les bases de I'électronique

@

Figure 4-18 p
Symbole de |a résistance ajustable

Figure 4-19 p
Symbole du potentiométre

Figure 4-20 p
Symboles de la photorésistance

La résistance ajustable

La résistance ajustable sert de résistance a réglage définitif, La
plupart du temps, elle est soudée directement sur une carte pour étre
ajustée a I’aide d’un petit tournevis d’horloger pour calibrer le circuit.
Généralement, la valeur de la résistance n’est plus jamais modifiée
par la suite.

Les résistances ajustables peuvent avoir différentes formes. Faute de
place, il m’est impossible ici de toutes vous les présenter en détail.

C

Le potentiomeétre
Le potentiométre est une résistance réglable qui permet d’ajuster, par
exemple, le volume d’une radio ou bien 1’intensité d’un dispositif
lumineux. Son curseur mobile peut étre déplacé au moyen d’un axe
sortant du boitier. Il est donc trés facile de régler manuellement la
valeur de la résistance.

La photorésistance

La photorésistance est également appelée LDR (Light Depending
Resistor). La valeur de la résistance de ce composant évolue en fonc-
tion de I’intensité lumineuse qui lui est appliquée. Plus la lumiere
incidente est forte, plus sa résistance est faible.

La photorésistance va nous permettre de faire des essais intéressants
sur un servomoteur, qui sera censé suivre une source lumineuse et se
diriger toujours vers le point le plus lumineux.

%ou

/4
—

)

Partie | : Les bases

La courbe caractéristique d’une LDR traduit son comportement en
fonction de la variation de son éclairement. L’éclairement s’exprime
en lux (Ix).

— -

< Valeur de la résistance (ohm)

Eclairement (lux)

Les domaines d’application d’une LDR sont variés. En voici quel-
ques-uns :

e comme interrupteur crépusculaire pour déclencher une source
lumineuse supplémentaire a la nuit tombante telle que des réver-
béres ou un éclairage intérieur de véhicule ;

¢ pour mesurer I’intensité lumineuse avant de prendre des photos ;

* comme capteur dans des barrieres lumineuses pour, par exemple, des
portes d’ascenseur ou des controles d’acces a des zones de sécurité.
La plage de résistance de la LDR dépend du matériau employé et
présente approximativement une résistance dans 1’obscurité comprise
entre 1 et 10 MC. Une intensité d’éclairement de 1 000 lux (Ix)
environ engendre une résistance comprise entre 75 et 300 €2.

La résistance thermosensible
ou thermistance

La valeur de la résistance thermosensible varie en fonction de la
température. Il existe deux types de thermistances :

¢ NTC (Negative Temperature Coelfficient ou résistance a coeffi-
cient de température négatif) ;

* PTC (Positive Temperature Coefficient ou résistance a coeffi-
cient de température positif).

< Figure 4-21
Courbe caractéristique d'une LDR

Chapitre 4 : Les bases de I'électronique

&)

Figure 4-22 p-

Symbole de la thermistance NTC

Figure 4-23 p
Courbe caractéristique
d'une thermistance NTC

Figure 4-24 p
Symbole de la PTC
(thermistance PT()

NTC
La résistance d’une thermistance NTC diminue (et la conductivité
augmente) lorsque la température augmente.

Sa forme ressemble a celle d’un condensateur céramique, ce qui peut
parfois donner lieu a des confusions. Une inscription, par exemple
4K7, laisse pourtant présumer de la valeur de résistance, et 1’appella-
tion « Thermistor NTC 4K7 » permet de 1'identifier formellement.

f

Une NTC se reconnait & sa courbe caractéristique.

Résistance

—
=
=
e}

20°C Température (*()

On remarque qu’il s’agit bel et bien d’une courbe et non d’une droite
comme pour la LDR. La principale caractéristique de cette résistance
est sa valeur de référence, R,p, qui est annoncée a une température
ambiante de 20 “C. Sur la courbe, j"ai opté pour une valeur fictive de
10 k€.

PTC

La résistance de la thermistance PTC varie inversement a celle d’une
thermistance NTC. La conductance d’une PTC diminue (et la résis-
tance augmente) en fonction de la température.

ﬁH

La courbe caractéristique d’une PTC est I’inverse de celle de la NTC,
avec quelques particularités supplémentaires. En effet, elle peut
posséder un minimum dans la région des températures basses et un
maximum dans celle des températures €levées.

Partie | : Les bases

violles,

> e

012

20

right ©

opY

&

= < Figure 4-25
s Courbe caractéristique d'une PTC
§
=
0

Température (*C)

Le tableau 4-3 résume le comportement des deux types de résistances
sensibles a la température (NTC et PTC).

Type Température Résistance Courant 4 Tableau4-3
Comportement des NTC et PTC
NTC T l 1 a différentes températures
l 1 l
PrC 1 1 !
l l)

Le condensateur

Le condensateur est un composant formé de deux plaques conduc-
trices paralléles, séparées par un diélectrique. Si, par exemple, une
tension continue est appliquée entre les deux plaques, il se crée entre
elles un champ électrique.

4 Figure 4-26

Champ électrique (représenté
@ par des fleches) entre les deux

plaques d'un condensateur

Les deux plaques se trouvent a une certaine distance I'une de 1’autre
et sont isolées entre elles par une couche isolante : le diélectrique.
Une fois le condensateur chargé, le champ électrique persiste méme
si I’alimentation est coupée. Les deux plaques emmagasinent donc la
quantité de charge fournie Q, qui est exprimée en coulomb (C).

g=1I-t
Dans ce cas, le condensateur se comporte comme une pile chargée.
Attention!

Un condensateur chargé ne doit jamais étre court-circuité et doit toujours étre
déchargé au moyen d'une résistance appropriée.

Chapitre 4 : Les bases de I'électronique @

La quantité de charge que le condensateur peut emmagasiner dépend
de deux facteurs :

¢ sa capacité totale C, qui est mesurée en farads (F) ;

* la tension d’alimentation U qui lui est appliquée.
Nous pouvons retenir que la quantité de charge Q d’un condensateur
est d’autant plus grande que la capacité ou la tension est élevée. La
formule suivante relie les trois grandeurs :
g=C-U

Exemple de calcul : soit un condensateur avec une capacité¢ C de
3,3 uF, auquel on applique une alimentation de 9 V. Quelle est la
charge totale Q ?

O0=C-U=33puF-9V=297-103C
La capacité d’un condensateur est en reégle générale bien inférieure a
un farad. Sa valeur se situe plutdt dans les plages suivantes :

» uF (10®) — microfarad ;

» nF (10°) — nanofarad ;

¢ pF (10-1?) — picofarad.

11 existe différents types de condensateurs ; en voici quelques-uns.

Condensateurs non polarisés
¢ Condensateur céramique
¢ Condensateur a film plastique

* Condensateur a film papier métallisé

Condensateurs polarisés
¢ Condensateurs électrolytiques

Sont représentés ci-contre un condensateur électrolytique (2 gauche)
et un condensateur céramique (a droite). Comme vous pouvez le voir,
la différence de taille est énorme.

Les condensateurs non polarisés peuvent servir aussi bien dans des
circuits de courant continu que dans des circuits de courant alternatif,
alors que les condensateurs polarisés comme le condensateur électro-
Iytique ne peuvent étre employés que dans des circuits de courant
continu et sous polarité correcte.

Partie | : Les bases

violles,

> i =

2015

20

(&)

yright

Yy

LS ¢

Le mode de fonctionnement des condensateurs me parait clair, mais je
ne vois pas bien ol et & quoi ils peuvent servir.

Les domaines d’utilisation sont extrémement variés. En voici quel-
ques-uns :

¢ pour lisser ou stabiliser une tension. Quand, par exemple, un
composant complexe comme le circuit intégré a besoin d’une
alimentation stable pour éviter de perdre des données, un
condensateur est connecté entre les bornes + et — du boftier du
circuit. Ceci dans le but de maintenir une tension constante
d’alimentation rendant ainsi imperceptible toute fluctuation de
I’alimentation générale ;

* pour coupler des circuits a plusieurs étages pour des circuits de
minuterie qui, au bout d’un certain temps, ferment ou ouvrent un
contact de relais ;

* pour des timers, qui envoient des impulsions a intervalles régu-
liers a une sortie.

| I

Voyons un peu comment se comporte un condensateur relié & une pile
(voir figure 4-28).

Courant de charge Courant de décharge

R e b

» de décharge

-
'3

Dans ce circuit, un condensateur est chargé par une pile quand
I'inverseur est en position 1. Quand il est dans la position 2, le
condensateur C est court-circuité par la résistance R et commence 4 se

< Figure 4-27

Symboles représentant

un condensateur normal (a gauche)
et un condensateur polarisé
électrolytique (a droite)

<« Figure 4-28
Circuit de charge et de décharge
d'un condensateur

Chapitre 4 : Les bases de I'électronique

®

vrolles.

{ s
| .

)1E

o

Ll

20

(&)

right

s
—opy

L

décharger. On peut ainsi mesurer aussi bien le courant de charge que
celui de décharge a I'aide des deux amperemetres. Tout ceci n’est
pour vous que pure théorie, aussi ai-je concu un circuit ot I’opération
de commutation est automatique et €lectronique. La source de tension
n’est pas une pile mais un générateur de signaux rectangulaires. La
tension évolue a intervalles réguliers entre deux valeurs U,,,, et O V.

Figure 4-29 p-

Charge et décharge C I I

d'un condensateur au moyen I | e
d'un générateur de signaux

rectangulaires

L]
o]

[‘[ﬂ | Générateur
de signaux
rectangulaires

&

éMasse

J'ai relié aux deux points de mesure 1 et 2 un oscilloscope a deux
canaux qui vont permettre de représenter les variations des tensions
aux divers points. Le point de mesure 1 est relié au canal 1 (courbe
jaune) et se situe directement a la sortie du générateur de signaux
rectangulaires. Le point de mesure 2 est relié au canal 2 (courbe
bleue) et présente les variations de la tension aux bornes de la
résistance R (sortie du condensateur C).

Voyons maintenant de quelle maniére un signal rectangulaire traverse
le condensateur. La figure 4-30 vous montre les courbes d’évolution
des tensions aux points 1 et 2.

Figure 4-30 p-
Signaux a I'entrée et a la sortie
du condensateur (avec Multisim)

Comment interpréter 1’oscillogramme ? Quand le niveau de tension
d’entrée passe de 0 a 5V (courbe jaune), le condensateur transmet

@ Partie | : Les bases

5 Eyrolles.

)1E

=
| .

o

20
Ll

L

right ©

T

! =

_opy

instantanément cette variation (courbe bleue). Ce dernier est assimilé
a4 un court-circuit pour les variations rapides. Lorsque le niveau de la
tension d’entrée est 2 5 V pendant une certaine durée, le condensateur
se charge et sa résistance augmente. Vous voyez que la courbe bleue
du bas s’aplatit progressivement et revient presque 4 0 V.

Un condensateur chargé constitue un circuit ouvert pour le courant
continu. Le condensateur ne laisse pas passer le courant continu.
Quand le signal d’entrée passe de 5 V a 0 V, le condensateur transmet
cette variation vers la sortie et commence a se décharger a travers la
résistance. Cette fois, le courant qui circule est dans le sens inverse de
celui de la charge (courbe bleue). Le courant de décharge va diminuer
jusqu’a pratiquement atteindre la valeur zéro. La tension aux bornes
de la résistance, représentée par la courbe bleue, se rapproche aussi de
0 V. Le cycle ainsi décrit va se répéter.

Attendez, quelque chose ne va pas ! Vous avez dit que le condensateur
se charge avec le temps, or la courbe bleue bondit de 0 V au niveau
maximum quand le signal d’entrée passe 4 5 V. Comment cela se fait-
il ?

Bien raisonné ! C’est vrai qu’il y a de quoi s’y perdre. Regardez bien
la construction du circuit. Le signal bleu en question est la tension
aux bornes de la résistance ; elle varie au rythme du courant qui passe
a travers le condensateur.

La courbe bleue ne représente pas la tension aux bornes du condensa-
teur. Pour s’en assurer, il nous faut modifier 1égérement le circuit.
Permutons simplement la résistance et le condensateur. On obtient
ainsi le circuit suivant.

= =3 —

g

ﬂ_ﬂ_l Générateur gl
de signaux
rectangulaires

J;rMasse

On voit que la résistance R fait office de résistance de charge et que la
tension est prise aux bornes du condensateur C. L’oscillogramme

< Figure 4-31

(Charge et décharge

d'un condensateur a I'aide
d'un générateur de signaux
rectangulaires

Chapitre 4 : Les bases de I'électronique

@

suivant montre bien plus clairement I'opération de charge et de
décharge du condensateur.

Figure 4-32 p
Tension de charge du condensateur
(avec Multisim)

Si le signal rectangulaire passe de 0 V a sa valeur maximale 5 V, le
condensateur se charge a travers la résistance R. Cela prend bien siir
du temps : la courbe bleue ne se rapproche en effet que lentement de
la valeur voulue de 5 V. Lorsque I'amplitude du signal rectangulaire
retombe a) V, le condensateur commence a se décharger a travers la
résistance en partant de la valeur finale de la tension de charge. La
tension va chuter pour essayer d’atteindre 0 V. Au moment ou le
signal rectangulaire d’entrée repasse a la valeur 5 V, le condensateur
va recommencer a se charger. Le cycle ainsi décrit va se répéter.

La diode

Une diode est un composant congu a base de semi-conducteurs (sili-
cium ou germanium). Elle a la propriété de ne laisser passer le
courant que dans un seul sens (sens passant). Dans le sens inverse, le
courant qui circule a travers une diode est pratiquement nul. Ce
comportement électrique fait penser & une soupape de chambre a air :

Iair de 1a pompe entre, mais aucun air ne ressort.

Figure 4-33 p
Electrons traversant
une diode dans le sens passant

vrolles

o

1L

|] o
| .

~

@ Partie | : Les bases

On voit que les €électrons n’ont aucun mal a traverser la diode. Le
clapet interne s’ouvre et les électrons circulent sans probléme. Les
suivants n’auront pas cette chance...

Le clapet ne s’ouvre pas dans le sens souhaité, et on se bouscule au
checkpoint (ou point de contrdle), car rien ne bouge.

La forme et la couleur des diodes sont des plus variées. Voici deux
exemples.

.
B

Le sens dans lequel la diode est passante a une énorme importance, et
la présence d’un marquage sur le corps du composant est indispen-
sable. Il ne s’agit pas cette fois-ci d’un code couleur, mais d’un trait
plus ou moins épais avec une inscription dessus. Les deux polarités
de la diode portent également des noms différents :

* I’anode ;
* la cathode.
Une diode au silicium est polarisée dans le sens passant quand la

différence de tension entre 1'anode et la cathode est supérieure a
+0,7 V.

N
V]

Mais ou se situe 1’anode par rapport a la cathode ? Voila le moyen
mnémotechnique que j’ai trouvé pour m’en souvenir: la cathode
commence en allemand par la lettre K (Kathode). Un trait vertical sur
le schéma de la diode indique la position de la cathode. Physique-
ment, cette derniére se repére par I’anneau inscrit directement sur le
corps de la diode.

Chapitre 4 : Les bases de I'électronique

< Figure 4-34

Electrons tentant de traverser
la diode dans le sens non passant

< Figure 435

Symboles de la diode, version

en contour a gauche
et version pleine a droite

yrolles,

5

|] o
| .

J15

20
Ll

right ©

s
—opy

L

Figure 4-36 b

Circuit pour commander une diode
au moyen d'un générateur

de signaux sinusoidaux

Figure 4-37 b

Entrée et sortie d'une diode

(avec Multisim)

Anode Cathode

Facile & se rappeler, non ? Voyons maintenant un peu comment fonc-
tionne la diode dans un circuit. I’utilise a ’entrée de cette derniére
non pas un signal rectangulaire mais un signal sinusoidal, présentant
aussi bien des valeurs de tension positives que négatives. Le circuit
doit vous étre familier maintenant.

of

>-—

i,

DIODE

% Générateur
de signaux
sinusoidaux

L’entrée de la diode — done I’anode — est reliée a la sortie du généra-
teur de signaux sinusoidaux. Ce point de liaison est représenté par la
courbe jaune dans I’oscillogramme. La sortie — donc la cathode — est
figurée par la courbe bleue.

Le signal d’entrée en jaune forme une belle courbe sinusoidale. La
diode au silicium ne laissant cependant passer que des signaux posi-
tifs > +0,7 V bloque les signaux négatifs. La courbe de sortie (en
bleu) ne représente que 1’alternance positive de la sinusoide. Lorsque
la tension a I'entrée est négative, la tension de sortie est nulle (diode
bloquée).

Partie | : Les bases

@)

Avant d’en finir avec la diode, jetons un coup d’ceil sur la caractéris-
tique tension-courant. Cette courbe montre & partir de quelle tension
d’entrée le courant se met a traverser la diode, et la diode a étre
conductrice. On ne détecte la présence d’un courant de conduction
qu’a partir de +0,5 V environ, et qui augmente trés rapidement a
partir de +0,7 V.

Les deux circuits trés simples ci-aprés montrent le mode de fonction-
nement décrit a I'instant pour une vanne €lectronique. IIs se compo-
sent de deux diodes et de deux lampes alimentées par une pile.

Circuit de gauche

Le pole positif de la pile est relié a I'anode de la diode D2, qui est
polarisée dans le sens passant et laisse passer le courant. La lampe L2
s’allume. La diode D1 est bloquée, car sa cathode est reliée au pdle
positif de la pile. La lampe L1 reste éteinte.

4 Figure 4-38

Courbe caractéristique tension-
courant d'une diode au silicium

avec Multisim

<« Figure 4-39

Sens passant et non passant
de diodes dans deux circuits

alampes

Chapitre 4 : Les bases de I'électronique

Circuit de droite
La polarité de la pile est permutée et le pole positif se trouve en bas ;
les rapports de polarité sont inversés. Le pole positif de la pile est
appliqué a I’anode de la diode D1 et la lampe L1 s’allume. La diode
D2 est bloquée, car le pdle positif se trouve connecté 4 sa cathode. La
lampe L2 reste éteinte.

Vous vous demandez peut-€tre maintenant 4 quoi servent de tels
composants. Les domaines d’application sont multiples. En voici
quelques-uns :

* redressement de courant alternatif ;

¢ stabilisation de tension ;

* diode de roue libre (protection contre la surtension aux bornes
d’une inductance lors de 1’arrét, par exemple d’un moteur).

Il existe de nombreux types de diodes, par exemple des Zener ou a
effet tunnel. Les énumérer toutes ici et expliquer leurs différences
feraient exploser le nombre de pages de ce livre ! Je vous renvoie par
conséquent a la littérature électronique spécialisée ou a Internet.

Le transistor

Venons-en maintenant a un composant électronique trés intéressant
qui a contribué tout d’abord au développement des circuits intégrés :
le transistor. Il est le premier composant électronique 4 faire partie de
la catégorie des composants actifs. Il s’agit d’un dispositif congu a
partir de semi-conducteurs, qui peut étre utilisé aussi bien comme
commutateur électronique que comme amplificateur.

Dans la plupart des cas, le transistor posseéde trois pattes. Il en existe
de nombreuses variantes, avec des formes, tailles et couleurs diffé-
rentes.

Partie | : Les bases

@

es,

Copyright © 2015 Eyrolls

Eh 14, pas si vite ! Vous venez d’utiliser pour la deuxieme fois le terme
semi-conducteur. Puis-je savoir de quoi il s’agit ? Comment un maté-
riau peut-il étre seulement semi-conducteur ? Je ne vois pas bien...

Bien siir, Ardus! Le terme semi-conducteur est contradictoire et
plutdt impropre au comportement électrique en question. Il signifie
que le matériau utilisé, du silicium par exemple, est tantot conducteur
sous certaines conditions, et tantot non conducteur. Ce serait plus
compréhensible pour tous si, par exemple, I'expression conducteur
piloté était utilisée en lieu et place du terme semi-conducteur. Mais
¢’est trop tard maintenant et il faudra vous y faire ! On peut comparer
le transistor a une résistance réglable électroniquement, dont la posi-
tion du curseur peut étre influencée par un courant appliqué et dont la
valeur peut étre ainsi régulée.

Plus la valeur absolue du courant est élevée au point B, plus la résis-
tance est faible entre les points C et E : vous allez bient6t comprendre
pourquoi j'utilise ces lettres. Quand on se représente un composant
censé, comme on I’a dit, commander (commuter ou amplifier)
quelque chose, on 1'imagine avec un fil prenant en charge la
commande et deux autres assurant le flux d’électrons (entrant ou
sortant). Cela décrit précisément, mais de manieére rudimentaire, les
connexions d’un transistor.

Chapitre 4 : Les bases de I'électronique

< Figure 4-40
Différents types de transistors

Eyrolles.

)

201

ight ©

Copyr

Figure 4-41 p
Electrons traversant un transistor

La figure 4-43 présente I’intérieur d’un transistor NPN (voir page 98)
relié au pole positif de 1a source de tension par la connexion B. Une
lettre est attribuée a chaque patte pour pouvoir différencier les
connexions d’un transistor.

* B pour base ;
¢ C pour collecteur ;

* E pour émetteur.

La figure 4-41 présente comment le flot d’électrons circule entre le
collecteur et I’'émetteur. C’est le circuit de travail, qui permet, par
exemple, de commander d’autres dispositifs (lampes, relais et méme
moteurs). On voit aussi le courant passer par la base ; ¢’est le courant
de commande, qui régule par son intensité le courant de travail.
Sachez qu’un courant de commande trés faible peut donner naissance
a un courant de travail relativement élevé. Ce comportement est
appelé amplification.

Je ne vois pas trés bien la différence entre circuit de commande et
circuit de travail. Pourquoi existe-t-il tout & coup deux circuits de
courant ? Je pensais qu’il n’y en avait toujours qu’un seul.

Pour mieux comprendre, voici le principe a ’aide d’un simple circuit
conventionnel avec des composants électriques.

@ Partie | : Les bases

Lampe

' j. Interrupteur) 4I;
T: Relais / —t T

Circuit de commande Circuit de travail

A gauche se trouve le circuit qui commande le relais via un commuta-
teur. Pour I’instant, sachez simplement que le relais est un composant
électromécanique qui ferme un contact quand une tension est
appliquée ; une alimentation de 3V est suffisante pour le
commander. A droite se trouve le circuit de travail permettant
d’allumer une lampe de 24 V. Les contacts de travail du relais
ferment ce circuit de courant quand le commutateur est fermé et la
lampe s’allume. On part du principe que le courant du circuit de
commande est plus faible que celui du circuit de travail.

Vous voyez qu’ici on travaille avec deux circuits de courant distincts.
Appliquons maintenant ce mode de fonctionnement au transistor. Je
vous montre avant le schéma de branchement de ce dernier. De méme
qu’on trouve deux types de transistors, il existe aussi deux symboles
différents.

c c
NPN PNP
B B
E E
NPN | © PNP | C
B
E E

Chapitre 4 : Les bases de I'électronique

< Figure 4-42
Circuits de travail et de commande
avec des composants électriques

< Figure 4-43
Symboles du transistor, sans cercle
en haut et avec cercle en has

Un transistor présente trois couches de silicium superposées, les deux
couches extérieures étant toujours identiques. Les différences entre
NPN et PNP résident dans 1’agencement de ces couches.

s Sur le transistor NPN, les couches N se trouvent a 1"extérieur et
composent le collecteur et I'émetteur, et la couche P du milieu
constitue la base. Le fonctionnement normal d’un tel transistor
est obtenu lorsque le potentiel base-émetteur est de +0,7 V au
minimum. A cette condition, il y aura du courant au niveau du
collecteur et de I’émetteur.

* En revanche, le fonctionnement normal d’un transistor PNP est
obtenu lorsque le potentiel base-émetteur est négatif et a une
valeur maximale de -0,7 V.

Je peux maintenant vous montrer le principe des circuits de
commande et de travail.

Figure 4-44 p |
Circuits de commande et de travail J
avec des composants électronigues

Lampe

‘ Interrupteur P
4 : 5
—

Circuit de commande l Clrcuit de travail

Le relais a été remplacé par un transistor NPN commandé positive-
ment (lorsque 1'interrupteur est fermé) via une résistance série R.
Cette derniere est absolument nécessaire, car un courant de base trop
fort provoque une surchauffe et risque de détruire le transistor. Méme
si les circuits de commande et de travail ont une masse commune, on
continue néanmoins de parler de deux circuits de courant distincts.

E Observons maintenant de plus prés un transistor. J'ai opté pour le
| type BC557C (voir figure 4-45). Il s’agit d’un transistor PNP, qui
. correspond dans la configuration NPN au transistor BC547C. Comme
C B E le montre la vue d’ensemble des transistors, leurs boitiers ont des

formes trés diverses. Ici, il s’agit d’un transistor vraiment universel,
i approprié pour des petits circuits amplificateurs ou des applications
de commutation. I1 est logé dans un boitier de type TO-92 en plas-
' tique. Ces deux types de transistors ont le méme brochage.

@ Partie | : Les bases

CBE

) Pouraller plus loin

Vous trouverez sur Internet toutes les informations utiles sur les transistors et
tous les autres composants cités dans ce livre,

. A e 5
Le circuit integre
Cette miniaturisation s’est bien sir faite en plusieurs étapes. Tout a
commencé avec la découverte du transistor, qui a permis aux déve-
loppeurs de loger plusieurs circuits dans des espaces beaucoup plus
réduits. Dans les premiers temps, des circuits plus ou moins
complexes utilisaient les tubes. Ceux-ci étaient bien plus gros qu’un
transistor et réclamaient donc plus de puissance. Plus tard, on a placé
des quantités énormes de transistors sur des circuits imprimés pour
pouvoir concentrer en un lieu une fonction électronique complexe, ce
qui a abouti a la longue a des accumulations de cartes. Par la suite,
quelqu’un a eu I'idée de mettre plusieurs composants discrets, tels
que transistors, résistances et condensateurs, sur une puce au silicium
de quelques millimetres carrés. Le circuit intégré (ou IC pour Infe-
grated Circuit) était né,
* Années 1960 : environ deux douzaines de transistors par puce
(3 mm?).
e Années 1970 : environ deux milliers de transistors par puce
(8 mm?).
¢ Années 1980 : quelques centaines de milliers de transistors par
puce (20 mm?).
¢ Aujourd’hui : plusieurs milliards de transistors par puce.

Le microcontroleur ATTiny13 avec ses 8 pattes de raccordement est
un exemple parlant. Il s’agit d’un véritable mini-ordinateur avec tout
ce que cela comporte (unité arithmétique, mémoires, ports d’entrée et
de sortie, etc.). Il y a quelques décennies, un ordinateur de cette
complexité aurait nécessité un nombre incroyable d’eurocartes a base
de composants discrets (dimensions : 160 x 100 mm).

Chapitre 4 : Les bases de I'électronique

< Figure 4-45

Brochage des transistors BC547C

et B(557C (vue de dessous})

Eyrolles.

)

201

ight ©

Copyr

Figure 4-46 p
Le microcontrdleur ATTiny13 dans
un boitier DIP de la société Atmel

(m) Attention!

Dés l'introduction, je vous ai averti du risque encouru par les circuits intégrés
en cas de charge statique. Par exemple, marcher sur un tapis en polyester
charge votre corps en énergie électrostatigue qui peut alors se décharger a
tout moment sous la forme d'un éclair. La décharge peut atteindre facilement
30 000 volts et avoir raison des transistors les plus solides. Une mise a la terre,
en touchant par exemple un tuyau de chauffage non peint ou un contact de
stireté, est donc conseillée,

La LED

Une diode €lectroluminescente — appelée aussi LED (Light Emitting
Diode) — est un composant semi-conducteur qui émet de la lumiere a
une certaine longueur d’onde en fonction du matériau semi-conduc-
teur employé. Le sens du courant est important car la LED n’émet de
la lumiere que dans le sens passant. La LED n’est pas détériorée en
cas de polarité inversée ; elle reste simplement éteinte. Il faut impéra-
tivement veiller & ce qu'une LED soit toujours accompagnée d’une
résistance série correctement calculée. Faute de quoi, sa luminosité
sera étonnamment intense la premiere fois et ensuite plus rien. Les
diodes €lectroluminescentes ont des formes et des couleurs variées.

Figure 4-47 p-
Plusieurs types de diodes
électroluminescentes
Tout comme une diode normale, la diode électroluminescente présente
deux contacts appelés anode et cathode. Son symbole est similaire, avec
seulement deux fléches en plus indiquant la lumiére émise.
100 Partie | : Les bases

/ / < Figure 4-48

Symbole de la diode
électroluminescente

Dans la vue suivante, on peut voir qu’une patte de raccordement est
plus courte que 1'autre, pour mieux différencier 1’anode de 1a cathode.
Le fil le plus long est I’anode.

Anode
Cathode

Pour qu'une LED puisse s’allumer, 1’anode doit étre raccordée au
pole positif et la cathode au pdle négatif. La vue suivante montre un
circuit simple pour commander une LED.

e < Figure 4-49
55 A7) Polarisation d'une LED
Résistance série LED

Il

Autres composants

Les éléments de circuits mentionnés jusqu’a présent font tous partie
de la famille des composants électroniques. Je vais maintenant vous
présenter quelques composants électriques.

a travers une résistance série

Linterrupteur

Le courant ne circule que si on a un circuit fermé et que les électrons
peuvent circuler librement. Pour pouvoir influer sur ce circuit de
I’extérieur, vous devez, par exemple, installer un interrupteur. Il
s’agit d’un dispositif qui ouvre ou ferme un contact. Vous trouverez
une multitude de versions d’interrupteurs munis de deux ou de
plusieurs contacts.

Chapitre 4 : Les bases de I'électronique 101

es.

E'}”-OH

)

g 201

right ©

Copy

Figure 4-50 p
Divers types d'interrupteurs

L'interrupteur le plus simple posséde deux contacts. Il peut étre repré-
senté par différents symboles.

Figure 4-51 p
g o Do
~

Symboles de l'interrupteur

L’état de I'interrupteur peut étre qualifié de stable. S’il a été actionné,
il reste dans cette position jusqu’a ce qu’il le soit de nouveau.

Le bouton-poussoir

Le bouton-poussoir est un proche parent de I'interrupteur ; il influe
aussi sur la circulation du courant. S’il n’est pas actionné, le circuit
est en principe interrompu. Je dis « en principe », car il existe aussi
des boutons—poussoir qui sont fermés tant qu’ils ne sont pas actionnés
et qui interrompent le circuit quand ils le sont. On les appelle alors
contacts normalement fermés.

Figure 4-52 p
Divers types de boutons-poussoir

102 Partie | : Les bases

Le symbole du bouton-poussoir ressemble a celui de I'interrupteur. I
existe cependant quelques petites différences qui ont leur importance
et qui ne doivent pas étre ignorées.

Bouton-poussair
(contact normalemnent Contact normalement
ouvert) fermé

o O O-L,,
L’état d’un bouton-poussoir est qualifi¢é de non stable. Si vous
appuyez dessus, le contact se ferme et le courant peut circuler. Si

vous le reldchez, le contact revient dans sa position initiale et la circu-
lation du courant est de nouveau interrompue.

Dans nos montages, nous utiliserons tres souvent des boutons-
poussoir, plus rarement des interrupteurs. Mon modele préféré est le
bouton-poussoir miniature, qui peut étre soudé directement sur la
carte.

Le relais

Je vous ai déja parlé du relais dans "introduction sur le transistor. Je
souhaite revenir ici plus précisément sur ce composant. Un relais
n’est en fait rien d’autre qu’un interrupteur ou un inverseur que vous
pouvez actionner a distance. La figure 4-54 montre un travailleur
fermant un contact a distance du temps ot il n’y avait pas encore de
relais.

Un relais peut étre représenté par différents symboles.

)

< Figure 4-53
Symboles du bouton-poussoir
et du contact normalement fermé

< Figure 4-54
Interrupteur a distance
d'un autre temps

< Figure 4-55
Symboles du relais
(avec un contact de travail)

Chapitre 4 : Les bases de I'électronique

103

104

Figure 4-56 p-
Schéma d'un relais

J’ai ouvert ici un relais pour pouvoir observer de plus pres sa struc-
ture interne. Sur le c6té gauche se trouve la bobine, dont le coeur est
constitué d’un noyau en fer permettant de mieux canaliser les lignes
de champ magnétique. Si un courant circule dans la bobine, la palette
mobile est attirée et pousse les contacts de travail vers la droite, qui
peuvent tout aussi bien étre ouverts que fermés. La vue schématique
suivante montre comment la palette est attirée vers le bas, fermant
ainsi un contact.

Pivot

Si la palette mobile est attirée vers le bas, elle ferme les deux contacts
K1 et K2. Utilisé d’une certaine maniere, un relais peut également
servir d’amplificateur, si cela s’avére souhaitable. Un courant faible
circulant dans la bobine peut, a condition que les contacts du relais
aient les bonnes dimensions, commander un courant beaucoup plus
important.

Attention!

Ne jamais brancher un relais directement sur une sortie de la carte Arduino. Il
passerait a coup str beaucoup plus de courant que ce que la sortie peut déli-
vrer, endommageant le microcontréleur. Vous verrez plus tard comment un
relais peut étre commandé,

Le moteur

Je pense que vous savez ce qu’est un moteur. Bien entendu, nous ne
parlerons pas d’un moteur 2 combustion, dont le carburant serait par
exemple du gazole, mais d’un moteur électrique. Il s’agit ici d’un
assemblage qui transforme 1’énergie électrique en énergie motrice.

Partie | : Les bases

yrolles,

5

|] o
| .

J15

20
Ll

right ©

s
—opy

L

Il existe des moteurs de toutes tailles et pour toutes les gammes de
tension. Ils sont tout aussi bien fabriqués pour du courant continu que
pour du courant alternatif.

Concentrons-nous sur le courant continu. Un moteur a courant
continu comprend un élément fixe, représenté par I’aimant, et un
élément mobile : 1a bobine. Celle-ci est montée de maniére a pivoter
sur un axe. Si un courant est envoyé par le biais d’un conducteur, un
champ magnétique se crée autour de celui-ci. 11 sera d’autant plus
élevé que la longueur de fil est concentrée sur une certaine zone. Cela
explique les nombreux tours de fil autour de la bobine.

La figure 4-59 représente un conducteur parcouru par des électrons circu-
lant dans un sens. Les cercles rouges indiquent les lignes de champ
magnétique générées par le courant. Si nous approchons maintenant une
aiguille de boussole du conducteur fixe, elle réagit en se tournant dans le
sens des lignes de champ magnétique. Lignes de champ magnétique du
fil et aiguille de boussole subissent une interaction de forces. Si nous

< Figure 4-57
Plusieurs types de moteurs
électriques

< Figure 4-58
Symbole du moteur a courant
continu

< Figure 4-59
Conducteur dans lequel circule
un courant.

105

Chapitre 4 : Les bases de I'électronique

Figure 4-60 p

Schéma trés simplifié d'un moteur

106

a courant alternatif

utilisons a la place un aimant fixe renfermant un conducteur mobile, la
force induite provoque un mouvement du fil.

La figure 4-60 montre une seule spire de conducteur en rouge,
pouvant tourner librement dans un aimant permanent en bleu. Si on
fait maintenant passer un courant dans le fil, les champs magnétiques
de ce dernier réagissent avec ceux de I’aimant. Le fil tourne le long de
I’axe. Le rotor gris en deux parties, sur lequel est fixé le fil, inverse la
polarité de ce dernier aprés une rotation a 180° et fait circuler le
courant en sens inverse. Le champ magnétique créé dans le fil revient
alors a la polarité précédente (du fait de la rotation de 180" et de la
commutation du courant) et provoque une nouvelle rotation du fil 4
180" avec une nouvelle inversion de polarité. Ce changement perma-
nent du champ magnétique assure un mouvement rotatif du fil avec le
moteur.

Pour amplifier les forces entre les deux champs magnétiques, un
moteur comporte évidemment de nombreuses spires de fil conducteur
qui forment une bobine, et développe une certaine force pendant la
rotation. Le pilotage d’un moteur exigeant un peu plus de courant que
ce que peut fournir une seule sortie du microcontréleur, un transistor
est nécessaire pour assurer I’amplification. Nous verrons bientot
comment ¢a marche.

Couper I’alimentation du moteur pose cependant un probléme non
négligeable : la bobine induit elle-méme, aprés 'arrét du courant
d’alimentation, une surtension (auto-induction) susceptible d’endom-
mager le microcontroleur ou le transistor du fait de son niveau et du
sens de circulation inversé. Nous verrons comment résoudre ce
probléme lorsque nous traiterons de la diode de roue libre.

Le moteur pas-a-pas

Un moteur normal tourne jusqu’a ce que le courant qui I’alimente soit
coupé, puis il effectue encore quelques tours emporté par son élan. Il

&

finit par s’arréter dans une position a coup slir imprévisible. Ce

Partie | : Les bases

yrolles,

=
| .

)1E

o

FAN

20

©

right

s
—opy

L

comportement n’est bien siir pas souhaité quand il s’agit d’atteindre
précisément certaines positions bien déterminées, les unes a la suite
des autres. Pour cela, il faut employer un type de moteur spécial : le
moteur pas-a-pas. Peut-étre avez-vous déja vu des automates indus-
triels qui servent & monter des éléments de carrosserie pour les souder
ensemble a I’endroit précis ou ils doivent I’étre 7 La position doit
alors étre rigoureusement exacte car tout doit ensuite se raccorder.
Ces automates sont actionnés par des moteurs pas-a-pas, tout comme
les scanners a plat et les tables tracantes.

< Figure 4-61
Plusieurs types de moteurs
pas-a-pas

Les moteurs pas-a-pas ont plus de deux fils de raccordement. La
plupart du temps, un tel moteur est représenté avec deux bobines,
mais son symbole peut varier.

4 Figure 4-62
- @ Symbole du moteur pas-a-pas

Pour que ce moteur puisse passer par certaines positions, il doit
présenter une construction interne qui I’améne a s’arréter a certains
endroits. Cela ne se faisant pas avec des moyens mécaniques (par
exemple, une roue dentée qui se bloquerait 2 un endroit pendant la
rotation), il doit y avoir une solution électrique. Quand on fixe un
aimant sur un axe et positionne des bobines tout autour, 1’aimant se
tourne vers la bobine parcourue par le courant et ne bouge plus
ensuite. Un moteur pas-a-pas fonctionne selon ce principe. J’ai choisi

Chapitre 4 : Les bases de I'électronique 107

/rolles.

Fyv
Y

L

201

\

Copyright €

pour simplifier un moteur avec 4 bobines et une commande simple,
dont le positionnement est par conséquent approximatif.

i

Figure 4-63 p
Représentation schématique
d'un moteur pas-a-pas avec
4 bobines ou positions

Au centre se trouve I’aimant pivotant, entouré des 4 bobines. Elles
sont toutes reliées a la masse par I’'une de leurs deux extrémités. Pour
expliquer le fonctionnement du moteur pas-a-pas, un courant est
appliqué a la bobine B. L’aimant se tourne dans la direction de cette
derniére pour ne plus bouger. Si une seule bobine a la fois est
alimentée en courant, quatre positions différentes (de 90° chacune)
peuvent étre obtenues tout au plus. Mais si deux bobines voisines sont
alimentées en méme temps, la palette mobile s’arréte entre les deux.
La précision est donc plus élevée.

Figure 4-64 p
Excitation simultanée
de plusieurs bobines

I est maintenant possible de travailler avec des pas de 45° au lieu de
90°. Pour que la position adoptée reste stable, la ou les bobines
doivent étre alimentées en courant jusqu’a ce qu’une nouvelle direc-

108 Partie | : Les bases

yrolles,

5E

201

right ©

Copy

tion soit ordonnée. Pour que le moteur tourne dans le sens des
aiguilles d’une montre, les broches des bobines doivent étre bran-
chées dans le bon ordre.

Commencons, par exemple, par la bobine B : B/BC/C/CD/D/DA/A/
AB/B/, etc.

remarqué qu’ils disposent tous de 4 broches, sauf un qui en a 5.

Eh 14, pas si vite ! I’ai regardé de plus prés les moteurs pas-a-pas et jai
Pourquoi ?

Vous avez pris une loupe pour voir ¢a ? Mais, c’est vrai, Ardus !
Vous avez tout a fait raison. Il existe deux types de moteurs pas-a-
pas :

¢ unipolaires (5 ou 6 broches) ;

* bipolaires (4 broches).

Les premiers sont plus faciles a commander, car le courant circule
toujours dans le méme sens dans les bobines. C’est pour cette raison
que j’ai pris comme exemple un moteur unipolaire pas-a-pas.

Le servomoteur

Les modeles réduits d’avions ou de bateaux disposent de petits servo-
moteurs pour commander des fonctions les plus diverses, comme la
vitesse ou le cap. Il s’agit de petits moteurs a courant continu qui sont
équipés de 3 broches et dont le positionnement est commandé par une
modulation de largeur d’impulsions (MLI). Vous en saurez plus dans
le chapitre 10 sur la programmation de la carte Arduino.

< Figure 4-65
Deux types de servomoteurs

Chapitre 4 : Les bases de I'électronique @

Figure 4-66 b

Symbole du servomoteur

7 3

Voici comment peut é&tre représenté un servomoteur (voir
figure 4-66).

Qu’est-ce au juste que la MLI ? Un servomoteur non modifié€ a en prin-
cipe un rayon d’action allant de 0° a 180° et ne peut pas pivoter a 360°
comme un moteur. Le pivotement du servomoteur est commandé par un
signal rectangulaire avec des spécifications particulieres.

Durée d’une période

La durée T d’une période est constante et vaut 20 ms.

Durée d'impulsion

La durée de I'impulsion doit étre comprise entre 1 ms (butée de
droite) et 2 ms (butée de gauche). Les figures ci-aprés présentent trois
positions de servomoteur avec les signaux de commande périodiques
correspondants.

\J

20 ms

Avec une durée d’impulsion de 1 ms, le servomoteur est amené sur la
butée de droite, qui correspond a un angle de 0°.

Partie | : Les bases

\J

7

20 ms

Avec une durée d’impulsion de 1,5 ms, le servomoteur peut occuper
la position centrale, qui correspond a un angle de 90°.

B
A J

20ms

Avec une durée d’impulsion de 2 ms, le servomoteur est amené sur la
butée de gauche, ce qui correspond a un angle de 180°.

Vous avez maintenant une vague idée de ce qu’est la MLI. La largeur
(ou durée d’impulsion) permet de commander un composant électro-
nique comme le servomoteur. La méme méthode peut étre utilisée
pour gérer la luminosité, par exemple dans le cas de diodes électrolu-
minescentes.

Les valeurs peuvent certes varier en fonction des servomoteurs, mais le
principe reste le méme. Plus besoin de se triturer la téte pour savoir
comment et avec quelles valeurs commander le servomoteur, car d’autres
développeurs s’en sont déja chargés et nous pouvons utiliser leur savoir.
11 existe des codes sources préts a I’emploi que nous pouvons incorporer
dans notre montage. Vous verrez bientdt comment tout cela fonctionne.
Le positionnement n’étant ordonné que par un seul signal de commande,
le servomoteur n’a pas beaucoup de broches.

Chapitre 4 : Les bases de I'électronique

m

Figure 4-67 b L Alimentation (+5 V)
Brochage d'un servomoteur

Masse (O V) m——> e Commande

& Connecteur femelle

Le buzzer piézoélectrique
Je souhaite conclure ce chapitre sur 1’électronique en vous présentant

le buzzer piézoélectrique.

Figure 4-68 p
Buzzer piézoélectrique

Sa forme est assez bizarre et on a du mal a croire que ce composant
puisse faire du bruit. Il renferme un cristal qui se met a vibrer quand
une tension alternative est appliquée. Cet effet appelé piézoélectrique
se produit quand des forces (pression ou déformation) sont exercées
sur certains matériaux ; une tension électrique est alors mesurable. Le
buzzer piézoélectrique agit de facon inverse : quand une tension alter-
native est appliquée, une déformation réguliére, percue comme une
vibration, se produit et met en mouvement les molécules d’air, ce qui
est per¢cu comme un son. Pour qu’il soit plus fort, le mieux est de
coller le buzzer piézoélectrique sur un support vibrant, de sorte que
les vibrations émises soient transmises et amplifiées.

Figure 4-69 p
Symbole du buzzer piézoélectrique

vrolles

o

1L

|] o
| .

~

112 Partie | : Les bases

/rolles.

Fyv
Y

2015

\

Copyright €

Apres la lecture de ce chapitre, vous disposez maintenant d’une
bonne vue d’ensemble des différents composants électroniques.
Certes, il y aurait encore beaucoup de choses a dire, mais j’ai choisi
d’en rester 1a dans ce livre. Si vous souhaitez en savoir davantage, je
vous invite a consulter des ouvrages spécialisés.

Chapitre 4 : Les bases de I'électronique

113

'$9](04A3 §T0Z @ 1ybLAdOD

Circuits électroniques
simples

Au sommaire de ce chapitre :
¢ les circuits résistifs (montages en série et en paralléle) ;
¢ le diviseur de tension ;
* les circuits capacitifs (montages en série et en parallele) ;

* les circuits avec transistors.

Puisque vous connaissez maintenant les bases de 1’électronique grice
au chapitre précédent, passons a 1’étape logique suivante qui consiste
a associer plusieurs composants pour en faire un circuit. Pour que les
débuts soient moins difficiles, je vais vous montrer quelques circuits
de base ne nécessitant, pour la plupart, que trés peu de composants.
Dans la seconde partie du livre constituée de 19 montages Arduino, la
complexité augmentera au fil des projets, mais vous pourrez toujours
les construire en suivant les principes exposés ici. Ce chapitre ne se
veut pas un précis des circuits électroniques de base, mais se focalise
sur la compréhension des projets Arduino. Vous trouverez le cas
échéant des explications plus détaillées dans les montages eux-
mémes. Ne vous inquiétez pas, vous saurez tout ce qu’il faut savoir le
moment venu.

Les circuits résistifs

Une résistance dans un circuit électrique agit comme un limiteur de
courant. La traversée de la résistance est rendue plus ou moins diffi-
cile aux électrons qui assaillent ce composant. Le principe est facile a
comprendre.

Chapitre

115

Imaginez un grand nombre de personnes venues voir un concert, obli-
gées de passer par une petite entrée de 2 metres de large pour pénétrer
dans la salle de spectacle. Les corps se touchent si bien que le flux des
spectateurs se ralentit. Bien entendu, les gens ont tendance a trans-
pirer et beaucoup de chaleur est émise. On avance moins vite que si
I’entrée faisait par exemple 10 métres de large.

Montages en série et en parallele

Que se passe-t-il quand plusieurs résistances sont reliées selon une
certaine configuration ? Cela devrait influer d’une maniére ou d’une
autre sur la résistance totale. Prenons deux exemples : le montage en
série d’une part et le montage en paralléle d’ autre part.

Le montage en série

Quand deux résistances ou plus sont montées 1'une derriére 1'autre,
on parle d’un montage en série. Il est dans la nature des choses que la
résistance totale augmente a mesure que le nombre de résistances
individuelles placées 1'une derriere I'autre augmente. La résistance
totale est en 1’occurrence égale a la somme des résistances indivi-
duelles. Supposons maintenant que les 3 résistances suivantes soient
montées 1’une derriere 1’autre :

— 1 }—L
IR 2R T.5K

La résistance totale se calcule comme suit :

R =R;+R,+ R;=1K + 2K + 1,5K =4,5K

totale

J'aurais aimé avoir votre avis sur le courant qui passe par les résis-
tances. Comment se comportent-elles avec lui selon vous ? Partons
du principe que le courant passe de gauche a droite dans les résis-
tances.

Le courant devrait alors faiblir derriere chaque résistance. Plus je
mesure loin A droite derriére chaque résistance, plus le courant est
[aible.

,,,,, Non Ardus, ce n’est pas tout a fait vrai. La premiere partie de ta
LN réponse est juste car chaque résistance diminue la circulation du
2 courant, Pour autant, un seul courant — partout identique — est mesu-

116 Partie | : Les bases

20

Evy

015

rable sur I’ensemble du circuit électrique. Voyons cela dans un

circuit.
Ul =2 Uz = 2 Uz =2 4 Figure 5-1
Montage en série de 3 résistances
@ }‘ @ }‘ @ dans un drcuit électrique
. H {1

hotale: = 7 ‘
Quelles valeurs sont connues dans ce circuit et lesquelles sont incon-
nues et doivent étre calculées ?

Connues : U, R;, Ry et R;

Inconnues : 1,1, Uj, Us et U;

Sachant que le courant [est partout le méme, vous pouvez utiliser la
formule suivante :

U _ U
R‘,+R2+R3

I =
totale R

totale

Si vous appliquez les valeurs, vous obtenez le résultat suivant :

Lprate = Iy -
ke TR w9k 4 15K

2 mA

Maintenant que vous avez calculé un courant /=2 mA passant par
tous les composants, vous pouvez calculer la chute de tension a
chaque résistance. La formule communément utilisée est la suivante :

U=R-1

L’équation est donc la suivante :
Uj=1K-2mA=2V
Uy=2K-2mA =4V
U;=15K-2mA=3V

Si vous additionnez toutes les tensions partielles (U;, U,, Ujz) vous
obtenez a nouveau la tension totale U.

Chapitre 5 : Circuits électroniques simples 17

118

La chute de tension aux bornes d’un composant est indiquée par une
fleche et va dans le sens du courant du plus (+) vers le moins ().

Pour aller plus loin
C'est la résistance présentant la valeur la plus élevée qui connait également la
plus forte chute de tension.

Le montage en parallele
Un montage en parallele consiste a placer deux ou plusieurs compo-
sants coOte a cote. Le courant qui arrive dans un montage de ce type se
scinde alors en plusieurs branches.

I se comporte comme un cours d’eau qui se divise a un endroit pour
se reformer quelques kilomeétres plus loin. La résistance totale se
calcule comme suit :

R Sy PN N N S

Rm!aa‘e R;" R2 IK 2K

Le résultat pour la résistance totale R, est le suivant :
Rio1a1e = 666,67 L2

Si plus de deux résistances sont montées en paralléle, vous devez
rallonger la formule a concurrence du nombre de termes correspon-
dants de la somme.

I NN SN B |

R, R, R; 'R

R

totale n

Un circuit avec deux résistances montées en paralleéle se présente
comme suit :

Partie | : Les bases

20

Evy

015

Uu=7? < Figure 5-2

Montage en paralléle
(V)

de deux résistances

u=98v

Dans ce circuit, un faible courant parcourt évidemment aussi 1’appa-
reil qui mesure la tension via les résistances, mais laissons cela de
c6té pour I'instant. Quelles valeurs sont connues dans ce circuit et
lesquelles sont inconnues et doivent étre calculées ?

Connues : U, R;et R,
Inconnues : 1, U; et Us

Une résistance totale de 666,67 L2 a déja été calculée. Celle-ci vous
permet de déterminer trés simplement I’intensité du courant total

1, 1a10 avant sa ramification. Je vous redonne la formule :
U

) ik
R

Ce qui donne :

9V

]mrm’e = m =13,5 mA

Comment calculer cependant les courants partiels /; et I, ? Rien de
plus simple puisque vous connaissez la résistance de chaque branche
et la tension présente aux bornes de chaque résistance.

Quand des composants sont montés en parallele, la chute de tension
est la méme pour chacun d’eux. Nous avons ici affaire a une pile de
9 V. Effectuons le calcul :

9V
=2 <9mA
AT
L=2Y —45mA
2K

Chapitre 5 : Circuits électroniques simples

119

€3

Figure 5-3 p-
Diviseur de tension non chargé

120

Si vous additionnez les deux courants partiels /; et I,, qu’obtenez-
vous a votre avis ? Exact, le courant total.

| T 1K

lotale l 5 . J

Ce qui se ramifie en amont (donc a gauche sur la figure) finit par se
rejoindre et forme la somme des parties.

Pour aller plus loin
Si plusieurs résistances sont montées en parallele, la résistance totale est infé-
rieure a la plus petite résistance individuelle.

Voici une astuce concernant les tailles de résistance. Si vous montez
deux résistances de méme valeur en parallele, la résistance totale est
exactement égale a la moiti€ de chaque résistance. Faites le calcul
pour vérifier.

Le diviseur de tension

Dans beaucoup de cas, on ne souhaite pas utiliser la pleine tension de
service de +5 V pour alimenter divers composants. Maintenant que
vous savez que des résistances sont utilisées par exemple pour dimi-
nuer des courants, je voudrais vous montrer un circuit qui ressemble
au montage de résistances en série. Le circuit en question est appelé
diviseur de tension non chargé.

+5V O
i i

U2 [R2 uz

Masse

Partie | : Les bases

Sur le coté gauche, la tension d’alimentation U =+5V a été appli-
quée aux deux résistances R; et R,. Sur le c¢Oté droit se trouve une
mesure de tension U, aux bornes de la résistance R,. Une tension est
pour ainsi dire prélevée entre les deux résistances. Une partie de la
tension d’alimentation chute a travers R, et I'autre a travers R,. La
formule suivante peut €tre utilisée pour calculer la tension U, :

U *3 U
CRAER,

Eh 1 pas si vite ! Expliquez-moi seulement comment vous en étes venu
a cette formule ? J’ai du mal a comprendre.

D’accord Ardus, pas de probléme. Je peux rendre cette équation
compréhensible au moyen d’une équation de proportionnalité. Je
confronte les résistances correspondantes a la tension présente a leurs
bornes. La tension U est appliquée aux résistances R; et R, et la
tension U, uniquement a la résistance R,. L’équation de proportion-
nalité suivante peut donc étre posée :

v _ U

En tirant U, de cette équation, on obtient la formule ci-dessus. Nous
souhaitons cependant configurer le circuit d’une maniere aussi
flexible que possible et non pas changer les résistances pour chaque
valeur de tension U, souhaitée. C’est pour cette raison que nous utili-
sons un composant qui nous permet d’adapter rapidement la valeur de
la résistance a nos attentes.

Vous connaissez déja ce composant: c’est le potentiometre. Il
dispose de trois bornes et d’un bouton central rotatif permettant
d’ajuster la valeur de la résistance dans les limites données. La borne
centrale est reliée en interne au curseur. La résistance peut ainsi étre
ajustée par le réglage du potentiométre. Regardez la figure 5-4. Elle
montre un schéma de ciblage d’un potentiometre qui ressemble beau-
coup au circuit du diviseur de tension.

Chapitre 5 : Circuits électroniques simples

2

Figure 5-4 p

VD
Diviseur de tension variable
par potentiométre &
U 2[2 -0
S
= S
u2
e o}
5o
Le curseur du potentiometre est la broche 2 dans le circuit. Plus le
curseur va vers le haut, plus la valeur de résistance entre la broche 1
et la broche 2 diminue, tandis qu’elle augmente en proportion entre la
broche 2 et la broche 3. Le potentiomeétre peut étre vu comme deux
Fi - résistances qui se modifient, avec un curseur tenant lieu de diviseur
Diviseurdet:gnlsli;:va;iabz qui fractionne les deux résistances. La figure 5-5 montre le comporte-
paf potentiomictre ment du potentiometre et les résistances R; et R, qui en résultent.
{s} VO~
0
U
. R
u2 ’ u2
o- —0 o $ 0
|
R1 < R2 7 R1 > R2

122

Dans le circuit de gauche, la résistance R; est inférieure a R,. Autre-
ment dit, la tension la plus élevée est mesurée aux bornes de R,,
laquelle se trouve étre également la tension de sortie U,. C’est
logique car si le curseur du potentiométre sur la broche 2 continue de
monter, il finit par toucher la tension d’alimentation de +5 V qui est
alors disponible a la sortie. Inversement, la tension de sortie diminue
a mesure que le curseur du potentiometre descend vers la masse. Une
fois celle-ci atteinte, la tension est de O V a la sortie. Nous nous en
servirons par exemple pour alimenter les entrées analogiques du
microcontroleur avec des valeurs de tension variables qui, par

Partie | : Les bases

exemple, baissent par le biais d’'une LDR ou NTC. Vous avez oublié
la signification de ces sigles ? Vous trouverez toutes les réponses
dans le chapitre précédent !

Les circuits capacitifs
(avec condensateurs)

Les condensateurs servent a stocker une charge et se comportent
comme une discontinuité dans un circuit de courant continu. Seul un
courant de charge circule pendant le cycle de chargement, lequel
diminue & mesure que le condensateur se charge. Ce dernier finit en
revanche par constituer une barriere infranchissable pour les élec-
trons.

Montages en série et en paralléle

Des condensateurs peuvent, tout comme les résistances, faire partie
de diverses configurations. Ne travaillant pour le moment qu’en
courant continu, nous nous concentrerons ici sur la capacité et non
pas sur la résistance. Eh oui, un condensateur présente également une
résistance, qui dépend de la fréquence pour le courant alternatif ! Les
condensateurs réagissent pour ce qui est de leurs capacités en tout
point inversement a ce que font les résistances avec leurs valeurs dans
des montages en série ou en paralléle.

Le montage en série

Si vous branchez deux condensateurs ou plus en série et si voulez
déterminer la capacité totale, vous pouvez utiliser la formule permet-
tant de calculer la résistance totale dans un montage en paralléle.

La formule pour calculer la capacité totale est la suivante :

1 _ 1, 1 R N
Ciomte €1 €, 22pF 33pF
donc Cyq0e = 13,2 pF

Chapitre 5 : Circuits électroniques simples

123

violles,

{ s
| .

)18

o

20
Ll

(&)

right

Y
DY

Le montage en paralléle

Si deux condensateurs ou plus sont branchés en parallele, la formule
du montage en série pour des résistances peut servir 4 calculer la
capacité totale.

()
(SN
M

2 pF

|
=g T—

C2] 122 pf
La formule pour calculer la capacité totale est la suivante :

Ciotate =C1+ C3

Le montage de ces deux condensateurs en parallele est facile a
comprendre et on voit tout de suite pourquoi la capacité totale est la
somme des deux capacités partielles. Les plaques des condensateurs
sont simplement reliées entre elles par les points bleus. Les plaques
ont été agrandies de sorte qu'une capacité équivalant a la somme des
capacités des deux condensateurs a été créée.

Le résultat serait dans ce cas :

Cmm!e = C} + C2 =122 pF +22 pF =44 pF

Le comportement des condensateurs étant ce qu’il est en courant
continu, je ne vois pas trés bien en quoi ces composants sont utiles.

Vous vous souvenez peut-étre de certains passages du chapitre précé-
dent sur les bases de I’électronique, ou j’explique que les condensa-
teurs sont entre autres utilisés pour lisser et stabiliser la tension.
Parlons brievement de la stabilisation. Quand un microprocesseur
doit alimenter les multiples consommateurs raccordés a ses
nombreuses sorties (tels que diodes €lectroluminescentes ou moteurs,
qui peuvent tous étre activés en méme temps), la tension d’alimenta-
tion peut connaitre de courts effondrements. Aussi des condensateurs
de filtrage sont utilisés pour que I’alimentation du microcontroleur

Partie | : Les bases

Ble]

L

n’en souffre pas directement et ne puisse pas engendrer une sous-
alimentation qui le conduise 2 interrompre sa tiche ou a se réinitia-
liser. Ils sont connectés aux deux prises V¢ (Voltage of Common
Collector, soit tension d’alimentation positive) et masse du controleur
et sont placés le plus prés possible de ces broches. Un condensateur
électrolytique de 100 pF par exemple emmagasine le courant et main-
tient la tension un moment en cas d’interruption. Il s’agit pratique-
ment d’une ASI (alimentation sans interruption) du domaine de la
milliseconde.

Les circuits avec transistors

Les transistors peuvent étre aussi bien des éléments de commutation
que des amplificateurs. Le circuit a transistor le plus simple comporte
une résistance de base et une charge avec une résistance en série dans
le circuit de collecteur, et sert de commutateur €lectronique sans
contact. Le transistor servira principalement de commutateur, aussi je
m’abstiendrai d’expliquer son utilisation comme amplificateur pour
des raisons de place.

o Résistance série
pour LED

oo

Commutateur

Ce montage possede a la fois un circuit de commande (a gauche de la
base) et un circuit de travail (4 droite de la base). Voyons a présent
ces deux circuits de plus pres.

< Figure 5-6
Transistor NPN servant
de commutateur

Chapitre 5 : Circuits électroniques simples

Figure 5-7

Le courant de commande
et le courant de travail
circulent ensemble

dans le transistor,

126

" Courant CF

)

Courant BE

v'!vy

Le courant de commande [effectue le trajet base-émetteur (BE) du
transistor tandis que le courant de travail /-~ effectue le trajet collec-
teur-émetteur (CE). Sans vouloir en dire plus sur I’utilisation du tran-
sistor comme amplificateur, la formule suivante peut étre intéressante
car elle permet de calculer I’amplification en courant, désignée ici par
la lettre 3

Ie 300 mA
f=—= = ——— =6000

Iy 50 pA

Avec les valeurs de courant collecteur et de courant de base utilisées
dans cet exemple, on trouve un facteur d’amplification en courant
B = 6 000. Dans beaucoup de fiches techniques, le facteur d’amplifi-
cation en courant 8 est également appelé hFE. L’amplification
préserve en quelque sorte la broche de sortie du microcontréleur, qui
ne doit fournir qu’un faible courant pour commander une charge plus
grande (par exemple un relais, un moteur ou une lampe) réclamant
bien plus de courant pour que le composant concerné puisse travailler
correctement. Quand vous fermez 1’interrupteur, la tension d’alimen-
tation de +5 V environ est appliquée sur la résistance de base. La
tension base-émetteur atteint +0,7 V environ et le transistor conduit,
si bien que le circuit collecteur-émetteur, bloqué jusque-la, voit son
impédance diminuer trés fortement et le courant de collecteur peut
circuler dans la charge.

Quand je regarde ce circuit, je me demande pourquoi la diode électrolu-
minescente est commandée par un transistor et non pas directement par
I'interrupteur. Y a-t-il une raison ?

Que dire Ardus... Il est vrai que ce circuit ne sert qu’a montrer
comment courant de commande et courant de travail cooperent. Tout
ceci est un peu surdimensionné et n’est pas impérativement néces-
saire pour commander une simple diode électroluminescente. Si en
revanche vous avez une utilisation qui consomme un courant tres

Partie | : Les bases

important, que la sortie du microcontrdleur n’est pas capable
d’alimenter, il vous faut un circuit du genre de celui décrit ici.
Rappelez-vous les spécifications de notre microcontrbleur, il y est dit
qu’une seule sortie ne peut fournir que 40 mA au maximum. Au-dela,
le contrbleur s’abime. Vous avez peut-&tre un relais requérant une
tension de 12 V dans votre bric-a-brac. La carte Arduino ne pouvant
fournir que 5 V au maximum, il y a comme un probléme. Cependant,
rien ne vous oblige a avoir une seule source de courant. Vous pouvez
utiliser deux circuits d’alimentation séparés. Voici un exemple :

0 Arduina 13 0

I

12

|

pwm 1.

PWM 10, Diode de roue libre i
PWM

o
=
=

llaa

Digital 1/0

b}
=
=

Jesssadigy

PWM

Analog IN

T

N <

Masse Masse

Qu’est-ce qui saute aux yeux ? Nous avons a gauche I’alimentation
en +5V de la carte Arduino et a droite celle en +12V du relais.
Toutes deux sont des sources de courant indépendantes et autonomes
qui doivent pourtant avoir un potentiel de masse commun. Les deux
points indiqués par Masse sur le schéma sont reliés entre eux.

Attention!

Vous ne devez en aucun cas - je dis bien en aucun cas — relier les deux points
d'alimentation en +5 V et +12 V entre eux ! Clash assuré et microcontroleur au
minimum grillé.

> Transistor NPN

A Figure 5-8

Microcontréleur Arduino
commandant un relais via

un transistor (circuit de commande)

Chapitre 5 : Circuits électroniques simples

127

C’est cette diode en parallele au relais appelée diode de roue libre qui
me géne. A quoi sert-elle au juste ?

11 me faut ici approfondir un peu, Ardus. Pour pouvoir agir et pour que
les contacts se ferment a la circulation du courant, un relais a besoin
qu’une bobine crée un champ magnétique et déplace une palette mobile.
En électronique, une bobine est également désignée par inductance. Cette
dernicre a une propriété particuliére. Quand un courant parcourt le trés
long fil de la bobine, il crée un champ magnétique. Rien de nouveau
jusqu’ici. Ce champ magnétique non seulement attire la palette mobile,
mais induit également une tension dans la bobine elle-méme. Ce
processus est appelé auto-induction. La bobine se rebelle en quelque
sorte, car la tension induite est orientée de maniére a s’opposer au courant
qui I’a provoquée. Si j’alimente une bobine en courant, la tension auto-
induite essaie de contrarier la tension en question. Cette derniere ne se
crée que lentement. Si par contre je coupe A nouveau le courant, la varia-
tion rapide du champ magnétique géneére une tension induite qui
s’oppose a la baisse de tension et s’avere plusieurs fois plus élevée que la
tension initiale. C’est 1a tout le probleme. La commutation avec le léger
retard ne constitue pas un risque pour le circuit et ses composants. Lors
de T'arrét en revanche, l'effet secondaire extrémement néfaste de la
pointe de tension excessive (> 100 V) doit étre impérativement évité pour
que le circuit ne grille pas. Faute de quoi, les chances de survie du tran-
sistor sont réellement minces. Aussi une diode est-elle connectée en
parallele au relais pour écréter la pointe de tension et dériver le courant
vers la source.

Figure 5-9 p +12V +
Diode de roue libre préservant Q
le transistor des surtensions

On
<

Sens de blocage
B

Sens de conduction
B

vrolles.

- B Débloqué (saturé)

|] o
| .

11D
[=]
c|;|
+
w
<
m

901 &
Ll

T

=
)

128 Partie | : Les bases

Quand le transistor du schéma de gauche est débloqué, I’excitation du
relais tarde un peu et les potentiels indiqués se mettent en place au
niveau de la diode : le plus a la cathode et le moins a I’anode. Autre-
ment dit, la diode est bloquée et le circuit se comporte comme si elle
n’était pas 1a. Si par contre la base du transistor est reliée a la masse,
celui-ci se bloque et les potentiels indiqués apparaissent du fait de la
variation du champ magnétique de la bobine : le plus a ’anode et le
moins a la cathode. La diode travaille dans le sens de la conduction et
dérive le courant vers 1’alimentation. Le transistor est préservé.

Chapitre 5 : Circuits électroniques simples

129

'$9](04A3 §T0Z @ 1ybLAdOD

Chapitre
fritzing

Que serait I’'univers du prototypage, ¢’est-a-dire 1’assemblage rapide
de composants logiciels et matériels, sans le logiciel open source
Fritzing ? 1l serait bien démuni ! Vous arrive-t-il aussi souvent qu’a
moi de construire un circuit électronique avec votre carte Arduino, a
I’aide d’une plaque d’essais et de divers composants raccordés par
des cavaliers, en vue de produire un prototype pour votre projet ? La
programmation par le biais d’un sketch sur mesure donne vie au
montage. C’est ce qui s appelle le Physical Computing. Une fois le
travail terminé, le tout fonctionne a votre convenance et vous étes
content de vous. Pour les projets assez ou trés ambitieux, vous aime-
riez sans doute pouvoir conserver le circuit pour votre usage
personnel ou pour la postérité. En d’autres termes, vous aimeriez
archiver votre ceuvre. Lorsque le projet n’est pas voué a une courte
vie sur la plaque d’essais, mais qu'il doit servir durablement au quoti-
dien, il est conseillé et indiqué de produire une carte sous la forme
d’un circuit imprimé professionnel.

Dans ce domaine, Fritzing vous apporte la solution. Ce logiciel open
source, qui a été développé a I'université des sciences appliquées de
Potsdam, en Allemagne, permet de concevoir des circuits en un tour
de main, de les documenter, de créer un schéma électrique et méme
de faire fabriquer un circuit imprimé a partir de ces informations. Si
vous voulez avoir un apercu du potentiel de Fritzing pour le prototy-
page, consultez le site htip./fritzing.org/projects/. Vous y trouverez
de nombreuses sources d’inspiration. Plusieurs circuits présentés
dans ce livre ont été construits a I’aide du logiciel Fritzing.

131

virolles

015 E

20

(&)

right

!

Copy

L'interface du logiciel

L’interface de Fritzing étant trés intuitive, vous vous familiariserez
rapidement avec ce logiciel. Mais avant de commencer, vous devez le
télécharger depuis la page http.//fritzing.org/download/. 11 existe des
versions pour Windows, Mac OS X et Linux. La procédure d’installa-
tion est décrite en détail. La figure suivante présente I'interface du
logiciel dans lequel un projet Fritzing a été ouvert.

- T

£ Taster001.izz - Fritzing - [Voe de la platine d'essai]

Fber fan Comgomant Ve Fendte Routige Ade

Compozants @ x

I LT I e piatine dessai e Ve schématique B &0 Oreaitimprime [€ Code

g 8 0§ o

-0 0l

.

asas wa
s sssss saess saaes sas

LED avec
résistance séne

2
%F

Inspecteur 2%

ars oa

“saes s

Bouton-poussoir
avec résistance
pull-dawn

seeaa smsan
(s as sasas sases

Figure6-14 Ce projet contient déja quelques composants que vous rencontrerez
Interface de Fritzing probablement souvent a 1’avenir. Il s’agit, notamment, de la piece
avecleproiet poaitresse de tous les montages de ce livre : la carte & microcontroleur
du bouton-poussoir : . . S 5
Arduino. Elle est raccordée par des connexions en couleur a la plaque
d’essais blanche sur laquelle se trouvent, par ailleurs, des composants
comme des résistances, un bouton-poussoir et une diode rouge. Pour
garantir le bon fonctionnement du circuit, ses composants sont
évidemment aussi raccordés les uns aux autres par des lignes
colorées. Pour commenter le fonctionnement du circuit, vous pouvez
ajouter des remarques sous la forme de post-its jaunes, comme ceux
que vous collez sans doute sur votre écran.

La construction ou I’extension du circuit s ‘effectue par cliquer-glisser
depuis une bibliothéque de composants classés dans différentes caté-

132 Partie | : Les bases

gories, accessibles a I’aide d’onglets sur le coté droit de la fenétre. I
suffit de faire glisser le composant voulu et de le placer sur la bread-
board. Vous trouverez des rubriques réunissant les composants de
base, comme les résistances, les condensateurs, les transistors, les
diodes, les LED, etc. I1 y a aussi des rubriques spécialisées qui
contiennent tous les modeles de cartes Arduino existants, ainsi que
les principaux shields. D’autres onglets permettent également
d’accéder aux nombreux shields de la marque Sparkfun Electronics,
ainsi qu’a d’autres composants. Le choix de composants électroni-
ques préts a ’emploi est impressionnant et il devrait répondre a tous
vos besoins ou presque.

Si une piece particuliére est absente de la bibliothéque, vous pouvez
I’y ajouter en suivant les instructions. Puis vous pourrez méme la
mettre a disposition de la communauté toute entieére afin que d’autres
développeurs puissent aussi en profiter. D’ailleurs, c¢’est un peu le
mot d’ordre qui devrait réunir tous les bricoleurs amateurs ou
passionnés : développez et construisez, puis mettez votre projet a
disposition pour favoriser le transfert de connaissances. Vos
montages n’auraient pas grand intérét si vous vous contentiez de
bricoler dans votre coin. Il serait dommage que le reste du monde ne
puisse pas en profiter.

Revenons a I'interface de Fritzing. Outre la page d’accueil qui vous
permet d’accéder rapidement & vos derniers sketchs, la fenétre se
divise en trois parties :

* plaque d’essais ;
¢ vue schématique ;

* circuit imprimé.

Platine d'essai

C’est depuis cet onglet que vous pouvez construire votre circuit sur ordi-
nateur. Une plaque d’essais vide apparait toujours au démarrage de
Fritzing. Vous pouvez vous servir de cette base de départ pour venir y
enficher des composants. Il existe différentes tailles de breadboards
parmi lesquelles vous pouvez choisir celle qui correspond a vos besoins.
La taille Full+ qui est proposée par défaut est un bon début (voir page
suivante).

Chapitre 6 : fritzing

-
-
.
-
]
*
-
-
.
-
-
-
-
-
.
-
.
.
-
-
.

LR

BT F TP TR T IR BT A A I T AT TN T TR AT T TIIPEY
.

e e LT R T I B R I R R R B R

R L R R N

® R E B E B EEEE B EEEE EEEEY FEERE SEETEE EEETE EETEEE wee e
FE AN T EEE FEEES SR EET SERETE SR EFEE EREATE BREeE A EW

Routage Aide

Comme chaque composant sélectionné est doté d’un certain nombre
de propriétés, telles que la taille, I’orientation, la couleur, etc., qui
sont affichées sur le c6té droit, vous pouvez modifier les dimensions
de la plaque aprés I’avoir sélectionnée.

=ioix|
1 s 2 ;) i A Q5ants
! e Wi schématlgue circulit impyimé LIUIRe3akE i
ki : i QL core Parts =

m Besique
e e mO@§

o-0 0 mE

- Entrée.
LLOte—O
™ :
2 ? o=8
;A E--1 @
& ™
Inspetteur 2%
Empiacement
empcemen 0.843 4 1400 4
Tozaton o0

Choix de la taille de la plaque

E'}”'O| Y

015

2

ght ©

‘errould
Propriduis
famile breadboard
Talie ful+)

numérody SB-301
composan: fll |
Mors-chs half
breadboard T
2 mini
Connexdons pn,

conn,
nom
& o

Je ne peux malheureusement pas décrire toutes les fonctionnalités en
détail. Mais, a titre d’exemple, j’aimerais vous présenter la réalisation
d’un petit projet de commande d’une LED au moyen d’un bouton-
poussoir. J’ai réduit la breadboard a la taille Tiny et j’ai pris une LED
dans la bibliothéque Basique. Les deux pattes de raccordement
doivent étre mises en contact avec les trous dans la plaque afin

Partie | : Les bases

Copyri

yrolles,

=
| .

)1E

o

FAN

20

©

right

s
—opy

L

d’établir une liaison conductrice. Tant que les extrémités des pattes
ne chevauchent pas les trous, il n’y a pas de liaison électrique.

Lorsque je fais glisser la LED sur les trous, I'extrémité des pattes
change de couleur afin de signaler que la LED est en place.

Lorsque je relache le bouton de la souris, la liaison électrique est
établie. Comme vous pouvez le voir, toutes les prises reliées les unes
aux autres sur la plaque sont affichées en vert en fonction de I’endroit
ou la LED a été branchée.

Tous les autres composants fonctionnent sur le méme principe que la
résistance mise en place ici. Apres avoir cliqué-glissé et positionné la
résistance série, j’ai corrigé sa valeur de résistance initiale en réglant
une valeur de 330 Q. Ce réglage s’effectue aussi dans le panneau
d’informations du composant sélectionné. Ensuite, j’ai cliqué-glissé
la carte Arduino Uno a partir de la rubrique Arduino. Je I’ai fait
pivoter a I’aide des commandes du menu contextuel.

. Faire pivoter de 90" vers ia droite {4567} {457}
Modfier 'ordre e :

Verrouiler i& composant i;aire pivoter de 180° {1807} {180°7} i
Copier CereC Faire pivoter de 135°% vers 1a gauche {13597} {90°7}
Dupéiquer Cir+D Faire pivoter de 135° vers la gauche {135@7} {45°7}
Effacer Del

Supprimer I'éiément et conserver ies connexions

Editer {un nouveay composant)

Ajputer au jey de composants.., >
Afficher I'étiquette du composant

C’est encore plus simple et plus rapide a 1’aide du bouton Rotation
qui se trouve dans la barre d’outils rouge le long du bord inférieur de
la fenétre :

Aide-mémoire

Chapitre 6 : fritzing

yrolles,

| .

5

)15

© 2C

right

!

Vous pouvez cliquer directement sur le bouton pour appliquer immé-
diatement une rotation de 90° dans le sens horaire. Ou bien cliquez
sur le petit triangle & droite du bouton.

Faire pivoter de 135° vers Ia gauche {1357} {45°7}
Faire pivoter de 1357 vers la gauche {13597} {30°7}
Faire pivoter de 180" {18097} {1807}

Faire pivoter de 90° vers Ia droite {457} {9077}
Faire pivoter de 90% vers 1a droite {4597} {45°7}

-~
b

(-]
Rotation Retourner

Le menu qui apparait contient les mémes options que proposées dans le
menu contextuel. Ensuite, je relie 1a plaque d’essais a la carte Arduino. Je
clique sur un trou dans la plaque et je maintiens le bouton de la souris
enfoncé, puis je fais glisser la souris jusqu’a un port de la carte Arduino.

Les prises reliées électriquement s’affichent en jaune. Ainsi, vous obtenez
la connexion de la LED et de la résistance série illustrée ci-apres

E

.

Comme vous avez pu le remarquer, j’ai changé la couleur des fils de
raccordement : le fil de masse est noir, le fil de commande est rouge.
Cela s’effectue dans le panneau d’information ou depuis le menu
contextuel. Ensuite, je voudrais relier le bouton-poussoir avec une
résistance pull-down & une entrée numérique. Le bouton intitulé
Pushbutton se trouve aussi dans la rubrique Core Parts. Faites-le
glisser sur la plaque a I’emplacement illustré.

_opy

L

Partie | : Les bases

yrolles,

|] o
| .

)15

oTs

5

L

©

L

right

! =

_opy

D ¢ ¢ @ L
IS e ¢ o L
e e e 8 e e o
e e o o e e s
I e e e
e e 8 o e e o
L L O]
e e 8 & e e o
LI L]
e e 0 0 @ 51) & o
e e 8 o @ Pushbutton p e e
e e 8 0 o e & 0o o o
e e o 8 @ e e e o .

Vous devez le faire pivoter de 90% car son orientation initiale ne
convient pas. Ensuite, nous allons raccorder la résistance pull-down
au bouton-poussoir. Faites glisser une autre résistance que vous
réglez sur 10 kQ. Procédez au ciblage en reprenant les couleurs et les
positions illustrées ci-apres.

S48 A S ssA s ssasesS

- e
- L
-

LA |

..
..

m-
. -,
R N I B B A e

& LouTnpay
NO MM s,

L R O
T T T T T R R

LR BRI O L
LR I T RN IR IR I O

Ne vous inquiétez pas si vous ne reconnaissez pas ce montage ou si
vous n’en comprenez pas le sens ; je reviendrai plus loin sur le rble
d’une résistance pull-down. Je me contenterai de dire ici que lorsque
le bouton n’est pas enfoncé, le potentiel de la masse est transmis a la
broche d’entrée numérique 10 en passant par la résistance de 10 k€.
Le niveau y est donc bas (LOW). Lorsque vous appuyez sur le
bouton, le courant de 5 V est transmis a la broche 10 et le niveau est
donc haut (HIGH). La résistance pull-down a pour role, d’une part,

Chapitre 6 : fritzing

137

Figure 6-3 p
Ajout du composant
ala catégorie My Parts

Figure 6-4 p
Composants réunis
dans la catégorie My Parts

d’éviter que ne se produise un court-circuit entre les broches GND et
5V au moment ol vous appuyez sur le bouton et, d’autre part,
d’envoyer un niveau bas sur la broche 10 quand le bouton n’est pas
enfoncé. En numérique, il n’y a rien de pire qu’une entrée ouverte qui
représente un niveau indéfini.

Nous allons maintenant pouvoir examiner le schéma électrique du
circuit que nous avons construit jusqu’ici sur la plaque d’essai. Le
schéma électrique est généré automatiquement en arriére-plan au fur
et 4 mesure que vous ajoutez des composants.

Petite astuce utile pour améliorer votre confort quand vous travaillez
avec Fritzing : si vous utilisez réguliérement les mémes composants
électroniques dans vos projets, vous en aurez assez de les rechercher
constamment parmi les différentes catégories. Parmi les nombreuses
catégories disponibles sur le c6té droit, vous en trouverez une inti-
tulée Mine — My Parts. C’est 1a que vous pouvez ajouter les compo-
sants que vous utilisez fréquemment afin de les retrouver rapidement.
Comment faire ? C’est trés simple : cliquez sur un composant a 1’aide
du bouton droit de la souris et sélectionnez la commande Ajouter au
Jeu de composants>My Parts dans le menu contextuel.

w’ Rotation 4

Modifier I'ordre 4
Verroudlier le composant

Copier Curi+C
Dupliquer Ctri+D
Effacer Dei

Supprimer I'é€ment et conserver ies connexions
Editer {un nouveau composant)

Afficher I'étiquette du composant

Je I’ai fait pour les composants utilisés dans ce projet et la catégorie
My Parts se remplit peu a peu.

Composants 2 X

Q.. My Parts g

- A -

MINE

138

Partie | : Les bases

violles,

> i =

2015

20

(&)

yright

Yy

LS ¢

I est désormais tres facile de récupérer des composants dont je me
sers souvent en les faisant glisser depuis ma catégorie personnelle.

Avant de passer au point suivant, j’aimerais vous présenter une autre
méthode de raccordement trés intéressante. Jusque la, les céibles
cheminaient a angles droits, comme dans la majorité des schémas
électriques. Mais pour que le projet paraisse plus réaliste, vous
pouvez aussi créer des raccordements courbes en procédant comme
suit :

-
-l

>
3
o
[4
-
3
o

LR I I B I Y

L I T e T O e I I T S I O O O N O I B S O R A Y

LRI R I
4 & 8 8 8 8 8 8 A8 8BNS A RS S BBE e EsEss

LI B
a8 8

L W
T
LR N I Y
5 4e e

& % 8 % 8 8 8 8 8 S 8 8 S S 8 S S8 S8 S8 S8 e s8ssEss
L N
o8 888

8 & 8 8 8 S 8888888888888 s 8sEssssEs
L S T O S T T T I R I TR T T R TN U T ST R NI
L T T O O O O O O e T N R N O O T I O O T O S R T W Y
R I I R R I R T I R S T T I I I A I A R I B R A A

L O N R N R W TR R S A A R)

L I I I A N
LR N I A

Potentiométre q; / :

La fonction des fils conducteurs courbes est désactivée par défaut. 4 Figure6-5
Lorsque vous avez établi une liaison et que vous voulez qu’elle fasse Raccordement courbes
un coude & un emplacement précis, pointez a I’endroit voulu. Le poin-

teur de la souris se transforme :

< Figure 6-6
Pointeur doté d'une icéne de coude

Créez un coude en faisant glisser la souris tout en maintenant le
bouton gauche enfoncé. Pour obtenir un cible courbe, vous devez

Chapitre 6 : fritzing 139

Eyrolles.

015

{
L

2

yright ©

!

Cop

Figure 6-7 b
Pointeur doté d'une icone
de courbe

Figure 6-8 p
Cable coudé

Figure 6-9 b

Activation des cables et pattes

140

courbes

appuyer sur la touche Ctrl avant de cliquer sur le fil. Le pointeur de la
souris se transforme :

Vous pouvez maintenant couder le céble.

Vous pouvez activer cette fonction en permanence dans les
Préférences qui sont accessibles depuis le menu Edition :

2]

—Cables courbes plutbt que droits |

Lorsque le bouton de la souris est enfonce et que vous faites glisserun cdble oula |
patte d'un composant (par apposition & un connecteur ou un point de connexion/
‘articulation) voulez-vous modifier la courbure du fil {ou de la patte) ou faire

apparaitre un nouveau point de connexion ?

Cette case définit le comportement par défaut, Yous pouvez revenir au
-comportement nor défini par défaut en maintenant enfoncee la touche Ctrl (Mac :
touche Commande) lorsque vous faites glisser.

¥ Cables et pattes courbes

Lorsque vous cochez la case Cdbles et partes courbes, les cébles
auront toujours une forme courbe. Cette option s’applique aussi a la
vue schématique et a celle du circuit imprimé.

Vue schématique

Vous pouvez accéder a la vue schématique en cliquant sur I’onglet
correspondant dans la partie supérieure de I'interface.

Partie | : Les bases

E=] Circuit imprimé <3 Code

“wh Vue schématique

f Page d'accueil fi [Platine d'essat
Cette vue présente tous les raccordements que vous venez d’établir
sur la plaque d’essais. Vous serez frappé par le désordre qui semble y
régner, mais ne vous inquiétez pas, car nous allons y remédier.
Pour commencer, je fais pivoter le symbole électrique de la carte

Arduino afin qu’il corresponde a I’orientation choisie dans la vue de
la platine d’essai. Ensuite, je positionne les composants d’une fagcon

qui me parait a la fois logique et claire. C’est évidemment une

question de préférence personnelle.

¥ Figure 6-10
Vue schématique assez
désordonnée d'un projet

de bouton-poussoir

R2
10kQ
—VWW\— R1
- 1}
| 3300
o]
oy
B\
! '}
/ ' s1
§ t '
! {
J ' ;
i
I
I
:
f' Il
]
! T Yoo
r 4 ~
¥ 3: 4 "
! i L
i ' -~
r oy *a
H i e W
!‘ ‘Ili ‘.,\
s .
,"' = v = °H . s - S
/ z / = = = P 3 _,1_\\ :
' N Fal Lot e
] I | = i " T
/ § 5
4 1 1
) P
:" | .. . g
: r * T“\
r] [}
! 1 S
. i y
/ 1 .
/ i = B ;
¥ V [—
: | 3cd
¥ ~n [q ——
I— H w e -
i i - o
1

0 |
9
g Chapitre 6 : fritzing

C

4

T~
Arduino
Uno U, P—

(Rev3)

R1 LED1
330Q Red (633nm)

Figure6-114 [es liaisons que vous reconnaissez ici sous la forme de lignes en

Vue schématique mieuxrangée nointillés correspondent au plus court chemin entre les contacts. Cela

d'un projet de bouton-poussoir ¢ yelle un chevelu. Lorsque vous ouvrez le menu contextuel d’un
fil du chevelu, vous pouvez voir les commandes suivantes :

IModifier I'ordre 1 4
Couleur du cable »

"

Supprimer le fi volant

vrolles

La commande Créer une piste en remplacement du fil volant parait
trées prometteuse, car, plus tard, nous aimerions que les différentes
pistes relient électriquement tous les composants sur un circuit
imprimé. Je vais vous présenter la procédure pour le fil qui relie la

o

1L

|] o
| .

~

142 Partie | : Les bases

broche 5V a I'une des pattes du bouton-poussoir. Pour créer une piste
en un tour de main, il suffit de double-cliquer sur le chevelu corres-
pondant. Une fois la piste créée, la vue est la suivante.

Vous pouvez maintenant voir une ligne continue bordée de deux AFigure6-12

lignes pointillées. Sur une vue schématique, il est préférable qu’'une Enchevétrement transformé
piste ait un tracé rectiligne avec des changements de direction 2 angle " Pite

droit, méme s’il y a des exceptions. Cliquez sur une piste et insérez

un point de flexion en faisant glisser la souris tout en maintenant le

bouton gauche enfoncé. Vous pouvez déplacer le point de flexion, ¥ Figure6-13
toujours en maintenant le bouton de la souris enfoncé. Ajout d'un point de flexion

cliquer-glisser

Chapitre 6 : fritzing 143

violles,

P
2015 E

right ©

opY

&

Il est aussi tres facile d’ajuster la position du point de flexion apres
avoir reliché le bouton de la souris. Pour supprimer un point de
flexion, il suffit de double-cliquer dessus. Sur la figure suivante, j’ai
ajusté la position de toutes les pistes a 1’aide de points de flexion.

—

i

_ Arduino S1
S—t Uno
(Rev3) R2
— 10kQ
b
AW >
R1 LED1
3300 Red (633nm)

Figure6-14 4 Nous en arrivons donc au troisieme onglet : la vue du circuit imprimé.
Vue schématique terminée

Circuit imprimé
Vous pouvez accéder a la vue du circuit imprimé en cliquant sur
I’onglet correspondant dans la partie supérieure de 1’interface.

f Page d'accueil =] Platine d'essai e Vue schématigue

@ Partie | : Les bases

Copyright © 2015 Eyrolles.

La vue du circuit imprimé présente aussi les raccordements que nous
venons de créer sous la forme de cheminements. Toutefois, la vue
montre les composants et la carte Arduino vue de dessus avec toutes
ses broches, ainsi que les éléments et leurs raccordements. La aussi,
les liaisons vous paraitront emmélées et il va falloir y remédier.

0000000000 O0O00O00O0D0

eSS 000 000000

Vous constaterez que les composants sont tres mal placés, deux & Figure6-15

d’entre eux ne se trouvant pas méme sur le circuit imprimé (ou PCB, ~ Vueassezdésordonnée du circuit
Printed Circuit Board). Nous allons faire un peu de ménage par imprimé

cliquer-glisser pour réorganiser les composants. Si vous en aviez

disposé un grand nombre sur la plaque d’essais, il vous faudra peut-

étre essayer différentes dispositions avant d’aboutir & un résultat

satisfaisant. La figure suivante a déja meilleure allure, méme si elle

ne compte que quatre composants et qu’il n’y a donc vraiment pas de

quoi crier au génie.

Chapitre 6 : fritzing 145

Copyright © 2015 Eyrolles.

Figure 6-16 &

Vue du circuit imprimé
avec la disposition finale
des composants

000Q000C00 00000000

00000000 000000

J’aimerais en profiter pour vous signaler que les circuits imprimés ont
évidemment une vue de dessus et une vue de dessous pouvant rece-
voir des pistes de cuivre. Dans cet exemple rudimentaire, une couche
suffit (couche de cuivre de dessous), car les composants peuvent étre
disposés de telle facon que les pistes conductrices ne présentent pas
d’intersections. Qu’est-ce qui vous saute aux yeux lorsque vous
observez ces pistes conductrices ? Elles ont différentes couleurs.
Certaines sont jaunes et d’autres orange. Il doit bien y avoir une
raison a cette différence. Eh bien, ¢’est lié aux deux faces d’un circuit
imprimé.
e jaune : les pistes conductrices se trouvent sur la couche
supérieure ;
 orange : les pistes conductrices se trouvent sur la couche inféri-
eure.

Dans cet exemple, les deux couches sont utilisées, ce qui est totale-
ment infondé. La commande Routage>Autoroutage vous permet
d’essayer des propositions de routage pour le cheminement des pistes
conductrices. Si le résultat n’est pas satisfaisant, vous devrez inter-
venir manuellement. Nous voulons déplacer sur la face inférieure les

Partie | : Les bases

Copyright © 2015 Eyrolles.

pistes conductrices qui sont signalées en jaune et qui se trouvent donc
sur la face supérieure. Procédez comme suit.

* Sélectionnez successivement les différentes pistes conductrices
jaunes en maintenant la touche Ctrl enfoncée (vous pouvez bien
str aussi sélectionner individuellement chaque piste et activer la
commande Déplacer vers 1’autre coté de la carte dans le menu
contextuel).

¢ Sélectionnez la commande Routage>Déplacer vers [’autre coté
de la carte.

Le résultat est le suivant :

0000000000 C0O0O0VDO0O0C0

O

Q0000000 000000

Lorsque vous &tes satisfait de votre circuit imprimé, vous pouvez le
faire fabriquer par le Fritzing Fab. Pour obtenir un devis approxi-
matif, sélectionnez la commande Routage>Estimation des coiits avec
Fritzing Fab. Vous pourrez aussi connaitre les tarifs en vigueur en
survolant le bouton Faire fabriquer qui se situe dans le coin inférieur
droit de la fenétre.

A Figure 6-17
Vue du circuit imprimé
avec les pistes conductrices

surla face inférieure

Chapitre 6 : fritzing

147

yrolles.

|] o
| .

)1E

5

20
Ll

L

right ©

T

! =

Y\

Ble]

Figure 6-18 p

Le bouton Faire fabriquer affiche
des informations sur le coiit

de fabrication.

Figure 6-19 p
Choix du type de shield Arduino

148

Commandez votre circuit imprimé sur Fritzing Fab
La surface totale du drcuit imprimé 1 dans cette esquisse est de 47,78 cm? (7.4 in?).
Utdiisez Fritzing Fab pour produire un circuit imprimé a partir de votre esquisse.
Profitez de notre remise quantitative :

Exemplaires 1 2 5 10
Prix par carte 3345¢€ 2B.67€ 19.11€ 18.11€

Prix 33.45¢€ 57.34€ 95.57¢€ 191.15¢€

Les tarifs de fabrication évoluent en fonction du nombre de cartes
produites.

Le shield Arduino créé dans cet exemple utilise le facteur d’encom-
brement d’une carte Arduino Uno. Vous pouvez évidemment aussi
fabriquer des shields adaptés aux autres cartes de la famille. Cliquez
sur la platine pour la sélectionner. Ensuite, vous pouvez choisir
d’autres formes de shields dans le panneau d’informations.

Proprietes
famille microcontrolier board (arduino)
type Arduino UNO {Rev3) - ICSP

numeéro dy Arduino MEGA ADK (Rev3) {icsp)
composant Arduino Micro (Rev3)
Arduino Mini {Rev5)
Mots-ciés Arduino Nano (3.0)
" Arduino Nano (3.0) ICSP
' Arduino Nano v2.3
Connexiol orduing Pro

rens, une,

conm. Arduino Pro Mini (Rev13
- E Arduing UNO (Rev3)
nom Arduino UNO {Rev3) - ICSP

type

Partie | : Les bases

015

20

Le Fritzing Creator Kit

Pour les plus impatients, Fritzing propose méme un kit qui contient
tout le nécessaire pour débuter dans I'univers du microcontroleur
avec une carte Arduino. Le kit contient au choix une carte Arduino
Uno ou une carte Arduino Mega.

< Figure 6-20
Le Fritzing Creator Kit
avec une carte Arduino Uno

fritzing

CREATOR KIT

Ce kit bien pensé est tout sauf un fourre-tout de composants réunis a
la hite comme on en trouve a la pelle sur Internet. Il s’agit d’un
ensemble harmonieux et miirement réfléchi. A I’ouverture de la boite,
tout est bien rangé et a sa place, ce qui illustre I'amour du détail que
I’on retrouve aussi dans toutes les expériences proposées.

Le kit contient également un manuel de 136 pages qui constitue une
introduction a D'utilisation créative des composants électroniques
avec la carte Arduino. Le livre aborde aussi bien les notions analogi-
ques et numériques essentielles en Arduino que des connaissances
plus avancées, comme la communication avec Processing, la
commande des moteurs a courant continu et des servomoteurs, etc.
Vous serez étonné de tout ce que vous pourrez réaliser a I’aide de ce
kit !

Chapitre 6 : fritzing

149

Copyright © 2015 Eyrolles.

Figure 621 p
Le Fritzing Creator Kit ouvert

itzing CREATOR KIT

= - G C@.;‘M i (st
T o @FE b
. L A Lo
e Emi-

e teltaing argleraatarkit

ooo00n00
QQ‘QQUS
p0000000
goed

(X

YLl ;
S cee0008
ce0@0 0l

YT LLLL
@

Msee®

i r

Figure 6-22 p
Le manuel associé

Li-h_.t\l.r.

150 Partie | : Les bases

Copyright © 2015 Eyrolles.

Jai immédiatement été attiré par I'expérience proposée avec la
matrice de LED. Pour éviter que les composants ne s’égarent dans la
nature pendant la construction, le kit contient une plaque pouvant
servir de support a la carte Arduino et a deux plaques d’essais. Votre
expérience n’en sera qu'améliorée. En outre, comme vous disposez
d’une bonne vue d’ensemble, vous résoudrez trés rapidement vos

erreurs éventuelles,

Le Fritzing Creator Kit réunit les composants suivants :

Chapitre 6 : fritzing

mEE e

manuel

modeles en papier

carte Arduino Uno R3 ou Mega
matrice d’affichage a LED

2 plaques d’essais sans soudure
plaque support

cible USB

capteur de lumiere (LDR)
potentiométres

interrupteur a inclinaison

2 boutons-poussoir

< Figure 6-23
Expérience de la matrice de LED

151

152

« LED RGB

* buzzer piézo

« 22LED

¢ servomoteur

* moteur a courant continu (4.5Vaov)
o résistances : 10 de 220 Q, 10 de 100 kQ
¢ transistor MOS-FET

¢ 24 cavaliers courts

¢ 14 cavaliers longs

 cibles d’extension

e clip pour pile de 9 V

e circuit L293D pont-H pour controle de moteur
¢ 3 vis + entretoise

¢ clé Allen (hexagonale)

¥ Pour aller plus loin
Vous trouverez plus d'informations sur le Fritzing Creator Kit sur Internet ;

http://creatorkit fritzing.org/

Si vous ne voulez pas saisir manuellement les sketchs des différentes expéri-
ences, vous pouvez les télécharger a l'adresse suivante :

http://fritzing.org/creatorkit-code/
Bon divertissement avec Fritzing !

Partie | : Les bases

Chapitre

'assemblage
des composants

Les choses deviennent sérieuses et vous découvrez le matériel que
vous pourrez bientdt utiliser. Vous connaissez maintenant les compo-
sants électroniques de base et il vous reste a savoir ol et comment
fixer ou relier entre eux les composants. Posons-nous les questions
suivantes.

¢ Qu’entend-on par cartes ?

* Qu’est-ce qu’une plaque d’essais sans soudure, appelée égale-
ment breadboard ?

* Qu’entend-on par cavaliers flexibles et & quoi servent-ils ?

¢ Peut-on éventuellement fabriquer ces cavaliers soi-méme et a
moindre cofit ?

Qu’est-ce qu'une carte ?

De nos jours, on utilise une carte pour pérenniser un circuit. Une carte
est une mince plaque de quelque 2 mm d’épaisseur, fabriquée dans un
matériau tel que bakélite ou époxy, qui sert de support a divers
composants. Il existe différents types de cartes. Des pistes conduc-
trices, permettant de raccorder électriquement entre eux les différents
composants, sont gravées sur la face inférieure ou la face supérieure
des cartes professionnelles. La figure 7-1 montre une carte de ce type.

153

Eyrolles.

)

201

ight ©

Copyr

Figure 7-1 p

Carte professionnelle avec face
inférieure gravée

(Shield motor Arduino)

Vous pouvez bien entendu, avec I’équipement adéquat et une certaine
adresse, arriver a ces résultats chez vous, mais cela demande beau-
coup de travail. Pour aller plus vite, ce qui ne veut pas dire que le
résultat ne sera pas bon et ne fonctionnera pas au bout du compte,
vous pouvez utiliser une carte pour montage expérimental. Elle
présente un grand nombre de trous perforés a intervalles normalisés
(2,54 mm, en général), ce qui permet de placer plus librement les
composants. Vous devez naturellement remplacer les pistes conduc-
trices manquantes par des fils de liaison.

Figure7-2 p
Carte semi-professionnelle avec fils
de liaison ajoutés & la main

En prenant le temps de bien faire les choses, vous pouvez arriver en
gros a ce résultat. Pour ceux que cela rebute, et je sais d’expérience
que les novices se contentent au début de faire des expérimentations
et ne souhaitent pas se lancer immédiatement dans la fabrication
d’une carte qui risque de prendre du temps, il existe une solution plai-
sante qui permet de s’épargner travail et poussiere.

154 Partie | : Les bases

La plaque d’essais sans soudure
(breadboard)

La plaque d’essais sans soudure, également appelée breadboard,
accueille des composants électriques et électroniques qui peuvent étre
reliés entre eux par des cavaliers flexibles. Les professionnels 1" utili-
sent eux aussi pour vérifier ou corriger la capacité de fonctionnement
des nouveaux circuits avant d’envisager leur fabrication en série sur
des cartes gravées a I’avance.

4 Figure7-3
Plaque d'essais vue de dessus
(en position latérale de sécurité)

Cette plaque présente une multitude de petites prises femelles sur
lesquelles composants et cavaliers peuvent &étre branchés a raison
d’un seul branchement par prise.

relier les composants entre eux ? Je ne comprends pas tres bien.

Si un seul branchement par prise est possible. comment fait-on pour }
<) -

Beaucoup de prises sont relides entre elles a I'intérieur de la plaque
(en général, par groupes de cing). Si I'une d’elles est utilisée, par un
fil inséré dans le trou correspondant, celles qui lui sont liées sont donc
disponibles pour étre connectées a ce fil.

Vous avez ainsi en principe toujours assez de branchements libres
pour établir les liaisons nécessaires. Reste a4 savoir comment ces
liaisons invisibles sont agencées a l'intérieur de la carte. Voyez
plutdt : les deux images de la figure 7-4 montrent une plaque d’essais
vue de I’extérieur et de I'intérieur.

Chapitre 7 : L'assemblage des composants 155

) 2015 Eyrolles.

©

Copyright «

Figure 7-4 p

Plaque d'essais vue de I'extérieur
(a gauche) et de I'intérieur

(a droite)

ABCDE

TN S ST TSI S TS N EEE@Ew +
]))] 6 W0

Si vous pouviez mettre les deux images 1'une sur I’autre, vous verriez
précisément quelles prises ont une liaison conductrice. Mais je pense
que vous pouvez déja vous faire ici une idée de ce qui va ensemble.
Dans chacune des rangées (1 a 41), les prises A aE et F aJ consti-
tuent un bloc conducteur. Les deux rangées de prises verticales au
centre (+ et -) sont a disposition pour une alimentation éventuelle-
ment nécessaire a plusieurs endroits. Je vais maintenant brancher un
composant a plusieurs broches sur la plaque pour que vous compre-

n
(-]
4
o

niez mieux 1’avantage desdites liaisons internes.

Figure75> A BCDE FGHIJ

Circuit intégré sur une plaque
d'essais

-

‘IIIIIII
|]|[1]

Prises femelles libres/broche Prises femelles libres/brache

Ce futur circuit intégré a 8 pattes est placé dans 1’espace 1égerement
plus large entre les blocs de liaison A 2 E et F aJ. Chaque broche
dispose ainsi, a gauche comme a droite, de 4 prises supplémentaires

+
'

ABCDE

+
'

156

FGHI J

Partie | : Les bases

Copyright © 2015 Eyrolles.

qui sont en liaison électrique avec elle. Vous pouvez y brancher
d’autres composants ainsi que des fils. Il existe une quantité de
plaques d’essais diverses dont la taille varie en fonction de I’usage.

< Figure 7-6
Les tailles varient entre assez
petites et relativement grandes.

Attention!

Il existe des plaques dont les barrettes de prises verticales ou power-rails sont
électriguement interrompues au centre. Si vous n'étes pas sur d'avoir acheté la
bonne carte, vous pouvez tester la continuité avec un multimétre en effectuant
une mesure entre la broche la plus haute et la broche la plus basse d'une
barrette de prises verticale. En I'absence de liaison, et si vous avez impérative-
ment besoin d'une liaison électrique permanente, utilisez un cavalier.

Les cables
et leurs caractéristiques

J’aimerais profiter de cette occasion pour vous présenter les cébles
employés. Examinons les deux cébles de la figure 7-7.

Chapitre 7 : L'assemblage des composants 157

es.

i
IE

2015 Eyrol

yright ©

!

Cop

158

Figure 7-7 p
Deux types de cables

Figure 7-8 p
Entortillage des brins

Ne me dites pas que I'un est orange et I'autre bleu. La différence apparait
clairement lorsqu’on les dénude, ¢’est-a-dire quand on retire leur gaine
en plastique. Le cdble orange, qui ne comporte qu’un seul fil, est un fil a
ame pleine rigide. Son diametre est généralement de 0,5 mm. Son usage
est treés répandu pour les raccordements sur les plaques de prototypage.
Mais ce céble ne convient pas pour y raccorder des composants externes,
comme les potentiométres, car il n’est pas assez flexible. A la longue, il
risque de se débrancher ou de rompre.

Le cible bleu, qui comporte plusieurs fils, est un céble multibrin. Son
avantage par rapport au précédent est évident : plus souple, il peut
étre courbé ou déformé a volonté. Attention, si vous utilisez le cable
dénudé comme sur la figure 7-7, les brins risquent de provoquer un
court-circuit avec les contacts voisins. C’est pourquoi ces cidbles ne
sont pas utilisés tels quels, comme vous le verrez avec les cavaliers
flexibles : ils doivent étre étamés.

Tout d’abord, les brins sont entortillés comme sur la figure 7-8.

Partie | : Les bases

c) 2015 Eyrolles,

@

Copyright

Prenez le cable en tenant I’extrémité dénudée entre le pouce et I'index
de la main gauche. Ensuite, faites tourner I’autre extrémité entre le
pouce et I’index de la main droite dans le sens horaire. Les brins
s’entortillent comme illustré sur la figure 7-9.

Les brins entortillés demeurent tres fragiles et risquent de se dénouer
sous I'effet d’une sollicitation mécanique. Pour y remédier, les brins
entortillés sont donc étamés. Maintenez le cdble en place au moyen
d’une « troisieme main », comme sur la figure 7-10, en veillant a ne
pas endommager sa gaine par une pression excessive.

Rapprochez 1’étain de soudure et la pointe du fer a souder chaud du
cable entortillé de facon a ce que I'étain enveloppe immédiatement
les brins lors d’un bref contact. Comme la soudure demande un peu
de pratique, attendez-vous a devoir vous exercer avec quelques fils
avant d’obtenir un résultat satisfaisant. Comme cela ne saurait tarder,
ne vous laissez pas décourager par vos premiers échecs. La vitesse et
la quantité d’étain apporté jouent un rdle décisif. Comparons les deux

essais de la figure 7-11.

<« Figure7-9
Les brins non étamés
sont entortillés.

4 Figure 7-10
Etamage a l'aide d'une troisiéme
main

Chapitre 7 : L'assemblage des composants

159

Figure 7-11 p
Une bonne et une mauvaise
soudures

Figure 7-12 p

Cavaliers flexibles du commerce

160

(pas chers)

Le céble du haut, qui est plus long, a été correctement étamé, comme
vous pouvez le voir d’aprés la répartition uniforme de 1'étain. La
soudure a 1égerement augmenté le diametre des brins, mais de fagon a
peine perceptible. En revanche, le cdble du bas, plus court, a été
recouvert avec beaucoup trop d’étain, ce qui a provoqué ce renfle-
ment important. Il n’y a qu'une chose a faire : pratiquer ! Comme je
I’ai déja dit, le risque de rupture est plus réduit avec les cébles flexi-
bles qu’avec les cibles rigides. Lorsque vous aurez fabriqué quelques
cdbles comme décrit précédemment, pensez a tester leur continuité,
surtout si vous comptez les utiliser pour des montages complexes sur
un shield. Je vous montrerai un peu plus loin comment tester la conti-
nuité avec un multimetre.

Les cavaliers flexibles

Pour relier les composants a une plaque de prototypage, on utilise des
cavaliers flexibles.

Ils ont des couleurs et longueurs diverses et sont — je mentirais si je
disais le contraire — de qualité médiocre. Ils sont cependant suffisants
pour un débutant et on peut s’en procurer facilement chez un fournis-
seur de matériel électronique. On les appelle aussi cébles de liaison
(Low Cost Jumper Wires).

Partie | : Les bases

Copyright © 2015 Eyrolles.

Peut-on les fabriquer soi-méme ?

Oui, j’ai moi-méme fabriqué quantité de cavaliers, ce qui demande peu
de choses. Avantage : on peut prendre un fil flexible — également appelé
fil a brins multiples — de la section et de la couleur qu’on veut et bien
entendu de la longueur qui convient. La figure 7-13 montre un commuta-
teur sur lequel j’ai soudé trois cavaliers flexibles de ma fabrication.

<« Figure7-13
Cavaliers flexibles fabriqués
par moi-méme sur un commutateur

Vous pouvez bien siir en équiper tous les composants tels que poten-
tiometres, moteurs, servomoteurs et moteurs pas-a-pas. La mise en
ceuvre est plus souple et le temps passé a fabriquer les cavaliers ou les
fils ne sera pas perdu !

Matériaux nécessaires pour fabriquer des cavaliers flexibles :

e fil de cuivre argenté (0,6 mm) ;

* fil & brins multiples de diamétre au choix (0,5 mm? maxi) ;

e gaine thermorétractable 3:1 (1,5/0,5).

<« Figure 7-14
Matériaux nécessaires pour
fabriquer des cavaliers flexibles

Fil de cuivre argenté Fil multibrin

Gaine thennurélraclah]

Chapitre 7 : L'assemblage des composants 161

Eyrolles.

)

201

ight ©

Copyr

Outils nécessaires a la fabrication des cavaliers flexibles :
* briquet ;
+ fer a souder ;
* soudure a I’étain ;
* pince coupante diagonale et pince a dénuder le cas échéant.
Voici les différentes étapes de la fabrication.
Figure 7-15 p

Les différentes phases . —
de fabrication d'un cavalier flexible
2

3

4
e ———

R ——————— .
5
R e s

6
i —

Etape 1

Coupez le fil multibrin & la longueur souhaitée.

Etape 2

Dénudez les deux extrémités du fil sur environ 0,5 cm.

Etape 3

Etamez les deux extrémités du fil.

Etape 4

Soudez le fil de cuivre argenté aux extrémités du fil multibrin.

Etape 5

Enfilez les deux morceaux de gaine thermorétractable (1 cm environ)
aux deux extrémités de maniere a recouvrir a la fois les zones soudées
et une partie de I'isolant du fil multibrin.

162 Partie | : Les bases

Etape 6

Chauffez avec un briquet 3 & 4 secondes les deux morceaux de gaine
thermorétractable de maniére a ce qu’ils se rétractent et épousent la
forme du fil. Ne passez pas la flamme trop prés de la gaine, faute de
quoi elle cuit et n’a pas le temps de se rétracter.

Test de continuité
avec un multimetre

Examinons un multimétre de plus prés. Méme s’il en existe de
nombreux modeles, ils fonctionnent tous plus ou moins de la méme
maniére. Sur la figure 7-16, j’ai entouré les principaux boutons et
réglages de celui que j utilise :

TNt TOTIAT Y -

La premiére étape consiste & définir la grandeur électrique & mesurer
a I’aide du gros bouton rond. Comme ici nous voulons mesurer une
résistance électrique, cela correspond sur mon appareil au symbole de
I’ohm et du signal sonore. Lorsque les fiches ne sont pas reliées
ensemble, on a théoriquement une résistance infinie entre les deux
poles, ce qui est signalé par OL. Si je rapproche les deux fiches en

< Figure 7-16
Multimétre

Chapitre 7 : L'assemblage des composants

163

créant un contact électrique, une résistance plus faible est affichée.
Lorsqu’on utilise un multimetre pour effectuer un test de continuité,
un signal sonore est émis, en plus de I’affichage de la résistance
quand la liaison électrique a une résistance proche de 0 ohm. Sur
certains modeles de multimetres, cette fonction doit d’abord étre
activée. Sur mon appareil, je dois appuyer sur le bouton encadré en
rouge afin qu'un symbole de signal sonore apparaisse dans le coin
supérieur gauche de 1’écran. Si un signal sonore retentit quand je relie
les fiches, cela signifie que la liaison électrique existe et qu’il y a
donc bien continuité. Quand vous construirez vos propres shields
pour votre carte Arduino, un multimeétre sera indispensable pour loca-
liser les défaillances.

Quand vous effectuez un test de continuité, vérifiez que le circuit a
préalablement été déconnecté de la source de tension. Sinon, cela
risque d’endommager le multimétre.

Partie | : Les bases

Chapitre
Le matériel utile

Les bons outils faisant les bons ouvriers, je ne peux que vous recom-
mander le matériel mentionné ci-apres. Evitez seulement de racheter
les outils que vous avez déja !

N .

Si vous avez déja vu a quoi ressemble un laboratoire d’électronique
professionnel ou un atelier d’électronique, et si le domaine vous intéresse
vraiment, vous avez stirement eu du mal a contenir votre enthousiasme.
La diversité des appareils de mesure avec leurs nombreux céables colorés
et la multiplicité des outils laissent le profane a la fois perplexe et émer-
veillé. C’est du moins ce que j’ai ressenti quand mon pére m’a montré
son poste de travail. 1l travaillait alors sur I’'une des nombreuses souffle-
ries du Centre aéronautique et spatial allemand.

Je classe les outils présentés ici en deux catégories :
* Catégorie 1 : les must have!
Outils nécessaires pour votre travail.
» Catégorie 2 : les nice to have!

Outils non indispensables, mais qui peuvent faciliter votre
travail.

Pinces diverses

La figure 8-1 présente les pinces qui vous seront les plus utiles :

* la pince coupante diagonale pour couper les fils ;
* la pince a becs longs pour tenir et placer des petits composants ;
* la pince universelle, pour tenir un objet avec plus de force ;

* la pince a becs coudés, permettant de tenir un élément caché ou
peu accessible.

165

Copyright © 2015 Eyrolles.

166

Figure 8-1 p
Pinces diverses

Figure 8-2 p
Pince a dénuder

Ce jeu de pinces fait a mon avis partie de la catégorie Must have!

Pince a dénuder

Cette pince permet de dénuder plus facilement les fils. Une pince
coupante diagonale peut convenir, mais vous risquez de couper le fil
si vous appuyez trop fort.

Cette pince, selon moi, releve de la catégorie Nice to have!

Tournevis

Les petits tournevis d’horloger sont parfaits pour fixer les fils aux
bornes a vis, comme vous pouvez le voir sur la photo suivante.

Partie | : Les bases

Attention!

Les tournevis d'horloger ne sont pas isolés et sont donc conducteurs car entié-
rement métalliques. Vous ne devez en principe travailler sur un circuit que si
celui-ci est vraiment hors tension,

Si vous avez fixé un circuit intégré sur une plaque d’essais mais que
vous souhaitez I’enlever sans tordre ses pattes de raccordement a 90°
et risquer de les casser, vous pouvez utiliser un tournevis d’horloger
approprié.

Si vous utilisez seulement vos doigts, vous risquez de tordre les
pattes, comme sur la photo ci-contre.

Vous devez donc toujours €tre treés soigneux avec les pattes fragiles
d’un circuit intégré. Si ce qui arrive ici ne se produit qu’une ou deux
fois, cela n’est pas grave. Mais des pattes de raccordement trop solli-
citées peuvent vite lacher. Les tournevis d’horloger font assurément
partie de la catégorie Must have!.

<« Figure 8-3
Jeu de tournevis d'horloger

Chapitre 8 : Le matériel utile

167

168

Figure 8-4 p
Extracteur de circuit intégré

Extracteur de circuit intégré

L’effet de levier étant ce qu’il est, détacher un circuit intégré d’une
plaque d’essais ne devrait quand-méme pas étre chose impossible
avec un tournevis. Un électronicien pur jus utilisera toutefois un outil
spécial qui ne colite pas trés cher. Ce dernier ressemble a la pince a
sucre de nos grands-meres et peut effectivement servir a cela faute
d’autre chose. Il a cependant été conc¢u au départ pour détacher un
circuit intégré (par exemple d’une plaque d’essais). Je dirais qu’il fait
partie de la catégorie Nice to have! 1l n’est en effet pas indispensable
car d’autres moyens peuvent étre utilisés a condition de procéder avec
précaution.

Troisieme main

Si vous avez déja fait de la soudure, vous aurez probablement été
confronté au probléme suivant : d’'une main, vous tenez la carte, de
I’autre, 1’étain, et de la troisieme... Ah, mince ! Il vous faudrait une
troisieme main pour tenir le fer a souder. Comme vous n’étes pas un
mutant, vous pouvez toujours bloquer la carte contre un objet lourd,
comme un livre. Mais la stabilité n’est pas garantie. Pourquoi ne vous
serviriez-vous pas d’une véritable « troisieme main » ? Il s’agit d’un
outil trés utile pour le travail de précision, car il vous laisse les mains
libres.

Vous pouvez fixer la carte au moyen de deux pinces, tandis que la
loupe vous permet d’avoir une vue grossie de la zone a souder. Vous
avez ainsi les deux mains libres et vous pouvez placer précisément
vos points de soudure aux endroits requis.

Partie | : Les bases

Copyright © 2015 Eyrolles.

Je me permets simplement de vous recommander d’étre prudent avec
la loupe. Pas de panique, vous ne risquez pas de vous abimer les
yeux. Mais j’ai bien failli provoquer un accident lorsque j’avais laissé
la troisiéme main sur mon bureau prés de la fenétre sans remarquer
que les rayons du soleil passaient a travers la loupe. Le plateau de la
table a fini par prendre feu ! Si je n’avais pas été présent, je n’ose pas
imaginer ce qui aurait pu se passer. Soyez donc bien prudent et ne
laissez pas au soleil cet outil moins inoffensif qu’il n’y parait.

Multimeétre numérique

Un multimetre numérique est un appareil de mesure multiple capable
de détecter et mesurer des grandeurs €lectriques.

< Figure 8-5
Troisieme main

Chapitre 8 : Le matériel utile

169

Copyright © 2015 Eyrolles,

Figure 8-6 b
Multimétres numériques divers

VOLTCRAFT 98 omowns

Les appareils du marché offrent une gamme de mesures plus ou
moins large. La plupart d’entre eux disposent cependant des fonction-
nalités suivantes :

* mesure de la résistance d’un composant ;

¢ test de continuité d’un circuit (contrdleur sonore de continuité) ;
¢ mesure de tension continue et de courant continu ;

+ mesure de tension alternative et de courant alternatif ;

* détermination de la capacité des condensateurs ;

¢ test de fonctionnement des transistors.

Comme vous pouvez le constater, ces options sont nombreuses et en
principe suffisantes. Cet appareil de mesure fait donc partie de la
catégorie Must have! Son prix varie en fonction du nombre de fonc-
tionnalités, mais tous permettent généralement de mesurer la résis-
tance, de tester la continuité des circuits et de mesurer le courant ou la
tension. Le multimetre le plus simple coiite moins de 10 € et vous
permet déja de bien travailler. Les plus chers disposent naturellement
de fonctions supplémentaires qui sont cependant toutes inutiles au
débutant — ce qui explique qu’il fasse partie de catégorie Nice fo
have! La décision dépend du porte-monnaie. Si vous voulez investir
sur le long terme et si vous avez de la place, vous pouvez acheter un
multimetre de table.

Partie | : Les bases

170

Un instrument de ce type présente plusieurs avantages : il est doté
d’un écran vertical plus lisible, sa précision est nettement supérieure a
celle d’un multimetre basique et il est toujours prét a 1’emploi, car il
se branche sur le secteur. Son plus gros atout & mes yeux, c¢’est que je
sais toujours ot il est !

Attention !

Avant de mesurer quoi ce soit avec votre multimetre, vous devez vous assurer
que le bouton est bien réglé sur la grandeur électrique & mesurer. Si, par
exemple, aprés avoir déterminé la résistance d'un composant (une résistance
se détermine toujours hors tension) vous mesurez une tension adjacente,
oublier de régler le mode de mesure peut endommager le multimeétre.

Oscilloscope

L’oscilloscope est d’emblée un appareil de mesure haut de gamme. 11
peut par exemple représenter graphiquement des courbes de tension
en fonction du temps et permet entre autres de détecter les
défaillances avec brio.

11 fait partie de la catégorie Nice to have!. Cet appareil est cependant
tres plaisant a utiliser et certains modeles concus pour les débutants
sont en vente a moins de 300 €.

4 Figure 8-7
Multimétre numérique de table

Chapitre 8 : Le matériel utile

m

Figure 8-8
Oscilloscope PCE-DS05202B

PCE-DS052028

@ : ..

®
i
)

. |
) .
()

Je serai amené a utiliser plusieurs fois un oscilloscope dans ce livre,
pour montrer les courbes d’évolution en fonction du temps des
tensions i certains points de mesure d’un circuit. Il s’avere trés utile
pour faire des démonstrations et aider a comprendre des processus
complexes.

Le modele de la figure 8-8 est un oscilloscope enregistreur de
type PCE-DS05202B a deux canaux d’entrée. Il est doté d’une
largeur de bande pouvant atteindre 200 MHz et d’un grand écran
couleur de 7 pouces. Voici ses principales caractéristiques :

-

Résolution : 800 x 480 pixels

Nombre de couleurs : 64 000 couleurs

Fonction réglage automatique (auto set)

Port USB

Nombreuses fonctions de mesure automatiques
Balayage mono-coup (Single-Shot)

Sensibilité verticale : 2 mV a 5 V/div
Résolution verticale : 8 bits

Fonctions mathématiques : addition, soustraction, multiplication,
division, analyse FFT, interpolation : sin(x)/x
Mémoire horizontale : 1 Méch

Vitesse d’échantillonnage horizontale : 1 Géch/s

Signal de déclenchement : front, largeur d’impulsion, vidéo,
réglage libre du niveau de déclenchement

Type dedéclenchement : auto, normal, single
Couplage du déclencheur : AC, DC, LF rej, HF rej

Partie | : Les bases

172

Si vous ne comprenez pas bien certaines fonctions de 1’oscilloscope,
vous n’avez pas nécessairement besoin de vous plonger dans son
mode d’emploi, car le fonctionnement de la plupart des boutons est
expliqué directement sur 1’écran. Je trouve cela extrémement
pratique, méme pour les débutants. Si vous voulez reprendre une
courbe affichée a I’écran dans une documentation ou une présenta-
tion, vous n’étes pas obligé de la prendre en photo : il vous suffit
d’appuyer sur le bouton d’enregistrement pour que 1’image soit trans-
férée sur une clé USB branchée sur ’un des ports correspondants.
Peut-étre avez-vous déja entendu parler des courbes de Lissajous. Il
s’agit d’ellipses pouvant étre visualisées en mode XY. Ces figures
peuvent également étre créées au moyen d’un testeur de composant
qui génere la courbe caractéristique d’un composant électronique.

<« Figure 8-9
L'oscilloscope PCE-DS05202B
affichant une courbe de Lissajous

PCE-D5052028

QPP OO
E -

Q

g3

Pour plus d’informations, vous pouvez effectuer une recherche dans
Google avec les mots-clés «oscilloscope » et «testeur de
composants ».

Alimentation externe

Votre carte Arduino est certes alimentée en courant par un port USB
et cela suffit bien pour quelques expérimentations, mais nous
touchons a des circuits censés nous permettre par exemple de
commander un moteur, lequel a besoin de plus de « jus » pour fonc-
tionner. Dans ce cas, une alimentation externe est indispensable sinon
la carte Arduino pourrait étre endommagée.

Chapitre 8 : Le matériel utile 173

Copyright © 2015 Eyrolles.

174

Figure 8-10 p
Alimentation stabilisée
pour laboratoire

Figure 8-11 p»
Bloc secteur

Tout dépend bien siir de 1'usage qu’on veut en faire, mais un bloc
secteur cofite en régle générale bien moins cher qu’une alimentation
réglable de laboratoire.

Le bloc secteur présenté ici propose différentes tensions de sortie
sélectionnables par le biais d’un petit commutateur rotatif. Les
tensions 3 V,5V,6V,7,5V,9V et 12 V peuvent étre choisies. Une
autre caractéristique est le courant maximal que I’alimentation est
capable de délivrer. Plus ce courant est élevé, plus I’unité cofite cher.
Le courant maximal du bloc secteur présenté ici est de 800 mA tandis
que celui de I’alimentation réglable de laboratoire est de 1,5 A. Les
prix sont sans limite vers le haut tout comme beaucoup de choses
dans la vie. Cette alimentation de laboratoire cofite 140 € environ
alors que le bloc secteur ne cofite lui que 15 € environ. La construc-
tion suivante vous permet d’alimenter votre carte Arduino avec une
pile 9 V monobloc.

Partie | : Les bases

< Figure 8-12
Alimentation par pile de 9V

Sont nécessaires :
¢ un clip pour pile de 9V ;
¢ une prise de 2,1 mm ;
¢ une pile de 9 V.

La figure 8-13 montre comment souder le clip de pile et la prise.

< Figure 8-13
Alimentation par pile de 9 V

Respectez impérativement la polarité : le pole plus (+) se trouvant au
centre de la prise et le pdle moins (—) sur le manchon métallique exté-
rieur. Contrdlez, pile branchée, la polarité des bornes avec un multi-
metre avant de brancher la prise sur votre carte Arduino. La photo
suivante présente un coupleur de piles.

Chapitre 8 : Le matériel utile

175

176

Figure 8-14 p
Coupleur de piles

Figure 8-15 p
Pilesd1,5V

Il existe différents modeles de coupleurs pouvant recevoir deux,
quatre, six ou méme huit piles de type AA ou AAA.

Pile AA Pile AAA

Selon le modele de coupleur de piles choisi, vous disposerez de
tensions atteignant 3 V, 6 V, 9 V ou 12 V. Sur celui de la figure 8-14,
vous pouvez noter en haut a gauche la présence d’un connecteur pour
pile de 9 V. Bien pratique ! Je m’en sers pour raccorder la pile de 9V
illustrée plus haut.

Gabarit de pliage
pour résistances

Quand j’en suis venu a parler de cet outil dans ce livre, j’ai di faire
des recherches pour avoir son appellation exacte. J'ai fouiné un bon
moment sur Google et fini par découvrir que son véritable nom était
gabarit de pliage pour résistances. Si quelqu’'un me I’avait demandé

Partie | : Les bases

Copyright © 2015 Eyrolles.

avant... Le fait est qu’il s’agit d’un objet en plastique permettant de
plier, non pas la résistance elle-méme, mais ses fils de raccordement.

I1 n’a I’air de rien mais ¢’est un outil trés utile. Il fait pour moi partie
de la catégorie Must have! Cela peut vite tourner au fiasco si vous
essayez de plier au jugé les fils de raccordement pour qu’ils rentrent
dans les trous de la plaque d’essais. Je trouve que la fabrication et
I’aspect d’une carte confinent a 1’art et a I’esthétisme. Ca ressemble a
quoi quand les composants sont placés de travers et penchés ? On se
dit que le quidam ne s’est pas foulé ou n’avait pas le bon outil.
Comme je vous 1’ai dit déja, l'intervalle entre les trous est de
2,54 mm sur une carte standard. Ce gabarit propose €galement
d’autres dimensions de pliage pour résistances (idem pour les
diodes). On les place dans des rainures, on plie ensuite les fils de
raccordement vers le bas avec les doigts et on a un intervalle bien
parallele entre les fils, lequel est toujours un multiple de I'intervalle
entre les trous. Le composant va parfaitement sur la plaque d’essais.

Vous n’étes bien siir pas obligé d’utiliser ce procédé pour placer des
composants sur une plaque d’essais puisque le circuit n’y est jamais
définitif. Tout ne doit pas étre parfait comme sur une carte. Il ne faut
pas pour autant faire n’importe quoi car un court-circuit peut vite
perturber le fonctionnement du circuit et méme griller des compo-
sants.

<« Figure 8-16

Gabarit de pliage pour résistances
(ou gabarit de pliage tout court)

<« Figure 8-17
Posez, pliez, C'est fait!

177

Chapitre 8 : Le matériel utile

Copyright © 2015 Eyrolles.

b
Fer a souder et soudure
1 I’ ” .
a l'etain
Un fer a souder est indispensable au bricoleur et fait donc partie pour
moi de la catégorie Must have!. D’ailleurs, vous en aurez besoin pour

réaliser certains montages du livre, & moins d’utiliser une station de
soudage. Voici deux stations d’un excellent rapport qualité-prix.

La station de soudage Ersa

Figure 8-18 p-
Station de soudage Ersa
avec différentes pannes

Figure 8-19 p-
Station de soudage Weller

178 Partie | : Les bases

L’avantage de la station de soudage sur le fer a souder est que la
température de la panne est réglable, ce qui peut étre vital pour des
composants sensibles a la température comme les circuits intégrés.
On trouve des fers a souder a partir de 10 €, mais je ne les recomman-
derai méme pas 4 un débutant en raison de leur mauvaise qualité.
Tout dépend évidemment de 1’usage que vous en aurez. Si vous
comptez en faire un usage intensif et si vous voulez qu’il vous dure
longtemps, vous devrez privilégier la qualité.

Fil de soudure

Pour raccorder électriquement des composants électroniques ou des
cdbles, on utilise du fil de soudure qui est chauffé a une température
d’environ 185 °C pour étre liquéfié, puis qui durcit en refroidissant.
Cela permet, par exemple, de fixer des circuits électroniques sur une
plaque d’essais afin de prévenir les courts-circuits ou les coupures qui
se produisent parfois avec un ciblage volant. Il existe de nombreux
types de fil de soudure qui contiennent une dme décapante pour
éliminer les couches d’oxyde pouvant apparaitre sur les surfaces a
souder. Un agent de brasage peut aussi &tre acheté et utilisé séparé-
ment.

Pompe a dessouder

Enlever un composant préalablement soudé pour une raison quel-
conque (par exemple composant défectueux ou inadapté) pose
probléeme. Cela peut marcher a la rigueur avec un composant a deux
pattes. On chauffe la premiere soudure avec le fer a souder jusqu’a ce
qu’elle soit liquide, puis on tire le composant vers le haut. On procéde
ensuite de la méme maniére pour la seconde soudure. Mais lorsque se
présente le cas d’un ftransistor a trois pattes, les choses se compli-
quent. Quand on chauffe la premiére soudure, les deux autres

Chapitre 8 : Le matériel utile

<« Figure 8-20
Bobine de fil de soudure

179

180

Figure 8-21 p
Pompe a dessouder

connexions le maintiennent en place et 1’extraction est quasi impos-
sible...

Attention!

Si vous chauffez un composant électronique trop longtemps, il risque de
surchauffer et donc de s'abimer. Les semi-conducteurs surtout sont trés sensi-
bles a la chaleur!

C’est 1a que la pompe a dessouder entre en jeu.

Elle ressemble a une seringue, a ceci prés que son extrémité anté-
rieure présente une ouverture plus ou moins grande au lieu d’une
aiguille. A I'autre bout se trouve un poussoir permettant de faire
coulisser le piston qui comprime le ressort dans la pompe. En fin de
course le piston se bloque. Si on appuie alors sur le petit bouton, le
piston revient brusquement dans sa position initiale, produisant une
bréve dépression a la pointe de la pompe qui aspire la soudure préala-
blement liquéfiée et dégage plus ou moins I’endroit soudé. Il faut
avoir le coup de main pour actionner la pompe, chauffer la soudure et
appuyer sur le déclencheur au bon moment. Le mieux est de vous
entrainer sur une vielle carte avec des composants dont vous n’avez
plus besoin ou qui sont hors d’usage.

EEBoard

J’aimerais profiter de cette occasion pour vous présenter une plate-
forme tout-en-un qui réunit plusieurs instruments de mesure électro-
niques. A premiére vue, elle ressemble 2 une plaque d’essais tout ce
qu’il y a de plus ordinaire, ce qu’elle est aussi. Elle appartient a la
catégorie Nice to have!.

Il s’agit de 'EEBoard, abréviation d’Electronics Explorer Board. Elle
est fabriquée par la société américaine Digilent. Qu’a-t-elle donc de si
spécial ? Pour le comprendre, il faut la retourner pour examiner sa
face inférieure (voir figure 8-23).

Partie | : Les bases

<« Figure 8-22
Vue de dessus de |'EEBoard

s <Figure8-23
Vue de dessous de I'EEBoard

Cette plate-forme est donc beaucoup plus complexe qu’il n’y parait a
premiere vue, car de nombreux composants sont réunis sur une méme

Chapitre 8 : Le matériel utile

Copyright © 2015 Eyrolles,

181

carte. Avec ’EEBoard, vous disposez des appareils €lectroniques
suivants :

Oscilloscope numérique 4 voies
* 40 Méch/s (Mega-Samples)

* Convertisseur analogique-numérique 10 bits avec une mémoire
de 16 Ko

* Plusieurs modes de déclenchement

* AC/DC avec une tension d’entrée de +/— 20 V

¢ Transformation de Fourier rapide (FFT — Fast Fourier Trans-

Jform)

* Zoom

¢ Exportation des données dans différents formats de fichiers
Analyseur logique 32 voies

* Signal d’entrée jusqu’'a 5 V

* 100 Méch/s (Mega-Samples)

* Mémoire tampon jusqu’a 16 Kéch par entrée

* Horloge interne/externe et trigger

» Exportation des données dans différents formats de fichiers
Générateur de signaux arbitraires 2 voies

* Formes d’ondes standards et personnalisables

* 40 Méch/s (Mega-Samples)

* Convertisseur 14 bits avec une mémoire tampon de 32 Ko

* Bande passante 4 MHz

¢ Amplitude de 10 V

* Modulation AM/FM

Alimentations et voltmeétres

* Tensions fixes 5 Vet 3,3 Vjusqu'a2 A

* Tension/Courant programmables de -9V a +9 V et jusqu’a
1,5A

* 4 voltmetres (impédance d’entrée 1,2 M)

* 2 références de tension +/- 10 V
Générateur de signaux numériques 32 voies

* Mémoire tampon jusqu’a 2 Kéch par entrée

« Editeur de pattern personnalisable

182 Partie | : Les bases

violles,

P
2015 E

right ©

opY

&

Gestion d’entrées/sorties

* Boutons-poussoirs ;

e Interrupteurs ;

* LED

¢ Afficheur 7 segments

¢ Potentiometre linéaire

* Barres de progression
Reliée a votre PC via un port USB, I'EEBoard s’utilise avec un logi-
ciel fourni qui est compatible Windows. Sur la figure 8-24, vous

pouvez visualiser la fonction d’oscilloscope en mode 2 voies qui
présente une sinusoide et la réaction d’une diode.

c1 m E--[Stap | 2012/04/23 16:01:38746 400kSfsec - gad | Figure8-24
5V T Gy ARRLEEE AR RAamiass saseonanss

1 /\\ g . ; | Osdlloscope de 'EEBoard

\

z\r'/

1w

‘H‘""-.“,

g

v

ov

-1V

-2V

v

-av

-5Y i idatesiontivdd] Ll i b iictisaieg it il sl b

Une présentation détaillée en frangais du fonctionnement de
I’EEBoard est disponible sur le lien htip://www.lextronic.fi/P22880-
plate-forme-electronics-explorer html.

Chapitre 8 : Le matériel utile

'$9](04A3 §T0Z @ 1ybLAdOD

Chapitre

Les bases
de la programmation

Dans le chapitre 3, nous avons déja un peu abordé la programmation.
Je vous ai montré un premier programme, appelé sketch dans la
terminologie Arduino, et vous ai donné quelques informations géné-
rales sur le langage de programmation C/C++. Mais je ne vous ai pas
expliqué ce que programmer signifie. Nous savons qu’il faut un appa-
reil — PC, Mac ou microcontréleur comme notre carte Arduino —
disposant d’une interface pour pouvoir communiquer avec nous.
Matériel et logiciel sont dépendants 1'un de 1'autre et ne peuvent
fonctionner qu’ensemble. Seuls les programmes insufflent une
certaine forme de vie au matériel et lui permettent de réaliser ce que
le programmeur — vous, donc — peut imaginer.

Qu’est-ce qu'un programme
ou sketch ?

En programmation, on rencontre généralement deux éléments constitutifs.

=1 o

Elément de programme n® 1 :

P .

I'algorithme

Le sketch est censé accomplir seul une certaine tiche. Pour cela, un
algorithme, composé d’un ensemble d’étapes élémentaires néces-
saires a cet accomplissement, est créé. Un algorithme est donc une
regle de calcul traitée a la maniere d’une recette de cuisine.

Imaginez que vous vouliez construire un boitier en bois pour y loger
votre carte Arduino, pour que cela soit un peu plus beau, plus ordonné

185

et plaise également a vos amis. N’achetez pas de bois sans avoir
préparé un plan répondant par exemple aux questions suivantes.
* Quelles sont les dimensions de la caisse ?
* De quelle couleur doit-elle étre ?
* Ou des ouvertures doivent-elles étre pratiquées pour poser par
exemple des interrupteurs ou des lampes ?

Apres avoir réuni le matériel, passez a la fabrication proprement dite,
en procédant étape par étape dans un certain ordre :

* choix des plaques de bois ;

* mise a dimension des plaques de bois ;

* pongage des bords avec du papier de verre ;

* percage de certaines plaques de bois, appelées a recevoir des
ports ;

» vissage des plaques de bois entre elles ;
¢ mise en peinture du boftier ;

* insertion de la carte Arduino et ciblage des interrupteurs ou des
lampes.

Telles sont les étapes par lesquelles il faut passer pour arriver a vos
fins. Il en va de méme pour 1’algorithme.

Elément de programme n° 2 :
les données

Vous avez trés certainement soigneusement noté les dimensions sur
le plan, de maniére a pouvoir les consulter pendant la construction. Il
faut faire en sorte que tout coincide 4 la fin. Ces dimensions sont
comparables aux données d’un sketch. L’algorithme utilise des
valeurs temporaires qui 1’aident dans son travail de prise en charge
des différentes étapes. Il utilise pour cela une technique qui lui permet
de stocker des valeurs et de les rappeler par la suite. Les données sont
en effet sauvegardées dans des variables et disponibles a tout moment
dans la mémoire. Vous en saurez bientdt plus.

Partie | : Les bases

Que signifie traitement
des données ?

On entend par traitement des données I’utilisation d’un algorithme
qui se sert de données en entrée pour en obtenir d’autres, modifie
celles-ci par différents calculs et produit des résultats en sortie.

< Figure 9-1
Le traitement des données

Qu’est-ce qu’une variable ?

Nous avons déja vu que des données étaient sauvegardées dans des
variables. Ces derniéres jouent un rdle central dans la programmation
et sont utilisées dans le traitement des données pour stocker des infor-
mations de tous types. Une variable occupe dans la mémoire une
certaine place qu’elle garde libre. L.’ ordinateur ou le microcontrdleur
gére cependant cette mémoire (de travail) selon ses propres
méthodes. Tout ceci se fait au moyen de désignations codées que tout
un chacun a certainement du mal i retenir. C’est pour cette raison que
vous pouvez doter les variables de noms évocateurs qui renvoient en
interne aux adresses de mémoire concernées.

Chapitre 9 : Les bases de la programmation

187

Figure 9-2 p
Variable pointant sur une zone
de la mémoire de travail 0x14BC2 31F

il

0x14BC2 320
ledPin

[o—]——[0x14BC2 321

0x14BC2 322

—

0x14BC2 323

i

Dans cette figure, la variable nommeée ledPin pointe sur une adresse
de début dans la mémoire de travail. Elle peut également étre consi-
dérée comme une sorte de référence renvoyant a quelque chose de
particulier. Dans le chapitre 3, je vous ai présenté un bref sketch
contenant entre autres la ligne de code suivante.

rée + initialisée avec broche 13

int ledPin = 13; //Variable décla

11 s’agit ici de 1"utilisation d’une variable nommée ledpin, 4 laquelle la
valeur numérique 13 a été attribuée. Plus loin dans le sketch, cette
variable est évaluée et continue d’étre utilisée.

<(Juste une question : que veut dire int devant le nom de la variable ? J
-~

Ah oui ! Le terme int est I’abréviation du mot integer. Il s’agit d’un
type de donnée utilisé dans le traitement des données pour caracté-
riser des nombres entiers, ce qui nous amene au point suivant.

Les types de données

Il existe différents types de données. Le microcontrfleur geére ses
sketches et ses données dans sa mémoire. Cette mémoire est une zone
structurée qui est gérée par des adresses et qui enregistre ou restitue
des informations, lesquelles sont stockées sous la forme de 1 et de 0.
L’unité de mémoire logique la plus petite est le bit, qui ne peut lui-
méme stocker que les deux états 1 ou 0. Voyez-le comme une sorte
de commutateur électronique pour allumer ou éteindre. Du fait
qu’avec un bit seuls deux états peuvent étre représentés, plusieurs bits
s’averent judicieux et nécessaires pour le stockage des données.

Evy

8 bits font 1 octet et permettent de stocker 2% = 256 états différents.
S’agissant d’un systéme binaire, la base 2 est utilisée. Avec 8 bits, on
peut donc couvrir un domaine de valeurs compris entre 0 et 255. Le

015 E

20

188 Partie | : Les bases

systeme décimal que nous connaissons a pour base le nombre 10.
Voici ce que donnent les poids des différentes positions.

pui ; , : . < Figure 9-3
HsSances 100100 10010 Le systtme décimal et les poids
Valeurs 1000 100 10 1 des 4 premigres positions
e (W
de hits
Vous pouvez bien siir lire la valeur directement, mais ce n’est pas
facile pour une personne qui n’a pas I’habitude du systéme binaire et
doit additionner les différentes positions. On obtient dans ce cas :
2-10041-10"+7-10°+4-10°=4712
J’ai posé I’addition en commencant par la position de valeur la plus
faible et en poursuivant dans 1’ordre croissant vers la valeur la plus
forte. Mais revenons au type de donnée byte. Le graphique de la
figure 9-4 montre les 8 bits d’un octet représentant une certaine
valeur décimale.

i . .)) <« Figure 9-4
Puissances 7or r o r r 27 7 Les 8 bits d'un octet
Valeurs 128 64 37 16 8 4 2 1 avec leurs valeurs
anien (1) (0] (o) (D)
de bits

Chaque position a une valeur particulieére. La conversion en nombre
décimal résulte également de 1’addition des différents poids.

1-2040-2'41-2241-2541-2440-2540-25+1-27=157

On obtient ici le nombre 157. Ces 8 bits occupent naturellement un
certain espace dans la mémoire, espace qui est nécessaire pour
stocker un nombre compris entre 0 et 255. Cela se veut amplement
suffisant pour de petites opérations de calcul et ¢’est pourquoi le type
de donnée byte a été créé avec ledit domaine de valeurs.

Si en revanche nous voulons travailler avec des valeurs supérieures
a 255, nous atteignons les limites du possible. Le type de donnée
directement supérieur a donc été créé pour calculer des valeurs plus
élevées. Il a pour nom int, ce qui est comme nous 1’avons dit déja une
forme abrégée du mot integer. Deux octets ont tout simplement été
associés pour avoir un domaine de valeurs plus étendu a disposition.

Chapitre 9 : Les bases de la programmation 189

Laissez-moi réfléchir : cela ferait 2'¢ = 65 536 combinaisons de bits,
donc un domaine de valeurs compris entre 0 et 65 535, n’est-ce pas ?

Presque, Ardus ! C’est vrai pour les 65 536 combinaisons de bits mais le
domaine de valeurs n’est pas tout a fait celui que vous avez donné. Vous
avez oublié qu’il existe des nombres non seulement positifs mais aussi
négatifs qui doivent étre également pris en compte dans ce type de
donnée int. Pour cela, si un type de donnée est prévu i la fois pour des
nombres positifs et négatifs, un bit spécial est utilisé pour stocker une
information de signe, quasiment un drapeau. Ce drapeau est en principe
le bit avec le plus fort poids ou MSB (Most Significant Bit). 11 est naturel-
lement dans I'ordre des choses que, pour représenter la valeur particu-
liere, un bit de moins soit disponible pour le stockage. Voyons cela a
I’aide de deux exemples. Voici tout d’abord un nombre positif, recon-
naissable au fait que le bit de signe a pour valeur 0.

Figure 9-5 p> Qctet de poids for . Octet de poics faible
Les 16 bits du type de donnée int) Valeu § absolue ’
(nombre positif) Mo P gt 2 gl ' 2 T I, . G SRS I s
e AODDEOODLDEOOOEN
MSB L5B
T bit designe (0= pasiti, 1= négati]) {Least Significant Bt}

La combinaison de bits représentée correspond a la valeur décimale
+26 181. La méme combinaison de bits avec un bit de signe 1 est
donc la suivante.

Figure 9-6 b = Octet de poids fort Octet de poids faible -

Les 16 bits du type de donnée int Information? nette
(nombre négatif) Puissance

Combinaisan de bits @@@@@@@@@@
5 5

? bir ce signe {0 = posiaf, 1= négatf)

Oui, c’est simple. Cette combinaison de bits donne la valeur — 26 181.
I’ai compris !

Et vous étes tombé dans le piege. Votre réponse est fausse. La

Ui

4] e o 3 . 3 R "

= derniére combinaison de bits n’est pas égale a 'opposé de la valeur
=g +26 181. Un test pourrait le démontrer. Pour trouver la valeur absolue
::. d’une valeur binaire négative, deux étapes sont nécessaires :

= * inversion de tous les bits (1 devient 0 et O devient 1) ;

* ajout de la valeur 1.

Y
DY

190 Partie | : Les bases

Col

L

» Pour aller plus loin
Linversion de tous les bits, appelée complément a un, est une opération
portant sur des nombres binaires. Si la valeur 1 doit encore étre ajoutée pour
finir, on appelle I'ensemble du processus complément a deux.

Les régles suivantes s’appliquent pour 1’addition des nombres

binaires.
A B A+B Report Shableaudl.
Addition d'une position binaire
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

L’addition des différentes positions est semblable au calcul dans le
systeme décimal que nous connaissons. Voyons cette procédure de
plus prés pour une autre combinaison binaire.

. Octet de poids fort ctet de poids e < Figure 9-7
Pusance: L2 : Détermination d'un nombre

e NDDDDOOOOOOBEOGN décmanégatt
00000060000 0600
LOOOOLLOOLOOOOO-

La combinaison de bits de la derniere ligne donne la valeur décimale

+6,587. 1l s’agit de la valeur décimale négative de la combinaison de
bits de la premiére ligne. On peut dire d’une autre maniére que :

1110011001000101 = -6,587

Le domaine de valeurs du type de donnée int s’étend de —32 768 a
+32 767 et s’avére donc bien plus vaste et plus souple que le type de
donnée byte.

Jai bien compris pour les nombres négatifs mais je ne vois pas trop
I'utilité du complément & deux. Pourquoi nous donnons-nous tout ce
mal ? Convertir un nombre positif en nombre négatif devrait suffire si le
bit de signe est passé de 0 a 1.

Il est vrai qu’a premiere vue cela semble inutile. Mais il existe une
6 raison cachée que je vais vous dévoiler. Prenons pour faire simple un
- nombre de 8 bits qui ne reléve pas du type de donnée byte précédem-
: ment décrit puisque celui-ci ne comportait pas de signe.

Chapitre 9 : Les bases de la programmation 191

192

Figure 9-8 p
Nombre binaire positif

Figure 9-9 p
Nombre binaire négatif

Figure 9-10 p
Résultat de I'addition
(pas tout a fait juste !)

Puissances 7y 2‘: 24 2% 2:' 21 2‘7'
Valeur 128 64
00000000
de bits

Ce nombre positif (le MSB est de 0) représente une valeur décimale
de 86. Si vous devez manipuler plusieurs systémes de numération, il
est conseillé de placer en indice la base correspondante apres chaque
valeur. Supposons maintenant que nous voulions en faire un nombre
négatif en passant uniquement le bit de signe de 0 a 1. Le bon résultat
serait donc celui de la figure 9-9.

Puissances b 26 » 2z pL 2! 2
Valeur 128 64 32 16

e (DD OOOOO@-
de bits

Si arrivés a ce stade, nous en venions a conclure que le résultat est la
valeur négative du nombre positif précédemment indiqué, tout irait
bien au début. Cela ne porterait pas a conséquence. Mais dans le trai-
tement des données, les valeurs ne sont pas seulement stockées et
affichées. Elles servent aussi a calculer et c’est 1a que le bit blesse.
Supposons que vous vouliez ajouter une valeur — disons +1 —, ce qui
voudrait dire que le résultat serait plus élevé de | que la valeur
initiale. Voyons ce que cela donnerait c6té bits.

Puissances LA I R L R s * S LI |
Valeur 128 64

e (NDODDOO@-*
de bits

we (D)D)
Résultat @ @ =87y

Rien ne vous frappe ? Malgré 1’ajout d’une valeur positive, le résultat
a diminué de 1. —86 + 1 =—87 ? On n’est pas pres d’en sortir ! Appli-
quons maintenant a la valeur initiale le complément 4 un mentionné
plus haut. J'en profiterai pour passer directement au probléme
suivant, qui se pose pour un nombre trés particulier : on obtient de
toute valeur son pendant négatif en placant un signe négatif devant,
chiffre O inclus. Mais 0 et -0 sont absolument identiques et il n'y a
aucune différence arithmétique.

Partie | : Les bases

< Figure 9-11

Pulssances 2 2 2 2 2z y 2! 2 Deux combinaisons de bits
Valeur 128 64 32 16 8 4 2 1 pour la méme valeur
L)) (e](0)(o])(o]{o)-
00D D00
Impensable car prétant a confusion ! Aussi la valeur 1 a-t-elle été
ajoutée, ce qui a donné en somme le complément a deux. Ce procédé
vient justement de vous étre décrit pour un nombre de 16 bits. Le
tablean 9-2 donne quelques exemples de valeurs positives et néga-
tives.
Valeurs positives Valeurs négatives < Tahleat! _9'2
Valeurs positives et valeurs
110= 00000001, “ly=11111111, négatives correspondantes
641, = 01000000, 64, = 11000000,
80;, = 01010000, ~80,, = 10110000,

Je voudrais ici vous poser une question : si vous tombiez par hasard
sur la combinaison de bits 10110010, dans la mémoire et si
quelqu’un vous demandait 4 quelle valeur décimale elle correspond,
sauriez-vous lui donner la bonne réponse ?

Bien siir, pourquoi ? I’ai toutes les informations qu’il faut pour réussir
une conversion. 1y
=

Non, vous n’avez pas encore toutes les informations ! Je vous ai
certes montré la combinaison de bits mais pas encore le type de
donnée de base. Il existe pourtant d’autres types de données de 16 bits
qui peuvent aussi étre utilisés puisque le langage de programmation
de base est C ou C++. C’est le cas par exemple du type de donnée
unsigned int, qui est aussi un type de nombre entier mais qui ne peut
stocker — comme son nom unsigned (non signée) I'indique — que des
valeurs positives. J’ajouterai qu’il existe encore d’autres différences,
qui peuvent varier de compilateur a compilateur, certains utilisant 2 et
d’autres 4 octets pour gérer le type de donnée. 11 s’ agit dans notre cas
de 2 octets, autrement dit le domaine de valeurs est compris entre 0 et
+65 535.

Chapitre 9 : Les bases de la programmation 193

Tableau 9-3 p

Types de données et domaines

194

de valeurs correspondants

Hola, hola ! Je ne vois pourquoi on se donne tout ce mal. Pourquoi ne
crée-t-on pas un seul type de donnée suffisamment grand pour contenir
toutes les valeurs possibles et imaginables ? Il n’y aurail pas tous ces
probléemes avec les différents domaines de valeurs que personne ne peut
retenir.

Ainsi selon vous, il faudrait créer un type de donnée dont la taille
serait par exemple de 16 octets et avec laquelle on serait paré contre
toute éventualité. Voyons plus loin : la mémoire est limitée dans un
microcontroleur et ne peut €tre agrandie aussi facilement que dans un
ordinateur. Chaque petite variable, qui ne doit compter que de 0 a
255, mobiliserait une place 16 fois supérieure. Si vous faites la
somme de toutes les variables nécessaires a votre sketch, vous arrivez
vite a saturer la mémoire disponible. C’est pour cette raison que
divers types de données ont été créés avec différentes tailles ou diffé-
rents domaines de valeurs, pour avoir un choix approprié a 1’utilisa-
tion qu’on veut en faire. Avec le temps, vous aurez les principaux
domaines de valeurs en téte et n’aurez plus besoin de consulter un
tableau. A propos de tableau, voici pour commencer la liste des prin-
cipaux types de données auxquels vous allez étre confronté.

Type Domaine Taille
dedonnées devaleurs de donnée Exemple
byte 0a255 1 octet byte value = 42;
unsigned 0a65535 2 octets unsigned int seconds = 46547;
int
int -327682a 2 octets int ticks = -325;
32767
long =252 4 octets long value = -3457819;
float -34x10%3 4 octets float reading = 27.5679;
34x10%
double Voir float 4 octets double reading = 27.5679;
boolean true OU 1 octet boolean flag = true;
false
char —128a127 1 octet char mw = "m’;
String variable variable String name = "Erik Bartman";
Array variable variable int pinArray [] = {2,3,4,5};

Presque tous ces types de données seront utilisés dans ce livre, aussi
je ne m’appesantirai pas davantage sur le sujet.

Partie | : Les bases

J’ai encore une question : que se passe-t-il si, par exemple, j’ai une
variable du type de donnée byte et que le maximum de 255 est dépassé
quand j'incrémente sa valeur ? Une erreur survient-il ?

On s’y attendrait en effet, mais pourtant rien ne se produit et le
contenu de la variable recommence a compter a partir de 0. Il faut
néanmoins le savoir, car cela peut aboutir a des erreurs dans 1’exécu-
tion du sketch, qui ne sont pas faciles a localiser. Par conséquent,
gardez bien en téte le domaine de valeurs correspondant au type de
données choisi.

Qu’est-ce qu'une boucle ?

Dans un sketch, ’exécution de nombreuses étapes récurrentes peut
étre nécessaire pour calculer des données. Si ces étapes sont simi-
laires, il n’est pas nécessaire de les écrire en grand nombre les unes en
dessous des autres et de les faire exécuter de maniere séquentielle.
Une structure de programme spéciale a été créée a cet effet, permet-
tant d’exécuter une partie de programme composée d’une ou
plusieurs étapes, maintes fois répétées.

Cette structure s’appelle une boucle. Voyons comment elle se cons-
truit. On en distingue deux types :

* les boucles avec condition de sortie en téte ;

* les boucles avec condition de sortie en queue.

Ces deux familles de boucles possédent une instance qui contrdle si la
boucle doit étre itérée, et de quelle maniére elle doit 1’étre. A cette
instance est rattachée une seule instruction ou tout un blo¢ d’instruc-
tions (corps de boucle).

Les boucles avec condition de sortie en téte

Dans les boucles avec condition de sortie en téte, 1'instance de
controle se situe au début de la boucle. L’exécution de la premiere
itération de la boucle dépend de 1’évaluation de la condition. Pour les
boucles dont la condition se situe en téte, les instructions placées au
sein de la boucle peuvent ne pas €tre exécutées si la condition est
fausse dés 'entrée dans la boucle.

Chapitre 9 : Les bases de la programmation

195

Copyright © 2015 Eyrolles.

Figure 9-12 p
Principe d'une boucle
avec condition de sortie en téte

Exécution

Instance de contrdle

[Téte de boucle

]

I Bloc d'exécution

11 existe différents types de boucles avec condition de sortie en téte,
qui s’utilisent selon le contexte.

La boucle for

Figure 9-13 p
Organigramme d'une boucle for

(Début)

Initialisation de la
variable de controle

Instruction(s)

A

Réinitialisation de

la variable de controle

o

196

Partie | : Les bases

La boucle for est toujours utilisée quand on connait déja le nombre
d’itérations de la boucle avant méme de 1’appeler. Jetons un coup
d’ceil a 'organigramme servant a restituer graphiquement le déroule-
ment du programme (voir figure 9-13).

Une variable appelée variable de controle est utilisée dans la boucle.
Dans la condition, elle est soumise a une évaluation qui décide si et
combien de fois la boucle doit étre itérée. La valeur de cette variable est
généralement modifiée au début de la boucle a chaque nouvelle itération,
si bien que la condition d’interruption doit étre remplie au bout d’un
moment dans la mesure oll vous n’avez pas fait de faute de raisonnement.
Voici un court exemple, sur lequel nous reviendrons bientdt.

for(int i = 0; 1 < 7; i++)
pinMode(ledPin[i], OUTPUT);

La boucle while

La boucle while est utilisée quand on ne sait qu'au moment de
I’exécution si et combien de fois la boucle doit étre itérée. Si, pendant
une itération de boucle, une entrée du microcontrdleur par exemple
est constamment interrogée ou surveillée alors qu’une action doit étre
exécutée a une certaine valeur, cette boucle vous rendra bien service.
Voyons maintenant a quoi ressemble 1’organigramme.

Instruction(s)

T

Sur cette boucle, la condition d’interruption se trouve également en
téte. En revanche, la variable indiquée dans la condition n’est pas
modifiée. Elle doit I’étre dans le corps de boucle. En cas d’oubli, on a

< Figure 9-14
Organigramme d'une boucle
while

Chapitre 9 : Les bases de la programmation

Figure 9-15 p»
Principe d'une boucle
avec condition de sortie en queue

198

affaire a une boucle sans fin d’olt on ne sort pas tant que le sketch
s’exécute. Voici encore un court exemple.

while(i > 1) //Instance de contrdle

{

Serial.printIn(i);
i=1-1;
}
Quand vous travaillez avec des valeurs ou des variables de type float,
par exemple, dans l'instance de contrdle, il peut &tre treés risqué
d’attendre un résultat précis a cause de I’'imprécision de float. La condi-
tion d’interruption risque de ne jamais étre remplie et le sketch se
retrouvera prisonnier d’une boucle sans fin. Au lieu de I'opérateur ==
pour évaluer 1’égalité, utilisez de préférence les opérateurs <= ou >=.

Les boucles avec condition de sortie en queue

Venons-en maintenant a la boucle avec condition de sortie en queue.
On Iappelle ainsi parce que I’instance de contrdle est hébergée en fin
de boucle.

Bloc d'exécution

Exécution

Y

Corps de boucle

¥ I

[Queue de boucle

Instance de contréle

On I’appelle boucle do.while. La condition étant évaluée seulement a
la fin de la boucle, on peut déja en déduire qu’elle sera exécutée au
moins une fois.

Cette boucle est peu ufilisée, mais je tenais tout de méme a la citer par
souci d’exhaustivité. La syntaxe ressemble 4 celle de la boucle while,
mais vous remarquez que 1'instance de contrdle est placée en fin de
boucle.

Partie | : Les bases

Instruction(s)

Condition

do
{
Serial.printIn(i);
i=1i-1;
} while(i » 1); //Instance de contrdle

Qu’est-ce qu'une structure de contréle ?

Les instructions ont déja été abordées au chapitre 2. Elles informent
le microcontréleur de ce qu’il doit faire. Mais un sketch se compose
généralement de toute une série d’instructions qui doivent étre trai-
tées de maniere séquentielle. La carte Arduino présente un certain
nombre d’entrées ou de sorties auxquelles vous pouvez raccorder
divers composants électriques ou électroniques. Si le microcontroleur
doit réagir a certaines influences extérieures, vous branchez par
exemple un capteur sur une entrée. La forme de capteur la plus simple
est un interrupteur ou un bouton-poussoir. Quand le contact est fermé,
une LED doit s’allumer. Le sketch doit donc €tre en mesure de
prendre une décision. Si linterrupteur est fermé, la LED est
alimentée (LED allumée) ; si l'interrupteur est ouvert, la LED est
privée d’alimentation (LED éteinte).

< Figure 9-16
Organigramme d'une boucle
do.while

Chapitre 9 : Les bases de la programmation

Jetons d’abord un coup d’ceil sur ’organigramme qui nous montre
comment le déroulement de 1’exécution du sketch arrive a certains
endroits, ol le processus n’est plus linéaire. Le sketch, quand une
structure de controle est atteinte, se trouve a la croisée des chemins et
doit examiner par ou il doit continuer.

Une condition lui sert de base décisionnelle, condition qu’il lui faut
analyser. Techniquement, une instruction if est utilisée. Il s’agit
d’une décision si-alors.

Figure 9-17 p
Organigramme d'une structure
de controle if

Instruction(s)
= Fin
S
Si la condition a été vérifiée, il s’ensuit I'exécution d’une, voire de
£ plusieurs instructions. Voici encore un court exemple.

200 Partie | : Les bases

ac
o,

/roll

Fyv
Y

015 E

)
£

Copyright €

if(buttonState == HICH)
digitalWirite(ledPin, HIGH);

Si plusieurs instructions sont exécutées dans une instruction if, vous
devez constituer un bloc d’instructions avec les paires d’accolades. Il
sera alors exécuté en tant qu’unité d’instructions compléte.

if(buttonState == HIGH)

{
digitalWrite(ledPin, HIGH);
Serial.printIN("HIGH-Level reached.");

}

11 existe aussi une forme élargie de la structure de contrdle if. Il s agit
d’une décision si-alors-sinon qui résulte d’une instruction if-else. La
figure 9-18 présente I’organigramme.

< Figure 9-18

Organigramme d'une structure
de contréle if-else

False

True

v

Instruction(s) Instruction(s)

y

Fin

L’exemple de code suivant vous montre la syntaxe de l’instruction
if-else.

if(buttonState == HIGH)
digitalWrite(ledPin, HIGH);
else
digitalWirite(ledPin, LOW);

Chapitre 9 : Les bases de la programmation 201

202

Commentez votre code !

Quand des étres humains veulent communiquer entre eux, par
exemple pour exprimer des sentiments ou transmettre des informa-
tions, ils utilisent un langage sous sa forme orale ou écrite. C’est
seulement par ce moyen qu’ils peuvent apprendre quelque chose et
accroitre leur savoir ou leur compréhension. Quand on traite un
probléme en programmeur et qu’on encode, il est assurément utile de
prendre ¢a et 1a quelques notes. Il nous vient parfois une fulgurance
ou une idée géniale et quelques jours plus tard, nous avons du mal —
et c’est souvent le cas pour moi — a nous souvenir exactement de
notre raisonnement. Qu’est-ce que j’ai bien pu programmer et pour-
quoi m’y suis-je pris ainsi et pas autrement ? Chaque programmeur
peut bien siir avoir sa propre stratégie de prise de notes : bloc-notes,
dos de prospectus publicitaires, documents Word, etc.

Toutes ces méthodes présentent cependant des inconvénients non
négligeables.

* Ou ai-je bien pu mettre mes notes ?

« S’agit de la derniére version actualisée ?

* Je n’arrive pas a me relire !

¢ Comment mettre ces notes a la disposition d’un ami qui s’inté-
resse également & ma programmation ?

Le probleme vient de la séparation du code de programmation et des
notes, qui ne forment alors plus un tout. Si les notes sont perdues,
vous aurez vraiment beaucoup de mal 2 tout reconstruire. Imaginez
maintenant votre ami, qui n’a absolument aucune idée de ce que vous
vouliez faire avec votre code. Mais il existe une autre solution : vous
pouvez laisser des remarques et consignes dans le code, et ce a
I’endroit précis ou elles sont pertinentes. Vous avez ainsi sous la main
toutes les informations qui vous sont nécessaires.

Commentaires sur une ligne
Voici un exemple pris dans un programme.

int ledPinRedCar = 7; //La broche 7 commande la LED rouge
int ledPinYellowCar = 6; //La broche 6 commande la LED jaune
int ledPinGreenCar = 5; //La broche 5 commande la LED verte

Ici, des variables sont déclarées et initialisées avec une valeur. Des
noms évocateurs ont certes été choisis, mais je trouve utile de laisser

Partie | : Les bases

encore quelques breves remarques complémentaires. Derriere la ligne
d’instruction est ajouté un commentaire, introduit par deux barres
obliques (slash). Pourquoices barres sont-elles nécessaires ? Le
compilateur essaie bien entendu d’interpréter et d’exécuter tous les
prétendus ordres qui lui sont donnés. Prenons par exemple le premier
commentaire :

Il s’agit des divers éléments d’une phrase que le compilateur ne
comprend pas puisque ce ne sont pas des instructions. Cette notation
entrainerait une erreur pendant la compilation du code. Mais les deux
// masquent cette ligne et informent le compilateur que tout ce qui
suit les deux traits obliques ne le concerne pas et qu’il peut sans
crainte ne pas en tenir compte.

C’est une sorte de pense-béte pour le programmeur, qui n’est méme
pas fichu de retenir la moindre chose pendant une période prolongée
(> 10 minutes). Patience avec lui! Ce mode d’écriture permet
d’introduire un commentaire d’une seule ligne.

Commentaires sur plusieurs lignes

Si, en revanche, vous voulez écrire plusieurs lignes, comme une
description succincte de votre sketch, placer deux barres obliques
devant chaque ligne peut s’avérer fastidieux. Aussi la variante
suivante a plusieurs lignes a-t-elle été créée.

=1 Contré
Date: 31.10.2013

Ce commentaire présente une combinaison de signes introductifs /+ et
une combinaison de signes conclusifs =/. Tout ce qui se trouve entre
les deux tags (un tag étant une marque utilisée pour identifier des
données qui ont une importance particuliere) est considéré comme
étant du commentaire et ignoré par le compilateur. Tous les commen-
taires s’affichent en gris dans I’environnement de développement
Arduino, de maniére a étre immédiatement reconnaissables.

Chapitre 9 : Les bases de la programmation

203

Figure 9-19 p
Structure de sketch fondamentale

204

Structure d'un sketch Arduino

Si vous voulez écrire un sketch pour votre carte Arduino, vous devez
impérativement tenir compte de certaines choses. Pour étre exécu-
table, le sketch doit présenter deux structures de programme techni-
ques qui font partie de la méme catégorie. Ce sont les fonctions, qui
servent quasiment de cadre au sketch. Voyons d’abord ce qu’est au
juste une fonction. Nous avons vu jusqu'ici les différentes instruc-
tions, qui existent en tant que telles et n’ont pas forcément un rapport
entre elles. Or, il est possible de réunir plusieurs instructions en une
unité logique et de donner 4 cette structure un nom évocateur. Vous
faites alors appel au nom de la fonction comme pour une instruction
ordinaire et toutes les instructions qu’elle contient sont exécutées en
bloc.

Arrétons-nous auparavant sur la maniére dont un tel sketch peut se
dérouler. Supposons que vous vouliez faire une promenade et
emporter certaines choses avec vous. Vous mettez tout dans un sac a
dos, puis vous partez. En route, vous fouillez sans cesse dans votre
sac pour prendre des forces ou pour vérifier sur la carte que vous étes
encore sur le bon chemin. Au sens figuré, cela se déroule exactement
de la méme maniere dans un sketch. Au début du sketch se produit
I’exécution unique d’une certaine action par exemple pour initialiser
des variables qui devront étre utilisées plus tard. Ensuite, certaines
instructions sont alors exécutées en boucle, gardant ainsi le sketch
vivant. Jetons un coup d’ceil a la structure du sketch, dans laquelle les
domaines fondamentaux sont divisés en trois blocs.

(Débutdusketch)

[?e.cl.are.]tio!'i - Bloc 1
+ initialisation

Execu_tmn Setup() —Bloc 2

unique

| _

Exécution

Loo —Bloc 3
en boucle 2

Partie | : Les bases

Ces blocs sont les suivants.

Bloc 1 : déclaration et initialisation

Dans ce bloc, peuvent étre intégrées — si nécessaire — des bibliothe-
ques externes au moyen de I'instruction #include. Je vous dirai plus
tard comment cela fonctionne. C’est également ici que sont déclarées
les variables globales qui sont accessibles et utilisables partout dans
le sketch.

Cette déclaration permet de définir le type de donnée de la variable.
Lors de I’initialisation en revanche, la variable recoit une valeur.

Bloc 2 : la fonction setup

La fonction setup permet la plupart du temps de configurer les diffé-
rentes broches du microcontrdleur. On définit ainsi quelles broches
doivent servir d’entrées et de sorties. Certaines sont reliées a des
capteurs, des boutons—poussoir ou des résistances sensibles a la
température, qui amenent des signaux de 1’extérieur 4 une entrée
correspondante. D’autres conduisent encore des signaux a des sorties
pour commander par exemple un moteur, un servo ou une diode élec-
troluminescente.

Bloc 3 : la fonction loop

La fonction loop permet de former une boucle sans fin contenant la
logique, au moyen de laquelle des capteurs sont interrogés ou des
actionneurs commandés en permanence. Chacune des deux fonctions
forme ensemble avec son nom un bloc d’exécution identifié par des
accolades {}. Celles-ci servent d’éléments délimiteurs pour savoir ol
la définition de la fonction commence et ou elle s’ arréte. Le mieux est
de vous montrer les corps de fonction d’un sketch exécutable. Il ne se
passe peut-étre pas grand-chose mais il s’agit d’un véritable sketch.
POA

void setu
/U) plusieurs instructions

A0odne ol

void loo

pO{

/ Une ou plusieurs instructions

Chapitre 9 : Les bases de la programmation

205

Figure 9-20 p-
Structure générale d'une fonction

206

Ces fonctions doivent-elles porter ces noms ou puis-je leur donner le
nom que je veux ? Et que signifie le mot void qui se trouve devant
chaque fonction ?

Non, les fonctions doivent porter ces noms 2 la lettre prés : elles sont
recherchées en début de sketch car elles servent de points de départ et
garantissent un début bien défini.

Comment le compilateur saurait-il sinon laquelle ne doit étre
exécutée qu’une fois et laquelle doit I’étre en boucle ? Ces noms sont
donc absolument nécessaires. Passons a votre deuxiéme question
concernant la signification du mot void. Il s’agit d’un type de donnée
indiquant simplement que la fonction ne renvoie aucune valeur a
I’appelant. void peut étre traduit par place vide ou trou. Il signifie non
pas O mais rien. La structure générale d’une fonction est présentée a
la figure 9-20.

(Type de donnée retournée Nom (paramétre))
{

return valeur ;

}

Quand une fonction posséde le type de donnée void, aucune instruc-
tion return renvoyant une valeur n’est admise. En revanche, si elle
présente un autre type de donnée, elle peut renvoyer a 1’appelant une
valeur qui doit toutefois correspondre a celle du type de donnée
indiqué. Vous pouvez méme transmettre a une fonction des valeurs
qu’elle doit utiliser ensuite. Ces valeurs sont placées a I'intérieur des
parenthéses et sont transmises aux variables correspondantes. Dans
une définition de fonction, les variables sont appelées parametres. Les
paires de parenthéses doivent étre 14 méme s’il n’y a aucune valeur a
transmettre, comme pour setup() et loop(). Elles restent tout simple-
ment vides. Vous apprendrez a composer vos propres fonctions
lorsque vous réaliserez les montages de ce livre.

Combien de temps dure
un sketch sur la carte ?

Tout sketch mis sur la carte Arduino dans le microcontroleur est
aussitot exécuté. 11 dure tant que la carte est alimentée en courant et
que vous n’entrez pas un autre sketch. Si vous coupez I’alimentation,

Partie | : Les bases

soit au port USB soit en externe, le sketch s’arréte bien évidemment
mais reprend deés que vous rebranchez la carte. Il est conservé hors
tension dans la mémoire (flash) du microcontréleur et n’a pas besoin
d’étre rechargé.

Pour aller plus loin
Pour compléter ce chapitre, vous pouvez effectuer une recherche sur Internet
sur les mots-clés :

- principes de programmation C++ ;

« principe Entrée Traitement Sortie.

Chapitre 9 : Les bases de la programmation

207

'$9](04A3 §T0Z @ 1ybLAdOD

Programmation
de la carte Arduino

Ce chapitre est consacré aux interfaces de notre carte Arduino. Ce
sont des canaux de communication permettant une interaction entre la
carte et le monde extérieur. Les thémes abordés sont les suivants.

* A quoi correspondent les ports numériques ?
* A quoi correspondent les ports analogiques ?

* Qu’est-ce qu'un signal MLI ?

Les ports numériques

Les ports numériques de votre carte Arduino peuvent servir aussi bien
d’entrées que de sorties. Mais ca ne veut pas dire pour autant que les
broches 0 4 7 sont des entrées et que les broches 8 a 13 des sorties.
Chacune des 14 broches numériques mises a disposition peut étre
configurée individuellement en entrée ou en sortie. Une instruction
est utilisée a cet effet, laquelle définit le sens de circulation des
données, broche par broche. L’instruction pinMode permet de
programmer le numéro et le sens des données (INPUT ou OUTPUT) de

chaque broche, en fonction de ce dont votre sketch a besoin.

Les entrées numériques

L’instruction pinMode est utilisée pour programmer une broche en
P

entrée. La figure 10-1 montre les deux étapes nécessaires a la confi-
guration et a I'interrogation d’une entrée numérique.

Chapitre

10

209

Figure 10-1 p
Configuration et lecture d'une

entrée numérigue sur la broche 5

Figure 10-2 p-

Configuration et définition d'une
sortie numérigue sur la broche 5

210

(5, INPUT))
(valeur = (5):)

- O
B

La premiéere étape consiste a configurer la broche 5 en entrée (INPUT)
avec pinMode, et ce uniquement au sein de la fonction mentionnée pour
la premiere fois dans le chapitre 9. La deuxiéme étape permet de lire
le niveau logique (HIGH ou LOW) de la broche par I’instruction digital
Read. Dans cet exemple, il est affecté a la variable valeur et peut étre
traité plus tard.

~ WY un < MmN
t e

Les sorties numériques

L’instruction pinMode est, bien entendu, également utilisée pour
programmer une broche numérique en sortie, mais cette fois avec
OUTPUT comme deuxieéme argument. La figure 10-2 montre les deux

étapes nécessaires a la configuration et a la définition d’une sortie
numérique.

C (5, OUTPUT))
C (5, HicH);

~YOmnmSTMOmHN-AO
H

PR xé

B

La premiere étape consiste a configurer la broche 5 en sortie (0UTPUT)
avec pinMode, et ce uniquement au sein de la fonction setup
mentionnée pour la premiere fois dans le chapitre 5. La deuxiéme
étape permet de définir le niveau logique (HIGH ou LoW) de la broche
avec 'instruction digitalWrite.

Pour aller plus loin

Les deux broches numériques 0 (RX = réception) et 1 (TX = émission) ont une
fonction spéciale et sont utilisées par linterface série. Dans les graphiques, elles
sont différenciées par une autre couleur.

Partie | : Les bases

Pour éviter les problemes, je vous déconseille d’utiliser ces deux
broches. Elles m’ont déja posé quelques problemes, aussi fais-je
toujours en sorte de ne pas les utiliser dans mes circuits. Si, faute de
ports disponibles, vous envisagez d’en faire quand méme usage, il
vous faudra débrancher brievement ces deux connexions lors du char-
gement du sketch dans le microcontroleur. Au risque de voir survenir
des problemes empéchant le chargement.

Les ports analogiques

Les entrées analogiques

Les signaux analogiques sont aussi étrangers au microcontroleur que
ne l'est I'intelligence, bien que certains scientifiques prétendent
pouvoir donner une forme de personnalité a leurs machines. Voyons
maintenant les signaux analogiques de plus pres.

A < Figure 10-3
Signal analogique

A J

On voit que leur évolution en fonction du temps présente différentes
valeurs comprises entre un minimum et un maximum et qu’il n’y a
pas d’échelonnement net comme pour les signaux numériques, ou
seule une alternative entre niveau HIGH et LOW est possible. Pour faire
traiter un signal analogique par un microcontroleur, il faut une entrée
analogique et rien de plus.

Vous venez de dire que les signaux analogiques peuvent varier de
maniére continue entre deux limites. Autrement dit, on peut rencontrer
n’importe quelle valeur arbitraire lors de mesures a I’entrée analogique,
n’est-ce pas ?

En théorie oui, sauf que nous avons affaire ici a un microcontrbleur,
qui ne peut traiter que des signaux numériques. Je m’explique : les
— signaux analogiques sont traités et mémorisés par un circuit spécial
N appelé convertisseur analogique/numérique (ou convertisseur A/D).

Chapitre 10 : Programmation de la carte Arduino m

virolles

> e

01:

20

(&)

right

!

Copy

Théoriquement, un signal analogique se compose de variations infini-
ment petites qui se produisent dans la courbe d’évolution temporelle.
Mais comment ces valeurs peuvent-elles étre détectées par un
microprocesseur ? Voyons maintenant cette courbe de plus pres.

Figure 10-4 p-
Numérisation d'un signal
analogique (résolution de 4 bits)

flt) A

EEooTESSSSssESsEEs

({1t Anal0gique
. i3l quaNtifié

Ce graphique montre le signal analogique représenté par la courbe
rouge. La mesure est effectuée a des instants déterminés (numérotés
sur I’axe des temps) et a chacun de ces points correspond une valeur
binaire (sur ’axe des ordonnées). On peut voir cependant sur le
graphique qu'une méme valeur numérique peut étre affectée a des
valeurs analogiques différentes. Il y a méme des zones dans
lesquelles se retrouvent plusieurs points de mesure analogique.
Voyez par exemple les valeurs analogiques correspondant aux points
8 et 9. Elles sont différentes et font pourtant partic de la zone
numérique 0111.

Mais pourquoi est-ce ainsi ? Aucune différence n’est faite entre les
deux valeurs qui seraient, par conséquent, égales.

Non, Ardus. Comme j’ai pu vous I'indiquer précédemment, un signal
analogique présentait des gradations infiniment diverses dans sa
courbe d’évolution en fonction du temps. Rien que pour les valeurs
minimales, il faudrait une valeur binaire tout aussi infiniment
« longue » pour pouvoir reproduire toutes les valeurs. C’est non
seulement impossible, mais aussi inutile. Notre microcontrleur
dispose de 10 bits pour la résolution d’un signal analogique. C’est du
reste également ce qui a été retenu pour la caractéristique du conver-
tisseur A/D : résolution de 10 bits.

212 Partie | : Les bases

Que signifient ces 10 bits 7 Ils permettent d’interpréter 2'%=1 024
nombres binaires différents. Si nous prenons comme référence la
tension de +5 V disponible sur la carte Arduino (notamment pour
I’alimentation), une entrée analogique —il y en a 6 en tout de AQ a A5
— peut traiter des valeurs comprises entre 0 et +5 V.

5 POWER ANALOG IN
m-bﬂafi OH N M N
mmggb T T

EEEEEE

Sur chaque canal, le signal d’entrée est converti en interne en un
nombre binaire par un convertisseur A/D et, un canal présentant
1 024 valeurs puisque la résolution est de 10 bits, I’unité de mesure la
plus petite — appelée aussi quantum — peut étre calculée comme suit :

RESET

Tension de référence _ +5V

= =4 =4 Vv
Nombre de valeurs 1024 e wn

Quantum =

Attention!

Si vous déliviez a une entrée analogique une tension supérieure a +5V, le
microcontroleur risque d'étre complétement détruit ou pour le moins grillé au
niveau de ce canal. Veillez a toujours vérifier sous quelles tensions vous
travaillez. Cest important si vous utilisez des sources d'alimentation externes
telles qu'une pile de 9V ou un bloc dalimentation séparé. Pour nos exemples
analogiques, je n'utilise toutefois que 'alimentation électrique de la carte, soit
+5V,

L’instruction analegRead (numéro de broche) permet de lire la valeur
d’un signal présent sur une entrée analogique. Le graphique montre
I’interrogation de la broche analogique portant le numéro 0.

o o <t LU
PP Y

C (0))

Le tableau 10-1 montre quelques exemples de valeurs mesurées a une
entrée analogique et sa tension existante réelle.

Chapitre 10 : Programmation de la carte Arduino

< Figure 10-5
Ports analogiques A0 a AS sur le
connecteur a 6 broches (coté droit)

<« Figure 10-6
Quelle valeur a la broche
analogique 07

213

Tableau 10-1 p

Valeurs analogiques mesurées

214

et tensions d'entrée réelles
correspondantes

Figure 10-7 p
Broches analogiques coté
numérique

Valeur analogique mesurée Valeur correspondante

0 ov
1 49mv
2 98mV
1023 5V

Les sorties analogiques

Vous avez pu voir par vous-méme que le microcontroleur ne dispo-
sait d’aucune sortie analogique. Est-ce un défaut ? Ou ont-elles
simplement été oubliées ? Stirement pas ! Je peux d’ores et déja dire
ici qu’aucune sortie n’est dédiée et donc absolument nécessaire aux
signaux analogiques. Pourtant, si des sorties analogiques sont a dispo-
sition comme le prétend la description de la carte Arduino, il doit bien
y avoir une autre solution. Mais laquelle ? Et revoila la MLI. Trois
lettres qui ne vous évoquent rien pour I’instant.

Que signifie MLI ?

Vous n’allez peut-étre pas le croire, mais les prétendues sorties analo-
giques manquantes se trouvent sur certaines broches numériques. Si
vous regardez de plus pres la carte Arduino, vous verrez qu’un signe
bizarre en zigzag se trouve sur certaines de ces broches. Ce signe est
appelé rilde et signale les sorties analogiques.

- &
i
K5

DIGITAL (PWM~)

MLI est le pendant francais de PWM (Pulse-Width-Modulation),
autrement dit modulation de largeur d’impulsion. Vous n’étes pas
plus avancé pour autant...

Un signal MLI est un signal de fréquence et d’amplitude de tension
constantes. La seule chose qui varie est le rapport cyclique. Vous
allez bient6t savoir de quoi il s’agit.

Partie | : Les bases

yrolles,

=
| .

)1E

o

FAN

20

right ©

Y
DY

Co|

L

< Figure 10-8

Durée d'impulsion et durée de
période dans la courbe d'évolution
temporelle (t varie ; T est constant)

Durée d'impulsion D EEr—

Période g - >.f

Plus 'impulsion est large, plus I'utilisateur regoit d’énergie.
- 4
Rapport cyclique = 7
On peut dire aussi que la surface de I'impulsion sert de mesure 2

I’énergie envoyée. Voici maintenant quatre oscillogrammes pour des
rapports cycliques de 25 %, 50 %, 75 % et 100 %.

| 2014701728 08:14:19.012- 8192 Samplesz4 | Y | < Figure 10-9

10V e [I] Rapport cyclique de 25 %

gﬂ!ll!t'. -Stop

8y

6V

4V

2V

ov

Si une LED était raccordée a la sortie MLI, elle recevrait seulement
un quart de I’énergie possible pour éclairer. Elle serait coupée avant
méme de commencer a éclairer correctement. Autrement dit, elle
n’éclairerait que trés faiblement.

c1
1oV

BB [Done | 2014/01/28 08:15:30.177- 8192 Samples 44 | Y | <« Figure 10-10
IS R ' [R [y Rapport cydlique de 50 %

BV

T e —

ov G

Chapitre 10 : Programmation de la carte Arduino 215

Eyrolles.

)

01

{
L

2

yright ©

!

Cop

Dans le cas d’un rapport cyclique de 50 %, le temps de marche est
égal au temps d’arrét au cours d’une période. La LED éclaire bien
mieux qu’a 25 % parce qu’elle recoit plus d’énergie par unité de
temps.

Figure10-11p <1

W‘ 2014/01/28 08:16:29 438 - 8192 Samm;g\im
Rapport cycliquede 75% 10v '

! AR | T ! T T | T T T T

2V o8 gl :9

ov ;1} _ j;

Dans le cas d’un rapport cyclique de 75 %, le rapport entre temps de
marche et temps d’arrét bascule nettement en faveur du temps de
marche, autrement dit la LED éclaire encore mieux qu’a 25 % et

75 %.
<« Figure 10-12 c1 @L.H...JL-] | 2014/01/28 08:17:33.262- 8152 5amplosj?¢|_|
Rapport cyclique proche de 100 % v T i i e I,

g8V S s T L 2 ISk, o el st pede e

6V

4V

2V

ov

Dans le cas d’un rapport cyclique proche de 100 %, la LED est constam-
ment allumée et semble trés lumineuse. Une chose est slire quand on
utilise des sorties analogiques : le nombre de sorties analogiques utilisées
diminue d’autant le nombre de broches numériques a disposition.

Et si je veux maintenant utiliser la sortie analogique présente sur une
broche numérique, comment fais-je pour lui parler ? Dois-je utiliser
I"instruction digitallirite avec peut-étre un autre parametre ?

Bonne question, Ardus ! Pour une sortie analogique au moyen d’un
signal MLI, on utilise I’instruction analoghirite, qui nécessite de spécifier
le numéro de la broche et la valeur a convertir en signal MLI. Nous en
reparlerons bien siir en temps voulu. Cette valeur peut varier entre O et
255. La figure 10-13 présente un échantillon des plus marquantes.

216 Partie | : Les bases

4 Za \
»

Arguments

Instruction Broche MLl

(ana. (5, 64);)

I—h Valeur MLI Rapport cyclique
0 0%
54 25%
128 50%
191 5%
255 100%

Dans cet exemple, la broche MLI n° 5 est sollicitée et la valeur a
convertir est 64. Cette valeur permet d’obtenir un signal de rapport
cyclique de 25 %. La formule suivante permet de calculer la valeur
d’entrée nécessaire pour obtenir le rapport cyclique souhaité.

Rapport cyclique souhaité

100 %

Valeur MLI = + 255

Pour aller plus loin

Pour utiliser une sortie analogique, il faut impérativement programmer la
broche nécessaire en tant que sortie (QUTPUT) au moyen de linstruction
pinMode.

Je tiens évidemment a dire avant de clore le sujet qu'un signal MLI
n’est pas un véritable signal analogique au sens propre du terme. S’il
vous en faut un a tout prix, vous pouvez brancher un circuit RC a la
sortie, lequel constitue un filtre passe-bas permettant de lisser la
tension de sortie. Vous trouverez d’autres informations sur Internet a
ce sujet.

Pour aller plus loin
Pour compléter ce chapitre, vous pouvez effectuer une recherche sur Internet
sur les mots-clés :

« signal MLI;

- modulation de largeur d'impulsions.

Linterface série

L’interface série, qui —comme je 1’ai dit déja — utilise le port USB,
est une autre possibilité d’entrer en contact avec la carte Arduino. Nul
besoin ici encore d’un programme externe de terminal pour commu-

Chapitre 10 : Programmation de la carte Arduino

< Figure 10-13
Instruction analoghrite
avec quelques exemples de valeurs

217

218

niquer car on peut passer par le moniteur série. Ce type de mise en
relation avec votre carte Arduino peut étre utile dans de nombreux
cas:

* pour entrer des données pendant 1’exécution d’un sketch ;

* pour sortir des données pendant I’exécution d’un sketch ;

e pour imprimer certaines informations pendant 1’exécution d’un
sketch pour rechercher des erreurs.

La carte Arduino ne disposant pas d’un appareil de saisie dans sa
version standard, I’interface série permet justement de saisir des
données a la main en passant par le clavier pour intervenir le cas
échéant sur le déroulement du sketch. Mais nous verrons aussi que
cette interface peut trés bien étre utilisée pour créer une base de
communication commune 2 différents programmes ou langages de
programmation. Vous apprendrez des possibilités intéressantes :
comment contrdler votre carte Arduino par exemple avec une
application C#, envoyer des données a celle-ci pour une présentation
graphique préparée... Vous pouvez sinon tirer habilement parti du
langage de programmation Processing pour qu’il serve de frontal
graphique a la carte Arduino. Si votre sketch ne fonctionne pas
comme vous |'auriez voulu, utilisez le moniteur série de I'interface
comme fenétre pour imprimer le contenu de variables. Vous pouvez
ainsi déterminer et éliminer des erreurs dans le code source. Vous
saurez plus tard comment on doit s’y prendre. Le mot technique
employé pour cela est debugging (ou débogage).

Partie | : Les bases

Eyrolles.

015

p)

Copyright ©

Partie Il

Les montages

'$9](04A3 §T0Z @ 1ybLAdOD

Le premier sketch

Au sommaire :

* la déclaration et initialisation d’une variable ;

¢ la programmation d’une broche numérique en sortie (OUTPUT) ;
¢ I’instruction pinMode() ;

¢ l’instruction digitalWrite() ;

¢ l'instruction delay() ;

¢ le sketch complet ;

¢ I’analyse du schéma ;

¢ la réalisation du circuit ;

* un exercice complémentaire.

Le phare "Hello World"

Eh bien Ardus, les choses deviennent maintenant sérieuses, sérieuses
certes mais pas vraiment difficiles car nous allons avancer douce-
ment. La plupart des manuels sur les langages de programmation
commencent par la présentation d’un programme appelé Hello World.
Ce programme est généralement le premier que le débutant est amené
a découvrir. Il donne un premier apercu de la syntaxe du nouveau
langage de programmation et imprime le texte "Hello World" dans une
fenétre. Le nouveau langage de programmation se présente ainsi a
vous et au reste du monde, et semble dire "Eh je suis 1a ! Utilisez-

moi".

Nous avons a présent un petit probleme car notre Arduino n’a pas
d’écran a I’origine, et donc pas de console de visualisation pour nous

Montage

22

vrolles

o

1L

|] o
| .

~

222

informer. Alors que faire ? Si aucune communication sous une forme
écrite n’est possible, alors peut-étre 1’est-elle avec des signaux opti-
ques ou acoustiques? Nous optons pour la variante optique car une
diode é€lectroluminescente — également appelée LED — se branche
sans probléme a I'une des sorties numériques et attirera a coup siir
I'attention. J’ai été moi-méme trés étonné quand ca a marché du
premier coup.

Composants nécessaires

L’exemple étant tres simple, seules une LED et une résistance série
sont nécessaires.

1 LED rouge
— g 1 résistance de 220 Q2

Dans le chapitre 3 sur les principes de base Arduino, je vous ai dit que
la carte comportait entre autres quelques LED, dont 1’une était reliée
directement a la broche numérique 13 et possédait sa propre résis-
tance série. Ceci dit, aucun composant externe ne devrait avoir besoin
d’étre branché sur la carte.

hLED sur broche 13

Rx /@ ARDUINO

Cette LED se trouve a gauche preés du logo Arduino.

Pour aller plus loin

Quand vous reliez pour la premiére fois une carte Arduino flambant neuve a
votre ordinateur, cette LED incorporée sallume pendant une seconde. Un
premier sketch incluant cette fonctionnalité de base a donc été chargé a l'usine
une fois la carte assemblée.

Partie Il : Les montages

Code du sketch

Le code du sketch est le suivant pour ce premier exemple :

int ledPin = 13; //Déclarer + initialiser broche numérigue 13
sortie

void setup(){
pinMode(ledPin, OUTPUT); //Broche numé

gue 13 comme sortie

}

void loop(){
digitalWrite(ledPin, HIGH); //LED au niveau HIGH (5V)
delay(1000); //Attendry
digitalWrite(ledPin, LOW); //LE V)
delay(1000); //Attendre

}

Vous pouvez vérifier le code si vous 1’avez transmis dans 1’éditeur.
Le compilateur essaye alors de le traduire. Le tableau 1-1 indique les
deux étapes fondamentales.

<4 Tableau 1-1

lcone Fonction j
Etapes pour compiler

E Commencer la vérification par compilation. et trafismetti
Commencer la transmission au microcontroleur une fois la compilation terminée.
A la fin, un message indique que la transmission a réussi. La mémoire
nécessaire y est donnée en octets, de méme que la mémoire totale a
disposition.
< Figure 1-1

Message d'état et affichage
desinformations sur la mémoire

J'ai une question avant que vous ne poursuiviez. Comment doit-on
considérer les mots OUTPUT, HIGH ou LOW ? S’agit-il de mots-clés?
L’IDE les fait en tout cas apparaitre en couleurs.

Bien vu Ardus ! Il me faut ici développer un peu. Si vous initialisez
des variables avec des valeurs dont vous étes seul, de prime abord, a
connaitre la signification, les autres personnes appelées a travailler
~ avec le code en question auront certainement du mal & comprendre.
Que peut bien vouloir dire par exemple le nombre 42 ? Un tel style de

Montage 1 : Le premier sketch m

Tableau 1-2 p

Variable nécessaire et son objet

224

Figure 1-2 p
Déclaration et initialisation
de variable

programmation n’est pour moi pas trés convaincant. Il se trouve que
nous avons pris précisément le nombre 13 pour désigner la broche de
la sortie numérique, mais nous entendons rendre le code de
programme un peu plus évocateur a I'avenir. De telles valeurs
suspectes survenant dans le code source sont au fait appelées magic
numbers. Mais revenons aux mots indiqués en couleurs. Il s’agit ici
de constantes, ¢’ est-a-dire des indicateurs qui, tout comme les varia-
bles, ont été initialisés avec une valeur mais ne peuvent plus étre
modifiés. C’est pourquoi on les appelle des constantes. Ce nom en dit
déja beaucoup plus que n’importe quelle valeur ésotérique. Nous
reviendrons bientdt sur les instructions pinMode et digitalWrite et
j expliquerai alors I'importance de ces constantes.

Revue de code

Nous déclarons et initialisons au départ une variable globale portant
le nom de ledpin, dont le type exact de donnée est int (inf = integer) et
qui apparait dans toutes les fonctions avec la valeur 13.

Variable Objet

ledPin Contient le numéro de broche pour la LED sur la broche de sortie numérique 13.

L’initialisation équivaut 4 une affectation de valeur avec 1’opérateur
d’affectation =. Déclaration et initialisation occupent ici une ligne. Le
mode d’écriture est donc plus court que la variante a deux lignes.

Type de donnée Déclaration Initialisation

(ledPin = 13;)

Si vous décidez d’écrire ces deux actions séparément, aucun
probléeme mais les deux lignes ne doivent pas se suivre. Cet exemple
produit une erreur :

int ledPin; //Déclarer la variable
ledPin = 13;

//Initialiser la variable avec valeur 13 -» Erreur

La déclaration de la variable globale ledpin se fait hors des fonctions
setup et loop. L’initialisation se fait quant a elle dans la fonction setup
qui n’est appelée qu’une fois. Le code du sketch correct est alors le
suivant :

Partie Il : Les montages

int ledPin; //Déclarer la variable
void setup(){
ledPin = 13; //

[nitialiser la variable avec valeur 13

}

Vous auriez trés bien pu aussi opérer sans variable et entrer la valeur
13 partout dans les instructions pinMode et digitalWirite. Seulement, il y
a un inconvénient. Si vous décidez plus tard de changer de broche,
vous devez revoir tout le code du sketch pour procéder a tous les
changements. C’est fastidieux et surtout générateur d’erreurs. Vous
risquez d’oublier un endroit quelconque a éditer et d’avoir ensuite un
probleme. Ce ne pas trés grave dans ce court exemple mais si le
sketch était plus long, vous sauriez combien ce rudiment de program-
mation est vraiment utile. Faisons donc bien les choses des le début.
Tout va bien jusqu’ici ? La fonction setup est appelée une seule fois
au début pour démarrer le sketch et la broche numérique 13 est
programmée en tant que sortie. Revoyons pour ce faire I'instruction
pinMode.

Arguments

Instruction Broche Mode

| | I
| N |

((13, OUTPUT) ;)

Elle présente deux arguments, le premier pour la broche ou le port a
configurer et le deuxieme pour définir son comportement comme
entrée ou sortie. Mettons que vous vouliez raccorder une LED et que
vous ayez besoin pour cela d’une broche de sortie. L’instruction
exige deux arguments numériques, le deuxiéme €tant une constante
avec une certaine valeur qui définit le mode relatif a la direction des
informations. Derriere la constante OUTPUT se cache la valeur 1. Que
dites-vous donc par conséquent de I’instruction suivante :

pinMode(13, 1);

On a du mal & comprendre ce qui se passe. La forme initiale est bien
plus explicite et on sait tout de suite de quoi il s’agit. Il en va de
méme pour l'instruction digitallWrite, qui présente également deux
arguments.

4 Figure 1-3
L'instruction pinMode
avec ses arguments

Montage 1 : Le premier sketch

225

Figure 1-4 p»
L'instruction digitalWrite
avec ses arguments

Tableau 1-3 p
Constantes avec valeurs
numériques correspondantes

Figure 1-5 p
L'instruction delay

226

Arguments

Instruction Brache Iiveau

| |
I o l

((13, HIGH))

On trouve ici aussi une constante dont le nom est HIGH, censée servir
d’argument pour un niveau HIGH sur la broche 13. Elle est équivalente
a la valeur numérique 1. Vous trouverez les valeurs correspondantes
dans le tableau 1-3.

Constante Valeur Explication

INPUT 0 Constante pour I'instruction pinMode (programme la broche en tant
qu'entrée)

OUTPUT 1 Constante pour l'instruction pinMode (programme la broche en tant
que sortie)

LOW 0 Constante pour l'instruction digitalWrite (metlabroche au
niveau LOW)

HIGH 1 Constante pour I'instruction digitalWrite (metla broche au
niveau HIGH)

La derniere instruction utilisée, delay, sert a la temporisation. Elle
interrompt 1’exécution du sketch pour un temps correspondant a la
valeur donnée qui exprime la durée en millisecondes (ms).

.ﬁ.l'g ument

InslrLllt[ion Temps (ms)
| || |
((1000) ;)

La valeur 1 ooo signifie une attente de 1000 ms précisément, soit
1 seconde, avant de continuer.

Entrons maintenant plus avant dans le sketch. La fonction loop, ici
c'est une boucle sans fin, démarre. Voici les différentes étapes de
travail.

1. Allumez la LED de la broche 13.

2. Attendez une seconde.

Partie Il : Les montages

3. Bteignez la LED de la broche 13.
4. Attendez une seconde.

5. Revenez au point 1 puis, recommencez.

Schéma

Le schéma rend les choses plus claires.

Arduino 13 o] 1”2
12 i
PWM —19-':‘1-
O PWM |——
SR
e
- S, PWM %-
' = PWM ——
— . .
PWM |—=—
LR
ES
-
Analog IN "4

ER ey

L’anode (ici, 1'électrode 1) de la LED est reliée i la broche 13 via la
résistance série, tandis que 1autre extrémité ou cathode (ici,
1’électrode 2) de la LED est reliée a la masse de la carte Arduino.

Réalisation du circuit

La réalisation du circuit est simple. Toutefois, veillez a ce que la pola-
rité de la LED soit correcte, sinon vous n’obtiendrez qu’une belle
LED éteinte. La LED soudée sur la carte clignotera quand méme. Une
LED mal polarisée n’abimera rien mais mieux vaut bien faire les
choses.

4 Figure 1-6
Carte Arduino avec une LED
surla broche 13

Montage 1 : Le premier sketch

227

Figure 1-7
LED clignotante servant de phare
pour notre premier sketch

ONINouyY -

C’est difficile a voir mais en regardant bien, on s’ aperc¢oit que la LED
« onboard » clignote en méme temps que la LED reliée extérieure-
ment. Les LED sont censées commencer a clignoter aussitot apres la
transmission réussie sur la carte. Voyons maintenant de plus pres le
déroulement chronologique. La LED clignote toutes les deux
secondes.

Figure 1-8 p
Chronagramme

m) Attention!
On trouve sur Internet des schémas de circuits ot une diode électrolumines-
cente est branchée directement entre masse et broche 13. Les deux fiches
femelles se trouvant l'une a coté de l'autre, coté broches numériques, il est trés
aisé de brancher une LED. Je vous mets expressément en garde contre cette
variante car la LED est utilisée sans résistance série. Ce n'est pas tant pour la LED
mais bel et bien pour votre microcontréleur que je m'inquiéte. J'ai mesuré une
fois que lintensité du courant atteignait 60 mA. Cette valeur est de 50 % au-
dessus du maximum et donc assurément trop élevée. Rappelez-vous que le
courant admis par une broche numeérique du microcontréleur est de 40 mA au
maximum.,

228 Partie Il : Les montages

Problémes courants

Si la LED ne s’allume pas, plusieurs choses peuvent en étre la cause
ainsi que nous 1’avons déja dit.

La LED peut avoir été mal polarisée. Rappelez-vous les deux
différentes connexions d’une LED qui sont I’anode et la cathode.

grande patic
+ (anode)

petite patic
+ (cathode)

La LED a peut-étre été grillée par une surtension lors des
montages précédents. Testez-la avec une résistance sur une
source d’alimentation de 5 V.

Vérifiez les fiches de la barrette de raccordement qui sont reliées
a la LED ou a la résistance série. S’agit-il bien de GND et de la
broche 13 ?

Vérifiez le sketch que vous avez entré dans 1’éditeur de I'IDE.
Peut-&tre avez-vous oublié une ligne ou commis une erreur ou
peut-étre le sketch a-t-il mal été transmis ?

Si la LED qui se trouve sur la carte clignote, le LED branchée
doit elle aussi clignoter. Le sketch fonctionne dans ce cas correc-
tement.

Qu’'avez-vous appris ?

Montage 1 : Le premier sketch

Vous avez appris a déclarer et initialiser des variables globales
en une ou plusieurs lignes.

Vous avez déterminé le sens de transmission des données pour
une certaine broche comme OUTPUT au moyen de I’instruction
pinMode, si bien que vous avez pu envoyer, au moyen de I’instruc-
tion digitallWirite, un signal numérique (HIGH ou LoW) la sortie ol
la LED est branchée.

Vous avez créé un temps d’attente dans 1’exécution du sketch au
moyen de I'instruction delay, si bien que la LED restait allumée
ou éteinte un certain temps.

Vous savez que pour utiliser une LED, il faut une résistance série
dimensionnée en conséquence. Vous trouverez ci-aprés un

229

Figure 1-9 p
Chronogramme d'une impulsion

schéma de connexion d’une LED avec une résistance de
220 ohms en série.

Exercice complémentaire

Dans notre premier exercice, je vous propose de modifier le sketch de
telle sorte que les temps durant lesquels la LED est allumée ou éteinte
soient déterminés par deux variables, afin de pouvoir changer facile-
ment le rapport cyclique. Ce dernier peut étre défini, dans le cas d’une
suite périodique d’impulsions, par le rapport entre la durée d'une
impulsion et la durée de la période. Le résultat est la plupart du temps
exprimé en pourcentage. Le chronogramme de la figure 1-9 montre
les différentes durées pour t ou 7.

t = durée de I'impulsion

T = durée de la période
La formule pour calculer le rapport cyclique est la suivante :
Rapport cyclique = %

Programmez le sketch de telle sorte que la LED reste allumée pendant
500 ms et éteinte pendant 1 s. Le rapport cyclique est alors calculé
comme suit :

S00ms _ 33

R t cycli =
apport cycligue 500 s

Ceci correspond 4 un rapport cyclique de 33 %. Par rapport & la durée
complete de la période, la LED est allumée pendant 33 % du temps.

230

Partie Il : Les montages

Montage

Interrogation
d'un capteur

Au sommaire :

¢ la déclaration et I'initialisation de plusieurs variables ;

¢ la programmation des broches en tant qu’entrée (INPUT) et sortie
(OUTPUT) ;

* I’instruction digitalRead() ;

* |’utilisation de la structure de contrdle if-else ;
¢ le sketch complet ;

¢ 1’analyse du schéma ;

¢ la réalisation du circuit ;

* un exercice complémentaire.

Appuyez sur le bouton

Dans cet exemple, nous entendons aller & contre-courant et ne pas
envoyer, comme dans notre premier sketch, des informations depuis
notre carte Arduino vers I’extérieur, mais relier un composant a une
broche, interroger 1’état du composant et renvoyer celui-ci a une LED
raccordée. Le comportement suivant doit étre ici de mise :

* bouton-poussoir non enfoncé — LED éteinte ;

¢ bouton-poussoir enfoncé — LED allumée.

231

vrolles.

|] o
| .

)18

5

20
Ll

right ©

L

T

! =

Y\

Ble]

232

Composants nécessaires

1LED rouge
e
\ 1 bouton-poussoir
— Baah— 1 résistance de 10 k2

——_— 1 résistance de 330 Q

/\\ Plusieurs cavaliers flexibles de couleurs et de lon-
queurs différentes

Code du sketch

Le code du sketch pour cet exemple est le suivant :

int ledPin = 13; //LED en broche 13
int buttonPin = 8; //Bouton-poussoir en broche
int buttonState; //Variable pour enregistrer

void setup(){
pinMode(ledPin, OUTPUT); //Broche LED en tan
pinMode(buttonPin, INPUT); //Broche bouton-pou

//gu’entrée

}

void loop(){
buttonState = digitalRead(buttonPin);
if(buttonState == HICGH)
digitalWrite(ledPin, HIGH);
else
digitalWrite(ledPin, LOW);
}

8

1?état du bouton

t que sortie

ssoir en tant

Quand vous avez transmis le code, compilez-le comme vous avez

appris et envoyez-le au microcontroleur.

Partie Il : Les montages

i1

) Pouraller plus loin

Une broche numérique opére de maniére standard comme entrée et n'a donc
pas besoin d'étre programmeée en tant que telle au moyen de linstruction
pinMode. C'est cependant utile pour une meilleure vue d'ensemble. Vous
pouvez malgré tout laisser tomber cette étape dans la mesure ol votre
meémaoire est juste et ol chaque octet compte.

Revue de code

Dans cet exemple, on voit d’emblée qu’on a affaire & plusieurs varia-
bles qui doivent étre déclarées et initialisées deés le début. Passons-le

en revue,
Variable Objet 4 Tableau -1 _
: : n Variables nécessaires et leur objet
ledPin Contient le numéro de broche pour la LED sur la broche de sortie
numérique 13.
buttonPin Contient le numéro de broche pour le bouton-poussoir sur la broche d'entrée
numérique 8.

buttonState Sert enregistrer I'état du bouton-pousseir pour une exploitation ultérieure,

. <« Figure 2-1
Démarrage :
boud Organigramme pour commander
e laLED
Y
TOU(h,E LED niveau HIGH —
enfoncée ?
LED niveau LOW —

L’organigramme se lit trés facilement. Lorsque I’exécution du sketch
arrive 4 la boucle sans fin loop, 1’état de la broche du bouton-poussoir
est continuellement interrogé et consigné dans la variable button
Sstate. Voici la ligne de code correspondante.

buttonState = digitalRead(buttonPin);

La variable est donc réinitialisée en permanence, et son comporte-
= ment varie selon I’état du bouton-poussoir. La syntaxe de I'instruc-
S tion digitalRead est indiquée dans la figure 2-2.

Montage 2 : Interrogation d'un capteur 233

234

Figure 22 p
L'instruction digitalRead

Figure 2-3 p
Interrogation par structure
de contrile if-else

Argument

Broche

((buttonPin) ;)

Instruction

Cette fonction n’est pas seulement appelée, mais nous renvoie égale-
ment une valeur de retour que nous pouvons mettre a profit. La valeur
est transmise A la variable buttonState au moyen de I'opérateur
d’affectation =. Les valeurs possibles peuvent étre soit HIGH, soit LOW et
sont ici aussi — comme vous 1’avez déja appris — des constantes qui
améliorent la lisibilité. Vous savez maintenant quelles valeurs se
cachent derriére, grice au montage n° 1. L’évaluation est effectuée a
la suite de I’interrogation par une structure de contrdle if-else (si-
alors-sinon).

if(buttonState == HIGH)
digitallWirite(ledPin, HIGH);
else
digitalWrite(ledPin, LOW);

L’instruction if évalue la condition entre parenthéses, laquelle peut
étre librement traduite comme suit: « Le contenu de la variable
buttonState est-il égal & HIGH ? Si oui, exécuter la ligne d’instruction
qui vient aussitdt aprés l’instruction if. Si non, poursuivre avec
I’instruction qui vient apreés le mot-clé else. »

Instruction Condition
| | |

" ((buttonState == HIGH))

((ledPin, HIGH))
Sinon
\

((ledPin, LOW);)

La figure 2-4 montre le mode de travail de cette structure de controle.

Partie Il : Les montages

015

20

False

True

Y

Instruction(s) Instruction(s)

-+

\J

Fin

Il existe une variante plus simple de la structure de contrdle if, dans
laquelle la branche else est absente. Nous y reviendrons plus tard.
Vous voyez donc que le déroulement d’un programme n’est pas
forcément linéaire. On peut y insérer des ramifications qui mettent
diverses instructions ou blocs d’instructions i exécution au moyen de
mécanismes d’évaluation. Un sketch n’agit pas seulement, mais
réagit également a des influences externes, par exemple des signaux
de capteur.

Attention!

Une erreur trés fréquente chez les débutants consiste a confondre opérateur
d'égalité et opérateur d'affectation, L'opérateur d'égalité == et l'opérateur
d'affectation = ont des missions complétement différentes, mais sont souvent
utilisés I'un a la place de l'autre. Le pire est que les deux modes d'écriture sont
utilisables et valables dans une condition. Voici I'utilisation correcte de l'opéra-
teur d'égalité

if(buttonState == HIGH)
Voici maintenant 'utilisation erronée de 'opérateur d'affectation :
if(buttonState = HIGH)

Comment se fait-il que ce mode d'écriture ne produise pas des erreurs ? C'est
trés simple : il s'ensuit une affectation de la constante HIGH (valeur numeérique 1)
a la variable buttonState. 1 n'étant pas une valeur nulle, elle est interprétée
comme étant true {vraie). Dans le cas d'une ligne de code if(true).., l'instruc-
tion qui suit est toujours exécutée. Une valeur numeérique 0 est évaluée comme

< Figure 2-4
Organigramme pour structure
de contréle if-else

Montage 2 : Interrogation d’un capteur

235

Figure 2-5 p
Carte Arduino avec un bouton-
poussoir sur la broche 8

236

false (fausse) dans C/C++ et toute autre différente de 0 est évaluée comme
true.

De telles erreurs sont difficiles a discerner et cela prend toujours énormément
de temps.

Schéma

Voyons d’abord le raccordement du bouton-poussoir a I’entrée numé-
rique. Je 1’ai branché sur la broche 8, de maniere & ce qu’il soit 1ége-
rement éloigné de la broche 13. I’aurais bien siir pu utiliser n’importe
quelle autre broche numérique.

Arduino 13,
12
pwm (1.
s 190 Bouto 50i
O PwM | outon-poussoir
. 8 B . T
- -
= b
S PWM e]
S PWM |——
S
PWM |2
L2,
L1
[O
Analog IN

ey

On voit ici que le bouton-poussoir est relié d’un c6té a la broche
numérique 8 et de 'autre a la tension de service de la carte Arduino,
soit 5 V. C’est 12 tout le probléme. Le circuit, tel que vous le voyez
ici, ne fonctionne pas comme vous 1’auriez peut-&tre imaginé. Si une
entrée n’est alimentée par aucun niveau défini sous une forme HIGH ou
Lok, le comportement dépend de facteurs divers, tels que par exemple
I’énergie statique provenant de I’environnement ou I’humidité de
I’air. Cela ressemble alors plus 4 un jeu de hasard qu’a un circuit
stable. Pour remédier a4 ce probléme, il existe diverses solutions dont
certaines vous seront données au fur et a mesure. Une résistance dite
pull-down est par exemple utilisée. Cette derniere tire littéralement le
niveau ou plutét le potentiel vers le bas. Comme un courant passe
également par cette résistance, celle-ci doit étre relativement forte.

Partie Il : Les montages

es.

i
IE

2015 Eyrol

yright ©

!

Cop

Le circuit de la figure 2-6 montre cette résistance, qui tire la broche 8
a travers ses 10 k€ (c’est la valeur empirique souvent utilisée dans la
littérature) vers la masse quand le bouton-poussoir n’est pas enfoncé.

Arduino 13
12
pwm Lo
PWM —190 - :
O PwM outon-poussoir
= 7 ¢ O O——
= e
= pwm -0
i 5
PWM |2
=
L2
0 < o
Analog IN GND -

L SEERL

Quand le bouton-poussoir est reliché, I’entrée numérique a donc un
niveau Low défini, clairement reconnu par le logiciel. Si, par contre, le
bouton-poussoir est enfoncé, la résistance fait chuter les +5 V de la
tension de service. Celle-ci est appliquée directement a la broche 8,
qui est alors dotée d’un niveau HIGH défini. Ces connaissances préala-
bles étant acquises, nous pouvons nous consacrer dorénavant au
circuit réel.

Arduino Q—m_ 1 .:1‘ 2
112, T W,
LED rouge
pwM L.
pwm 1O,
O pwM 2
o 8 ol
- 7 p
_-i-'_i pwM |-B Bouton-poussoir
= 5 -
& PWM e ——0
PWM |5
.2
1.
188 <
Analog IN o X

SR ELSL

Montage 2 : Interrogation d'un capteur

< Figure 2-6

Carte Arduino avec un bouton-
poussoir sur broche 8

et une résistance pull-down

<« Figure 2-7

(arte Arduino avec le circuit
complet pour bouton-poussoir
etLED

237

E'}”'O| Y

015

2

ght ©

Copyri

Figure 2-8 p-
LED avec résistance série et valeurs
du courant et de la tension

238

Excusez-moi de vous interrompre 4 nouveau mais quelque chose me
turlupine. Dans le montage n° 1, vous avez utilisé une résistance de
220 ohms comme résistance série. Celle utilisée ici fait par contre
330 ohms. Ca ressemble encore & un jeu de hasard. Que dois-je prendre
au juste ?

Cette question se justifie et je me dois d’y répondre. Je vais vous
montrer comment on calcule une résistance série qui marche bien et
ne pose aucun probléme dans un circuit. La figure 2-8 montre un
circuit avec une LED et une résistance série, ainsi que les valeurs du
courant et de la tension correspondantes.

Il-wale
+5V0O— — A
>
&l Uge=?V
| B v
......... e, U= +5V
()
L Uiep =2V
4, —l
GND O-—' C v v

Pour calculer la valeur d’une résistance, on utilise de nouveau la loi
d’Ohm. J’ai déja adapté la formule générale a la résistance R a déter-
miner.

R=

~ |

Mais comment déterminer le courant et la tension ? C’est treés simple :
+5 V sont appliqués a la résistance et a la LED, lesquelles sont
montées en série. Cette tension est délivrée par la sortie d’une broche
Arduino.

Partie Il : Les montages

Aux bornes de la LED, on a normalement entre les points B et C une
chute de tension d’environ +2 V, selon la LED utilisée et sa couleur.
La tension aux bornes de la résistance série — donc entre les points A
et B — est par conséquent la différence entre +5 V et +2 V, soit +3 V.
Reste a4 connaitre la grandeur du courant qui passe par la résistance et
la LED. Rappelez-vous que le courant passant par tous les compo-
sants €lectroniques est le méme dans un montage en série. La fiche
technique de la carte Arduino nous apprend que le courant maximal
fourni par une broche est de 40 mA. Cette valeur ne doit en aucun cas
étre dépassée, faute de quoi le microcontroleur peut en souffrir. C’est
pourquoi nous limitons le passage du courant en insérant cette résis-
tance série Ry dans le circuit. Il est cependant conseillé, pour plus de
sécurité, de ne pas prendre 40 mA, mais une valeur 1égérement infé-
rieure. Pour calculer la résistance série, j'utilise ici deux valeurs de
courant différentes soit 5 mA et 10 mA, des valeurs situées entre 5 et
30 mA sont courantes pour une LED :

Uicn'ah' B ULED _ S5V-2V

R, = =300 Q
I 10 mA

et

R2 — Umra.’c B ULF.'D — S5V-2V - 600 Q

I, 5 mA

La valeur de la résistance série doit donc étre comprise entre 300 et
600 ohms pour que le port de sortie de la carte Arduino ne soit que
modérément sollicité. Des valeurs de résistance plus €élevées peuvent
bien siir étre prises pour limiter davantage le courant, mais cela se
traduirait par une baisse de luminosité pour une LED, or vous
souhaitez quand-méme voir encore qu’elle est allumée. I'ai choisi
dans tous les autres circuits une valeur de 330 ohms pour les LED
avec résistance série. Toutes les valeurs de résistance possibles ne
sont pas fabriquées, mais des E-séries sont proposées avec certaines
classes. Lorsque vous achetez des résistances —des assortiments
pratiques sont souvent proposés —, vous devez tenir compte égale-
ment de la puissance dissipée maximale. Des résistances avec une
puissance dissipée d’'/4 de watt sont ici largement suffisantes. Voici
la théorie. Mais il n’est pas question de mesures réelles sur 1’objet
actif.

J’ai branché un multimetre sur le circuit électrique de la commande
de LED pour mesurer le courant.

Montage 2 : Interrogation d’un capteur

239

Copyright © 2015 Eyrolles.

Figure 2-9 p

Mesure de courant sur circuit
électrique de commande de LED

avec résistance série

J’ai choisi une résistance série de 330 ohms pour limiter le courant a
10 mA maxi. Le multimétre affiche un courant de 8,58 mA, soit prati-
quement la valeur annoncée de 10 mA. La différence est due aux tolé-
rances des composants et se veut méme un plus faible que prévu.

Réalisation du circuit

La réalisation du circuit est déja un peu plus complexe, ¢’est pourquoi
nous allons nous servir de Fritzing (voir chapitre 6). Cet outil vrai-
ment trés utile est disponible sur le site Internet http://fritzing.org. 1l
va nous aider a construire le circuit et assembler les composants élec-
troniques sur un document de travail. Vous pouvez télécharger ce
logiciel gratuitement et 1’utiliser pour vos projets.

@

Partie Il : Les montages

Q

E Y rol

015

2

right ©

Copy

“e LED
avee résistance
série

ik Bouton-poussoir
avec résistance
pull-down

») Pouraller plus loin
Au cas ou vous auriez oublié comment les différentes prises femelles d'une
plague d'essais sont reliées entre elles, consultez la section « La plaque d'essais
sans soudure (breadboard) » du chapitre 7, page 155.

Problémes courants

Si la LED ne s’allume pas quand le bouton-poussoir est enfoncé ou si
la LED reste allumée, débranchez le port USB de la carte pour plus de
sécurité et vérifiez ce qui suit.
* Vos fiches de raccordement sur la maquette correspondent-elles
vraiment au circuit ?

* La LED a-t-elle été mise dans le bon sens, autrement dit sa pola-
rité est-elle correcte ?

¢ Les boutons—poussoir peuvent étre 2 2 ou 4 connexions. S’il
s’agit d’'un modele a 4 connexions, ont-elles été correctement
branchées ? Faites, le cas échéant, un essai de continuité avec un
multimetre et vérifiez ainsi I’adéquation du bouton-poussoir et
des pattes correspondantes.

* Les deux résistances ont-elles bien les bonnes valeurs ou celles-
ci ont-elles été interverties par mégarde ?

¢ Le code du sketch est-il correct ?

< Figure 2-10
Réalisation du circuit avec Fritzing

Montage 2 : Interrogation d'un capteur

4

242

Figure 2-11 p
Circuit avec une résistance
pull-down

Tableau 2-2 p
Potentiels de la broche

Autres possibilités
pour des niveaux d'entrée définis

Avant de clore ce projet, je vais vous montrer d’autres possibilités
d’avoir un niveau d’entrée défini sur une broche quand aucun signal
ne lui est appliqué depuis I’extérieur. Les trois variantes suivantes
sont importantes pour nous.

Avec une résistance pull-down

Vous avez déja utilisé ce circuit.

5V

T
8
T ~Broch®

QPUdOWH

Quand le bouton-poussoir est ouvert, la broche d’entrée de votre
microcontroleur est au potentiel de la masse du fait de la résistance
pull-down. Si le bouton-poussoir est fermé, la tension d’alimentation
de +5 V est connectée sur la broche d’entrée.

Etat du bouton-poussoir Potentiel de la broche

Quvert 0V (masse, niveau LOW)

Fermé +5 V (tension d'alimentation, niveau HIGH)

Tout ce qui fonctionne avec une résistance connectée a la masse peut
aussi étre réalisé avec une résistance connectée a la tension d’alimen-
tation. Les potentiels sont alors exactement inversés.

Partie Il : Les montages

< Figure 2-12
Circuit avec une résistance pull-up

GHD

Quand le bouton-poussoir est ouvert, la tension de service de +5 V est
appliquée via la résistance pull-up a la broche d’entrée de votre
microcontroleur. Si le bouton-poussoir est fermé, la broche est immé-
diatement reliée au potentiel de masse.

Etat du bouton-poussoir Potentiel de la broche < Tah!eau 23
Potentiels de la broche

Ouvert +5V (tension d‘alimentation, niveau HIGH)
Fermé 0V (masse, niveau LOW)

Avec la résistance pull-up
du microcontroéleur

Une résistance pull-down ou pull-up séparée est en fait superflue car
votre microcontroleur dispose déja de résistances pull-up internes incor-
porées aux broches numériques, qui peuvent étre également mises en
service par logiciel le cas échéant. On peut les imaginer comme suit :

< Figure 2-13
+5V Résistance pull-up interne
du microcontroleur

Sance pull-up interne

Rt

Interrupteur

Broche>

N 10

Arduino

Montage 2 : Interrogation d'un capteur 243

J’ai choisi dans cet exemple la broche 10, a laquelle par exemple
votre bouton-poussoir est relié. On peut voir que la résistance pull-
up R relie la broche 10 a la tension d’alimentation de +5 V via un
interrupteur €lectronique. La question est maintenant de savoir
comment cet interrupteur peut étre fermé pour que la broche présente
un niveau HIGH en l’absence de signal d’entrée. Les instructions
suivantes sont ici nécessaires :

pinMode(pin, INPUT); //Programmer la broche comme entrée

o~

digitalWrite(pin, HIGH); //Activer la résistance pull-up interne

Eh 1a, pas si vite ! I1 y a quelque chose qui cloche. Vous programmez
une broche en tant qu’entrée parce que vous voulez y raccorder un
]

bouton-poussoir. Jusque-1a, ¢a va. Mais vous envoyez quelque chose
avec digitalWrite & cette méme broche qui n'a pas été programmée en
tant que sortie. Qu’est-ce que ca veut dire ?

C’est ca le truc. La séquence d’instructions en question vous permet
d’activer la résistance pull-up interne de 20 k€, laquelle fixe le
potentiel & +5 V lorsque aucun signal n’est appliqué a I’entrée.

(M) Attention!
Si vous choisissez une des deux variantes (résistance pull-up interne ou
externe), vous devrez modifier légérement votre code. Réfléchissez un peu
avant de poursuivre votre lecture, Si le bouton-poussoir est relaché, un niveau
LOW est appliqué a I'entrée de la broche quand vous travaillez avec une résis-
tance pull-down. Le test, pour savoir si le bouton-poussoir est enfoncg,
s'effectue au moyen de la ligne suivante :

if(buttonState == HIGH)

Jusqu'ici, tout va bien, Mais si vous travaillez maintenant avec une résistance
pull-up, qui génére un signal HIGH quand le bouton-poussoir est ouvert, vous
devez écrire la ligne :

if(buttonState == LOW)

dans laguelle vous avez remplacé HIGH par LOW. Compris ?

) Pouraller plus loin
Pour compléter ce chapitre, vous pouvez effectuer une recherche sur Internet

Ui ;

@ sur les mots-clés :

Is) -

£ . résistance pull-up ;
(L ‘.

& . résistance pull-down.
i

&

&

A=

Partie Il : Les montages

Copy
[=)
®

Copy

Qu’'avez-vous appris ?

Vous avez appris a utiliser plusieurs variables qui peuvent servir
a diverses choses : déclaration pour broche d’entrée ou de sortie
et enregistrement des informations d’état.

Les broches numériques sont programmées implicitement
comme entrées et n’ont pas besoin d’étre explicitement program-
mées en tant que telles.

Vous avez appris la fonction digitalRead, qui renvoie LOW ou HIGH
a une entrée numérique en fonction du niveau appliqué. Cette
valeur doit étre affectée 4 une variable pour pouvoir étre utilisée
ultérieurement.

Vous avez vu comment on peut contrdler le déroulement d’un
sketch a I’aide de la structure de contrdle if-else.

Différents schémas vous ont montré comment on représente
graphiquement les connexions entre des composants électroni-
ques.

Une entrée numérique non connectée d’un composant €lectro-
nique, dont le niveau n’est pas défini (HIGH ou LoW), conduit géné-
ralement & un comportement aléatoire et donc imprévisible du
circuit.

Aussi vous ai-je expliqué comment on utilise des résistances
pull-down et pull-up, qui imposent un potentiel défini.

Le microcontréleur dispose de résistances pull-up internes de
20 k€2, qui peuvent étre activées via le logiciel. Vous pouvez
ainsi vous épargner 1’ajout de résistances pull-up externes.

Le calcul d’une résistance série pour une LED ne vous pose
maintenant plus aucun probléme.

Si vous n’avez pas lu le chapitre 6, vous avez fait la connais-
sance de I’outil Fritzing qui vous permet d’obtenir trés rapide-
ment des résultats dans la création de circuits par glisser-
déposer.

Exercice complémentaire

Dans cet exercice, je souhaiterais vous présenter une tiche consistant
a faire un pull de niveau numérique. Pull signifie « tirer » et c’est
précisément ce que fait une résistance pull-down.

Montage 2 : Interrogation d’un capteur

245

Mais le sens contraire est tout aussi possible. Une résistance pull-up
permet de tirer un niveau vers le haut en direction de la tension
d’alimentation. Voici a présent un troncon de circuit que vous
connaissez déja :

Figure2-14p .:=v
Résistance pull-up

O

Pull-up

SO

pouton-pous

GND

Programmez votre sketch de telle sorte que le circuit fonctionne
comme indiqué. La LED s’allume quand le bouton-poussoir est
enfoncé. Elle s’éteint des qu’il ne ’est plus. Le point Broche dans le
circuit est ici relié a la broche 8 de votre carte Arduino. La commande
de la LED demeure inchangée.

246 Partie Il : Les montages

Clignotement
avec gestion
des intervalles

Au sommaire :

¢ la déclaration et I'initialisation de plusieurs variables ;

¢ la programmation de plusieurs broches aussi bien comme entrée
(INPUT) que comme sortie (OUTPUT) ;

¢ I’instruction digitalRead() ;

¢ l'instruction millis() ;

¢ Tutilisation de la structure de contrdle if-else ;
¢ le sketch complet ;

* I’analyse du schéma ;

*]a réalisation du circuit ;

* un exercice complémentaire.

A z sur le bouton- ir
efﬁl:)élggliu € Douton-pousso
Dans notre premier exemple, nous avons vu comment interrompre
I’exécution d’un sketch avec la fonction de retardement delay. La
LED reliée a la broche de sortie numérique 13 clignotait & intervalles
réguliers. Un tel circuit ou une telle programmation présente cepen-
dant un inconvénient que nous entendons déceler et éliminer. Pour
cela, il faut approfondir un peu le circuit clignotant. Que se passerait-

il si vous branchiez en plus un bouton-poussoir sur une entrée numé-
rique pour interroger continuellement son état ?

Une LED est censée s’allumer si vous appuyez sur le bouton-pous-
soir. Peut-étre voyez-vous déja ou je veux en venir ? Tant que

Montage

247

vrolles.

{ s
| .

)1E

o

20
Ll

(&)

right

Y
DY

I’exécution du sketch est prisonniere de la fonction delay, le traite-
ment du code est interrompu et 1’entrée numérique ne peut étre inter-
rogée. Vous appuyez donc sur le bouton-poussoir et rien ne se passe.

Composants nécessaires

1 LED rouge

1 LED jaune

1 bouton-poussoir

1 résistance de 10 kC2

2 résistances de 330 Q2

Plusieurs cavaliers flexibles de couleurs et de
longueurs différentes

Code du sketch

Le code du sketch suivant ne fonctionne pas comme nous I’aurions
voulu.

//Le code suivant ne fonctionne pas comme prévu

int ledPinBlink = 13; //LED clignotante rouge en broche 13

int ledPinButton = 10; //LED de bouton-poussoir jaune en
//broche 10

int buttonPin = §; //Bouton-poussoir en broche 8

int buttonState; //Variable pour enregistrement

//de 1"état du bouton-poussoir
void setup(){
pinMode(ledPinBlink, OUTPUT); //Broche LED clignotante comme sortie
pinMode(ledPinButton, OUTPUT);//Broche LED de bouton-poussoir comme
//sortie
pinMode(buttonPin, INPUT); //Broche bouton-poussoir comme entrée

}

void loop(){

//Faire clignoter la LED clignotante

Partie Il : Les montages

Col

L

digitalWrite(ledPinBlink, HIGH);
delay(1000);

digitalWrite(ledPinBlink, LOW);
delay(1000); //Atter

InterTro on de 1’état du bouton-poussoir

buttonState = digitalRead(buttonPin);

if(buttonState == HIGH)

digitalWrite(ledPinButton, HIGH); //LED jaune au niveau HIGH (5 V)
else

digitalWrite(ledPinButton, LOW); //LED jaune au niveau LOW (0 V)

Il y a quelque chose que je ne comprends pas. L’exécution repasse bien
a4 un moment donné sur la ligne d’interrogation du bouton-poussoir
dans la boucle sans fin. L’état est alors bien interrogé correctement.

Vous avez tout compris : 1’expression « a un moment donné » sied ici
a merveille ! Vous voulez cependant que le traitement du code
réagisse a tout moment et pas seulement 4 un moment donné quand
I’exécution reparait. Les fonctions delay entravent bien quasiment la
poursuite du sketch. C’est compris ? Je vous montre le comportement
sur un chronogramme, ou figurent les trois signaux pertinents, ceux
de la LED clignotante (broche 13), du bouton-poussoir (broche 8) et
de la LED du bouton-poussoir (broche 10).

<« Figure 3-1
Chronogramme des signaux
sur les broches 13, 8 et 10

Regardez le signal jaune qui représente 1’état du bouton-poussoir. I’ ai
beau appuyer plusieurs fois sur ce dernier, le signal rouge sur la
broche 10 ne réagit pas au début. Si je maintiens cependant le bouton-
poussoir enfoncé pendant un temps plus long (& I’endroit signalé par
un A), le signal de la broche 10 finit par passer lui aussi au niveau
HIGH. Mais pourquoi ne s’est-il rien passé a l'endroit signalé par
un B ? Je maintiens pourtant bien aussi le bouton-poussoir enfoncé

pendant un temps plus long.

Montage 3 : Clignotement avec gestion des intervalles 249

2015 Eyrolles.

Copyright ©

250

C’est tres simple ! Vous avez deux activations de delay et la deuxiéme
sert 4 faire durer le niveau LoW. Une fois ce délai écoulé, 1I’état du
bouton-poussoir est interrogé trés brievement, c’est-a-dire précisé-
ment au moment ol le niveau passe de LOW & HIGH. Le niveau sur la
broche 10 réagit donc toujours au flanc montant (A) et ne réagit pas
au flanc descendant (B). C’est simple, non ? Toujours est-il que nous
devons ici renoncer a delay et choisir une autre solution, comme le
montre I'exemple suivant. Ne vous en faites pas pour les lignes de
code car nous allons le développer progressivement :

int ledPinBlink = 13; //LED clignotante rouge en broche 13
int ledPinButton = 10; //LED de bouton-poussoir jaune en broche 10

int buttonPin = 8; //Bouton-poussoir en broche 8

int buttonState; //Variable pour enregistrement de 1’état du
//bouton-poussoir

int interval = 2000; //Intervalle de temps (2 secondes)

unsigned long prev; //Variable de temps

int ledState = LOW; //Variable d’état pour la LED clignotante

void setup(){
pinMode(ledPinBlink, OUTPUT); //Broche LED clignotante comme sortie
pinMode(ledPinButton, QUTPUT); //Broche LED de bouton-poussoir comme

//sortie
pinMode (buttonPin, INPUT); //Broche bouton-poussoir comme entrée
prev = millis(); //Mémoriser le compteur de temps actuel

}

void loop(){
//Faire clignoter la LED clignotante via la gestion des intervalles
if((millis() - prev) > interval){
prev = millis();
ledState = !ledState; //Bascule état de la LED
digitalWrite(ledPinBlink, ledState); //Bascule la LED rouge
}
//Interrogation de 1’état du bouton-poussoir
buttonState = digitalRead (buttonPin);
if(buttonState == HIGH)
digitalWrite(ledPinButton, HIGH); //LED jaune au niveau HIGH (5 V)
else
digitalWrite(ledPinButton, LOW); //LED jaune au niveau LOW (0 V)

Revue de code

Vous voyez ici que les variables a déclarer et a initialiser au début
sont de plus en plus nombreuses. Faisons maintenant un peu le tour.

Partie Il : Les montages

Variable Objet

ledPinBlink Contient le numéro de broche pour la LED sur la sortie numérique broche 13.

ledPinButton Contientle numéro de broche pour la LED sur la sortie numérique broche 10.

buttonPin Contient le numéro de broche pour le bouton-poussoir sur I'entrée numéri-
que broche 8.

buttonState Sert a enregistrer I'état du bouton-poussoir pour une exploitation ultérieure.

interval Contient la valeur pour la gestion des intervalles.

prev Enregistre la valeur actuelle de la fonctionmillis.

ledState Mémorise I'état de la LED du bouton-poussoir.

Je commencerai par la gestion des intervalles car c’est le plus impor-
tant, Le diagramme de la figure 3-2 nous montre une évolution chro-
nologique avec certaines valeurs de temps marquantes. Je dois vous
expliquer auparavant certaines choses dans le code source. Il s’agit
d’une part de la nouvelle fonction millis, qui fournit en retour le
temps écoulé depuis le début du sketch actuel en millisecondes. 11
faut ici tenir compte de quelque chose d’important. Le type de la
donnée de retour est unsigned long, donc un type de nombre entier de
32 bits non signé dont le domaine de valeurs s’étend de 0 a
4294 967 295 (2% — 1). Ce domaine de valeurs est aussi vaste parce
qu’il doit étre en mesure de traiter des valeurs correspondant a une
période prolongée (49,71 jours maximum) sans débordement (dépas-
sement de capacité).

Pour aller plus loin

Un débordement signifie pour des variables que le maximum des valeurs que
leur type de données peut traiter a été dépassé et va maintenant recom-
mencer a 0. Pour le type de donnée byte, qui présente une donnée de 8 bits et
peut, par conséquent, stocker 2% = 256 états (de 0 a 255), un débordement se
produit au moment de l'action 255 + 1. Le type de donnée byte n'est plus en
mesure de traiter la valeur 256.

Trois autres variables ont été ajoutées par mes soins, dont les roles
sont les suivants :
¢ interval (enregistre en ms le temps applicable a I'intervalle de
clignotement) ;
* prev (enregistre en ms le temps actuellement écoulé. prev vient de
previous qui signifie précédent) ;
* ledstate (la LED clignotante est commandée en fonction de 1’ état
HIGH ou LOW).

< Tableau 3-1
Variables nécessaires et leur objet

Montage 3 : Clignotement avec gestion des intervalles

251

ac
o,

/roll

Fyv
Y

015

)
£

Copyright €

Figure 3-2 p e ntervalle= 2000 _
Evolution chronologique Chronol 0gi€ 1 Uﬁ 2000 ; 4000 5000

de la gestion des intervalles | | >
| | | t{ms]

Cotsoser]
1 >

I
Y >

.
3 >

[]
4 R

.

Analysons maintenant le diagramme, dans lequel j’ai pris au hasard
des moments marquants pour plus de clarté. Le temps ne s’écoule
évidemment pas réellement pendant ces étapes.

Tableau 3_'2 @l Moment Explication
Contenu des variables -~ . .

1 Le temps actuel en millisecondes (1000 dans le cas présent) est chargé dansla
variable prev. La chose se produit une seule fois dans la fonction setup. La diffé-
rencemillis() - prevdonne lavaleur 0 comme résultat. Cette valeur n'est
pas supérieure a la valeur d'intervalle 2 000. La condition n'est pas remplie et le

bloc if n'est pas exécuté.

dans |'évolution chronologique

2 1000 ms plus tard, la différencemillis () - prev estanouveau calculée etil
est vérifié que le résultat n'est pas supérieur a la valeur d'intervalle 2 000. 1000
n'étant pas supérieur a 2 000, la condition n'est toujours pas remplie.

3 1000 ms se sont encore écoulées, la différencemillis() - prev estanouveau
calculée etil est vérifié que le résultat n’est pas supérieur a la valeur d'intervalle
2000. 2 000 n'étant pas supérieur a 2 000, la condition n'est toujours pas remplie.

4 Aprés une durée de fonctionnement de 3 001 ms, la différence donne cependant
une valeur supérieure a la valeur d'intervalle 2 000. La condition est remplie et le
bloc i mis a exécution. L'ancienne valeur prev est remplacée par le temps actuel
provenant de lafonctionmillis. 'état dela LED clignotante peut étre inversé. Le
jeu reprend au début sur la base de la nouvelle valeur temps dans la variable prev.

252 Partie Il : Les montages

Pendant tout le déroulement, aucun arrét n’a été inséré a aucun
endroit sous la forme d’une pause dans le code source, si bien que
I’interrogation de la broche numérique 8 pour gérer la LED du
bouton-poussoir n’a été absolument pas génée.

Un pression sur le bouton-poussoir est presque simultanément
évaluée et affichée. La seule nouvelle instruction, qui s’ avere étre une
fonction délivrant une valeur en retour, se nomme millis.

Instruction 4 Figure 3-3

| Linstructionmillis
(millis () ;)

On voit qu’il n"accepte aucun argument et présente par conséquent
une paire de parentheses vides. Sa valeur de retour possede le type de
donnée unsigned long.

Une seule ligne me chagrine encore. Que signifie ledState = !ledState
et qu’entend-on par bascule ?

Vous allez plus vite que moi dites donc ! Mais qu’a cela ne tienne
puisque vous en parlez. La variable ledState stocke le niveau qui
commande la LED rouge ou plutot qui est en charge du clignotement
(HIGH pour allumée et LOW pour éteinte). La ligne suivante :

digitalWrite(ledPinBlink, ledState);

permet de commander la LED. Le clignotement est précisément
obtenu par un va-et-vient entre les états HIGH et LoW. Ce va-et-vient est
également appelé bascule. Je vais reformuler la ligne de maniére a la
rendre peut-étre plus claire.

if(ledState == LOW)
ledState = HIGH;
else
ledState = LOW;

La premiere ligne demande si le contenu de la variable ledState est
égal a Low. Si oui, il est mis sur HIGH ; sinon, il est mis sur LoW. Il s”agit
également d’une bascule d’état. La variante a une ligne suivante, que
o j’ai déja utilisée, est beaucoup plus courte.

/=, ledState = !ledState; //Bascule état de la LED

Montage 3 : Clignotement avec gestion des intervalles 253

Figure 3-4 p
Chronogramme des signaux
sur les broches 13, 8 et 10

Jutilise ici I’opérateur logique not, représenté par le point d’exclama-
tion. Il est souvent utilisé pour des variables booléennes qui ne
peuvent accepter que les valeurs logiques true ou false. Le résultat de
I’opérateur not est la valeur logique opposée a celle de I'opérande.
Ceci est également valable pour les deux niveaux HIGH et LOW.

Le port 8 est finalement interrogé tout a fait normalement et sans
retardement du bouton-poussoir.

buttonState = digitalRead(buttonPin);

if(buttonState == HIGH)
digitalWirite(ledPinButton, HIGH);
else

digitalWrite(ledPinButton, LOW);

Je vous montre i nouveau le comportement sur un chronogramme,
dans lequel les trois signaux en question — a savoir la LED clignotante
(broche 13), le bouton-poussoir (broche 8) et la LED de bouton-pous-
soir — sont représentés I'un en dessous de 1’autre de la méme maniere
que plus haut :

soscontporsssta |_ LI LILTLLILT L JL L

On voit que le signal bleu représente la LED clignotante sur la
broche 13. Si maintenant j’actionne a intervalles réguliers le bouton-
poussoir — représenté par le signal jaune — sur la broche 8, le signal
rouge de la LED du bouton-poussoir réagit aussitot. Aucun retard et
aucune interruption ne sont a observer. Le comportement du circuit
est exactement celul que nous voulions.

Partie Il : Les montages

Copyright © 2015 Eyrolles.

Schéma

La lecture du schéma ne devrait plus vous poser de probléme mainte-
nant. Seule une autre LED, censée réagir quand le bouton-poussoir
est enfoncé, a été ajoutée.

= 4 Figure 3-5
Arduino 15 I3} 1 .| 2 ~ (arte Arduino avec un bouton-
12 R LED ro?ge poussoir et deux LED
pwm |11,
pum 0.] . .1l 2. \: .
Q PWM % R LED jaune
- {TI0K_}
= L1 R
> owm 6 Bouton-poussoir
o PwM : O
L8,
PWM [
| 2 |
5.
-0 v 4
Analog IN Joy GND
a.nl ¢| ml ml ﬁl cl
F I - - d - -
Realisation du circuit
La plaque d’essais est maintenant un peu plus remplie.
< Figure 3-6

Construction du circuit avec Fritzing

LED de bouton-
POUssOIr avec
résistance série

LED
clignotante avec
résistance série

Bouton-poussoir
avec résistance
pull-down

Montage 3 : Clignotement avec gestion des intervalles 255

256

»

Pour aller plus loin

Comme vous avez pu le voir dans cette réalisation et aussi dans la précédente,
jutilise des cavaliers flexibles de couleurs différentes. Quand vous composez
des circuits sur votre plaque d'essais, je vous conseille d'utiliser également des
couleurs différentes. J'ai choisi par exemple le rouge pour la tension d'alimenta-
tion et le noir pour la masse. Les autres lignes de signal peuvent étre bleues,
jaunes ou méme rouges.

Il n'y pas de régle précise en la matiere, mais vous devriez constituer votre
propre systéme de couleurs afin de conserver une bonne vue d'ensemble. Cela
peut étre également utile aux personnes extérieures de trouver une maquette
congue proprement.

Problémes courants

Sila LED ne s’allume pas quand le bouton-poussoir est enfoncé ou si
la LED reste allumée, vérifiez ce qui suit.

* Vos fiches de raccordement sur la plaque d’essais correspon-
dent-elles vraiment au schéma ?

* Les LED ont-elles été mises dans le bon sens ? Pensez a la
polarité !

* Les boutons—poussoir peuvent étre a 2 ou 4 connexions. S’il
s’agit d’un modele a 4 connexions, ont-elles été correctement
branchées ? Faites, le cas échéant, un essai de continuité avec un
multimeétre et vérifiez ainsi ’adéquation du bouton-poussoir et
des pattes correspondantes.

* Les deux résistances ont-elles bien les bonnes valeurs 7 Ont-elles
été éventuellement interverties ?

* Le code du sketch est-il correct ?

Qu'avez-vous appris ?

¢ Vous savez utiliser plusieurs variables a des fins les plus diverses
(déclaration pour broche d’entrée ou de sortie et enregistrement
des informations d’état).

¢ L’instruction delay interrompt le déroulement du sketch et
instaure une pause, de telle sorte que toutes les instructions
subséquentes ne soient pas exécutées tant que le temps d’attente
n’est pas écoulé.

e Vous avez appris, & travers la gestion des intervalles avec la
fonction millis, un moyen permettant de maintenir malgré tout

Partie Il : Les montages

I’exécution continue du sketch de la boucle sans fin loop, de telle
sorte que d’autres instructions de la boucle loop soient exécutées
et qu'une utilisation d’autres capteurs, tels que le bouton-
poussoir raccordé, soit possible.

* Vous avez appris a lire divers chronogrammes, qui représentent
trés bien graphiquement les différents états de niveau dans la
courbe d’évolution temporelle.

Exercice complémentaire

Créez simplement un sketch qui allume la LED en cas de pression sur
le bouton-poussoir et qui 1’éteint en cas de nouvelle pression, et ainsi
de suite. Un cas épineux qui fera I’objet du montage suivant. Il se
peut que vous rencontriez un probléme que nous résoudrons plus tard.
Le mot-clé est rebond.

Montage 3 : Clignotement avec gestion des intervalles

257

'$9](04A3 §T0Z @ 1ybLAdOD

Montage

Le bouton-poussoir
récalcitrant

Dans ce montage, vous verrez qu’un bouton-poussoir, ou aussi un
interrupteur, ne se comporte pas toujours comme vous 1’auriez voulu.
Prenons pour exemple un bouton-poussoir qui, en théorie, ferme le
circuit tant qu’il reste enfoncé, et le rouvre quand il est relaché. Rien
de neuf en soi et rien de bien difficile & comprendre. Mais les circuits
électroniques, dont le réle consiste par exemple a4 déterminer le
nombre exact de pressions sur le bouton-poussoir pour une exploita-
tion ultérieure, posent un probleme dont on ne peut se douter au
départ.

Une histoire de rebond

Le mot-clé de ce montage est rebond. Appuyer sur un bouton-pous-
soir normal et méme le maintenir enfoncé revient a fermer le contact
mécanigue une seule et unique fois dans le bouton-poussoir. Ce n’est
pourtant pas le cas la plupart du temps, car le composant en question
ouvre et referme plusieurs fois le contact dans un intervalle de temps
tres court, de I’ordre de la milliseconde. Les surfaces de contact d’un
bouton-poussoir ne sont en général pas completement lisses, et on
peut voir de multiples aspérités et impuretés quand on les observe au
microscope électronique. Ainsi, les points de contact des matériaux
conducteurs ne se touchent pas instantanément et pas durablement au
moment du rapprochement. L’effet en question peut aussi étre obtenu
par vibration ou montage sur ressorts du matériau, le contact étant
alors brievement fermé puis de nouveau ouvert plusieurs fois 1'une
derriére 1’autre lors de la jonction.

Ln Ces impulsions délivrées par le bouton-poussoir sont enregistrées et £
C traitées en bonne et due forme par le microcontrleur, c’est-a-dire
comme Si vous appuyiez trés vite et trés souvent sur le bouton-pous-

Figure 4-1 p
Bouton-poussoir a rebond

260

soir. Ce comportement est bien slir génant et doit étre évité d’une
maniére ou d’une autre. Regardons maintenant le chronogramme de
plus pres.

ebond {Etatstable

J’ai appuyé une seule fois sur le bouton-poussoir et 1’ai ensuite main-
tenu appuyé, mais celui-ci a interrompu plusieurs fois la liaison
souhaitée avant que 1’état stable de la connexion ne soit atteint. Cette
suite de fermetures et d’ouvertures du circuit jusqu’a ce que le niveau
HIGH définitif souhaité soit atteint est appelée rebond. Ce comporte-
ment peut aussi se constater dans 1’opération inverse. Si je reliche le
bouton-poussoir, plusieurs impulsions peuvent éventuellement étre
générées jusqu’a ce que j obtienne enfin le niveau LOW souhaité. Le
rebond du bouton-poussoir est a peine perceptible voire carrément
invisible par I’eeil humain et si un circuit censé commander une LED
quand le bouton-poussoir est enfoncé était construit, les différentes
impulsions se verraient comme un niveau HIGH du fait de la persis-
tance oculaire. Essayons donc une autre solution. Nous pourrions
construire un circuit avec un bouton-poussoir sur une entrée numé-
rique et une LED sur une autre sortie numérique.

Mais il n'y a rien de nouveau la-dedans. Qu’est-ce que ¢a apporte ?
Vous venez de dire que ce type de rebond possible ne se voyait pas dans
un circuit.

Notre circuit n’est pas le seul composant. Il y a certes le matériel mais
il y a aussi le logiciel et nous entendons le configurer de telle sorte
que la LED s’allume a la premiére impulsion. Elle doit s’éteindre a
I"impulsion suivante et se rallumer a celle d’apres et ainsi de suite.
Nous avons donc affaire & une bascule du niveau logique. Si mainte-
nant plusieurs impulsions sont enregistrées par le circuit ou plutét par
le logiciel quand le bouton-poussoir est appuyé, la LED change alors
plusieurs fois d’état.

Dans le cas d’un bouton-poussoir sans rebond, les états doivent étre
tels que représentés dans le diagramme de la figure 4-2.

Partie Il : Les montages

4 Figure 4-2

Changement du niveau de la LED
pour un appui sur le bouton-
poussoir

On voit que dans le cas de multiples appuis sur le bouton-poussoir (flanc
montant), lesquels sont ici indiqués par un A, I’état de la LED bascule.
Comment faire pour que le logiciel se charge de I'exécution ? Voyons
maintenant la liste des composants.

Composants nécessaires

Pour le circuit suivant, j’ai trouvé un ancien bouton-poussoir dans
mon bric-a-brac qui, lui, rebondira a coup siir énergiquement. Les
nouveaux boutons—poussoir disponibles peuvent présenter une
protection mécanique contre le rebond avec un point d’appui recon-
naissable. Quand on appuie dessus, on peut entendre un léger claque-
ment. Cela indique que le contact a été fermé avec une pression ou

une vitesse plus élevée de maniére a empécher ou minimiser le
rebond.

/ 1LED rouge

1 bouton-poussoir (sans protection antirebond)

' b 1 résistance de 330 Q2

— g 1 résistance de 10 kQ2

/’\ Plusieurs cavaliers flexibles de couleurs et de
longueurs diverses

Montage 4 : Le bouton-poussoir récalcitrant 261

2015 Eyrolles.

Code du sketch

Le code du sketch est le suivant pour cet exemple.

int buttonPin = 2; //Bouton-poussoir en broche 2
int buttonValue = 0; //Variable pour enregistrer 1’7état du bouton-
//poussoir
int previousButtonValue = 0; //Variable pour enregistrer 1’ancien
//état du bouton-poussoir

int ledPin = 8; //LED en broche 8

int counter = 0; //Variable de compteur

void setup(){
pinMode(buttonPin, INPUT); //Broche bouton-poussoir comme entrée
pinMode(ledPin, OUTPUT); //Broche LED comme sortie

}

void loop(){
buttonValue = digitalRead (buttonPin); //Interrogation du
//bouton-poussoir
//La valeur précédente du bouton-poussoir est-elle différente
//de la valeur actuelle ?
if(previousButtonValue != buttonValue){
if(buttonValue == HIGH){
counter++; //Incrémentation du compteur (+1)
}
}
previousButtonValue = buttonValue; //Sauvegarde de la valeur
//actuelle du bouton-poussoir
if(counter % 2 == 0) //La variable du compteur est-elle un
//nombre pair ?
digitalWrite(ledPin,HIGH);
else
digitalWrite(ledPin,LOW);
}

Le code ne semble pas trés compliqué a premiére vue, mais il est cette
fois-ci un peu plus subtil. Vous allez bientdt voir dans quelle mesure.

Revue de code

On commence ici aussi par déclarer et initialiser une série de varia-
bles globales.

Copyright ©

Partie Il : Les montages

/rolles.

Fyv
Y

2015

\

Copyright €

buttonPin (ette variable contient le numéro de broche pour le bouton-poussoir (2).
buttonValue Cette variable enregistre I'état du bouton-poussoir.
previousButtonValue (ette variable sert a enregistrer |'état précédent du bouton-poussoir.
ledPin Cette variable contient le numéro de broche pour la LED (8).

Counter Cette variable mémorise les niveaux HIGH de I'état du bouton-poussoir.

L’initialisation des différentes broches au sein de la fonction setup ne
nécessitant aucune explication supplémentaire, passons directement a
la fonction loop. Le niveau sur la broche du bouton-poussoir est conti-
nuellement interrogé via la fonction digitalRead et sauvegardé dans la
variable buttonValue :

buttonValue = digitalRead(buttonPin) ;

La tiche du sketch consiste cependant & détecter chaque appui —
représenté par un niveau HIGH — sur le bouton-poussoir, et a incré-
menter en conséquence une variable de compteur. Normalement, les
lignes de code suivantes devraient suffire.

void loop(){
buttonvalue = digitalRead(buttonPin); //I

if(buttonValue == HIGH){
counter++; //Incrémentation du compteur (+1)

-

Seulement le code comporte une erreur critique. La variable de comp-
teur est incrémentée a chaque nouveau passage de la fonction loop
quand le bouton-poussoir est enfoncé, et plus vous appuyez long-
temps sur le bouton-poussoir, plus la variable est incrémentée. Mais
le contenu de la variable ne doit étre incrémenté que de 1 quand le
bouton-poussoir est enfoncé. Comment faire pour modifier ce
comportement du code ? La solution est en fait trés simple. Il suffit de
sauvegarder temporairement le niveau sur la broche du bouton-pous-
soir dans une variable apreés chaque interrogation. La nouvelle valeur
est alors comparée a 1’ancienne lors de I'interrogation suivante. Si les
deux niveaux sont différents, vous devez simplement vérifier que la
nouvelle valeur correspond au niveau HIGH, car ce sont eux qu’il faut
décompter. Le nouveau niveau du moment est ensuite sauvegardé
temporairement pour la prochaine comparaison, et tout reprend
depuis le début.

4 Tableau 41
Variables nécessaires et leur objet

Montage 4 : Le bouton-poussoir récalcitrant

263

yrolles.

5

|] o
| .

)1E

20
Ll

T

right ©

s
—opy

L

Tableau 4-2 p
Division de nombres entiers par 2

Mais si le compteur est incrémenté a chaque appui sur le bouton-pous-
soir, comment fait-on pour allumer ou éteindre la LED ? Celle-ci doit
pourtant s’allumer a chaque 1°, 3¢, 5¢, 7¢ appui, elc., et s'éteindre &
chaque 2¢, 4¢, 6¢, 8¢ appuli, etc.. sur le bouton-poussoir.

C’est précisément I’approche que nous avons utilisée pour résoudre le
probléme. Ce qu’il faut ¢’est évaluer d’une maniére ou d'une autre le
contenu de la variable du compteur. Ne remarquez-vous rien quand
vous regardez les valeurs responsables de "allumage de 1a LED ?

I’y suis ! Toutes les valeurs qui doivent faire allumer la LED sont
impaires et les autres sont paires.

Exactement, c’est la solution. Il nous faut donc trouver le moyen de
programmer quelque chose qui nous permette de tester la parité ou
I’imparité d’une valeur. Je vous donne une piste : quand vous divisez
un nombre par 2, vous avez un reste nul si le nombre est pair mais
vous en avez un non nul si le nombre est impair. Jetons maintenant un
coup d’ceil au tableau 4-2.

Division Résultat et reste de la division Reste nonnul ?

1/2 0 Reste 1 QOui
212 1Reste 0 Non
312 1Reste 1 QOui
4/2 2 Reste 0 Non
512 2 Reste 1 Qui
6/2 3 Reste 0 Non

On voit donc que seules des valeurs impaires donnent un reste non
nul. Un opérateur spécial est utilisé en programmation pour déter-
miner le reste. Il s’agit de I’opérateur modulo, qui est représenté par
le signe % La premicre des lignes de code vérifie si la valeur du
compteur est paire ou impaire :

if(counter % 2 == 0) //La variable de compteur est-elle un nombre
//pair ?
digitalWrite(ledPin, HIGH);
else
digitalWrite(ledPin, LOW);

La LED est allumée quand les valeurs sont paires, et éteinte quand
elles sont impaires.

&)

Partie Il : Les montages

(w

Attention!
Les opérandes de |'opérateur modulo % doivent étre d’'un type de donnée a
nombre entier, tel que par exemple int, byte ou unsigned int.

Voyons maintenant comment le circuit se comporte quand nous
appuyons plusieurs fois — disons toutes les secondes — sur le bouton-
poussoir. Le résultat est présenté dans le chronogramme de la figure 4-3.

Ce n’est certainement pas le comportement que nous avions prévu.
La LED ne bascule pas au rythme de 1’appui sur la touche, mais a le
comportement typique d’un bouton-poussoir ou d’un interrupteur a
rebond. Que faire pour que le rebond n’ait pas ce genre de consé-
quence sur le circuit ou le compteur ? Une des solutions consiste a
ajouter une temporisation pour diminuer le rebond. Ajoutez simple-
ment un ordre delay derriere I’évaluation du compteur :

if(counter % 2 == 0)
digitalWrite(ledPin, HIGH);
else
digitalWrite(ledPin, LOW);
delay(10);

Jai choisi ici une valeur de 10 millisecondes car elle convenait trés
bien pour mon bouton-poussoir. La valeur correcte ou optimale
dépend naturellement toujours de la vitesse a laquelle vous souhaitez
actionner le bouton-poussoir plusieurs fois d’affilée, de sorte que le
logiciel puisse encore réagir. Essayez différentes valeurs et choisissez
celle qui vous convient.

Schéma

Le schéma vous est certainement familier. Le logiciel utilisé est quant
a lui lIégerement différent.

Montage 4 : Le bouton-poussoir récalcitrant

< Figure 4-3

Changement du niveau de la LED
pour un appui sur le bouton-
poussoir

265

Figure 4-4 p- 2
(arte Arduino avec bouton-poussoir Arduino %)

|

et LED illustrant le rebond 12
pwM (11,
PWM 110,
E)\ PWM L8,
o I S
— __f].‘_.;
= 7 R . ,.H‘Q*
E —_— LED rouge
“— PWM 1 6,
o 5
PWM |——
= LS
PWM =
1 R
0 Bouton-poussoir
Analog IN e

TR &%

Autres possibilités
de compenser le rebond

Nous avons jusqu’ici proposé une possibilité de compenser le rebond
d’un composant mécanique tel que par exemple le bouton-poussoir.
Mais il en existe d’autres :

1. boutons—poussoir spéciaux qui n’ont pas de rebond et disposent
d’un point d’appui fixe ;

2. utilisation d’une bibliothéque spécialement prévue a cet effet,
appelée Bounce ;

3. par I'ajout d’un petit dispositif matériel basé sur un circuit RC.

Je souhaite m’arréter un peu sur le point 2. Si le point 3 vous intéresse
également, vous trouverez de nombreuses informations sur Internet.
Une bibliothéque, également appelée librairie, est un composant logi-
ciel développé par exemple par d’autres programmeurs pour résoudre
un probléme particulier. Pour ne pas réinventer la roue a chaque fois,
le code en question est conditionné sous forme de bibliothéque et mis
a disposition des autres utilisateurs. Si ces bibliothéques sont en acces
libre — et c¢’est la plupart du temps le cas pour I’environnement
Arduino —, vous pouvez les utiliser sans probléme dans votre projet.

Vous trouverez la bibliotheque Bounce sur hitp://www.arduino.cc/
- playground/Code/Bounce. Vous pouvez la télécharger sous forme

266 Partie Il : Les montages

d’un fichier .zip compressé. Décompressez-le dans le répertoire
arduino-1.x.y\libraries\, dans lequel figurent déja d’autres bibliothe-
ques livrées avec le logiciel Arduino. Vous devez alors obtenir une
structure de fichiers comme celle de la figure 4-5.

= .io/xi| < Figure4-5
A A e - B oo ¥ Structure de la bibliothéque Bounce
191 affichages = 4 Graver (7}
Dossiers v MNom = | -| Date demoif... || Taille || Type 1+
i . examples 0{12/2014 15:43 Dossier de fichiers
a'::m'l‘o“s & |_|.DS_Store 08/12/2011 15:48 7Ko Fichier O5_STORE
e &Bounce.cpp 08/12/2011 15:43 2Ko C++Source
|\ examples | 1] Bounee.h 05/11/2010 11:31 3Ko CfC++ Headsr
R = || doqumentation. txt 08/12/2011 15:48 1Ko Document texte
ava I_,k!vwcrds.b(t 05/11/2010 11:34 1Ko Document texte
L b
| foraries
Bounce
| examples
EEPROM
— = . =
|6 élements (espace fbre : 10,6:Go} e Crdinateur 4

Si maintenant vous programmez le sketch dans lequel vous utilisez
cette bibliotheque, vous étes assisté par I’environnement de dévelop-
pement et obtenez 1’ aide nécessaire aprés avoir inséré la bibliothéque
dans votre projet. Vous devez d’abord signaler d’une maniére ou
d’une autre a votre compilateur que vous souhaitez incorporer du
code étranger. Utilisez pour cela I'instruction de prétraitement
#include. Des explications plus précises vous seront bientdt données a
ce sujet. I vous suffit, apres avoir décompressé le code dans le réper-
toire en question, d’ajouter 'instruction #include en utilisant les
entrées du menu de I'IDE représentées a la figure 4-6.

Sketch| Tools Help 4 Figure 4-6
g Intégration de la hibliotheque

Verify / Compile Strg+R
Bounce dans votre sketch

Show Sketch Folder Strg+K

Add File...

Impest Library... 4 Bounce
EEPROM
Ethernet

Firmata

Par le menu Sketch>Import Library, on peut voir la liste de toutes les
v bibliothéques disponibles dans le répertoire libraries. On choisit
o I’entrée Bounce, ce qui €crit automatiquement la directive de prépro-
cesseur #include sur la premiere ligne de 1’éditeur. Apres cette ligne,
on écrit le code qui peut, par exemple, se présenter comme ce qui
suit :

Montage 4 : Le bouton-poussoir récalcitrant 267

#include <Bounce.h>
int ledPin = 12;
int buttonPin = g; //Bouton-poussoir en
int waitTime = 10; //Temps d’attente = 10 ms
Bounce debouncing = Bounce(buttonPin, waitTime);

//Générer un objet Bounce

void setup(){
pinMode(ledPin, OUTPUT); //Broche de
pinMode(buttonPin, INPUT); //Broche de bouton-poussoir comme entrée

}

void loop(){
debouncing.update(); //Mise a jour de
int Value = debouncing.read(); //Lecture valeur de mise a jour
if (Value == HIGH)
digitalWrite(ledPin, HIGH); //Allumer LED
else
digitalWrite(ledPin, LOW); //E

*antirebond

}

Vous saurez bientdt ce qu’est ici un objet. Prenez seulement le code
comme il est. Je vous conseille d’utiliser le code que nous avons créé
pour le circuit devant basculer la LED a chaque appui sur le bouton-
poussoir. Il convient mieux pour vérifier que la bibliotheque Bounce
fonctionne bien.

Pour aller plus loin
Pour compléter ce chapitre, vous pouvez effectuer une recherche sur Internet
sur les mots-clés :

- rebond bouton-poussoir ;

-+ antirebond.

Réalisation du circuit

Ayant déja construit un circuit similaire avec Fritzing (voir montage
n” 2), je n’ai pas besoin de le représenter ici.

Problémes courants

Si la LED ne s’allume pas ou ne bascule pas, plusieurs choses
i peuvent en étre la cause.

268 Partie Il : Les montages

¢ La LED peut avoir été mal polarisée. Rappelez-vous les deux
différentes connexions d’une LED que sont I'anode et la
cathode.

¢ La LED est peut-étre défectueuse et a été grillée par une surten-
sion lors des montages précédents. Testez-la avec une résistance
série sur une source d’alimentation de 5 V.

* Vérifiez les branchements de la LED et des composants sur votre
plaque d’essais.

» Vérifiez le sketch que vous avez entré dans 1’éditeur de I'IDE.
Peut-étre avez-vous oublié une ligne ou commis une erreur ou
peut-étre le sketch a-t-il mal été transmis ?

* Vérifiez le bon fonctionnement du bouton-poussoir utilisé avec
un testeur de continuité ou un multimetre.

Qu'avez-vous appris ?

* Vous savez maintenant que des composants mécaniques tels que
des boutons—poussoir ou des interrupteurs ne se ferment ou ne
s’ouvrent pas immédiatement. Plusieurs bréves interruptions
successives peuvent résulter par exemple de tolérances de fabri-
cation, d’impuretés ou de matériel en vibration, avant d’arriver a
un état stable. Ce comportement est enregistré et traité comme
tel par des circuits électroniques. Si par exemple vous devez
compter le nombre d’appuis sur le bouton-poussoir, ces impul-
sions multiples peuvent s’ avérer extrémement génantes.

* Ce comportement peut étre corrigé de différentes maniéres :

— par une solution logicielle (par exemple une stratégie de
temporisation lors de I’interrogation du signal d’entrée) ;

— par une solution matérielle (par exemple un circuit RC).

* Vous savez comment intégrer dans votre sketch une bibliotheque
externe créée par d’autres développeurs, et aussi ce qu’est la
directive de prétraitement #include.

Exercice complémentaire

Dans cet exercice, je voudrais que vous construisiez un circuit
commandant plusieurs LED. Disons qu’il doit en avoir au moins 5.
Le logiciel doit allumer une nouvelle LED dans la chaine a chaque
appui sur le bouton-poussoir. Le rebond est ainsi bien visible, quand

Montage 4 : Le bouton-poussoir récalcitrant

269

yrolles,

|] o
| .

J15

5

20
Ll

L

right ©

Y
DY

Ble]

270

Figure 4-7 p-
Bargraphe de type YBG 2000
avec 20 éléments de LED

en effet plusieurs LED s’allument directement lors d’un appui sur le
bouton-poussoir. Corrigez alors la programmation de telle sorte que
le rebond n’ait plus aucune incidence, et vérifiez-la avec le circuit.

Astuce

Vous pouvez utiliser un bargraphe a LED pour composer une chaine
avec beaucoup de LED commutées I'une derriere Iautre. Il existe
plusieurs versions, dans lesquelles les différentes LED sont idéale-
ment logées dans un boftier.

Certains composants peuvent comporter 10 et méme 20 éléments de
LED.

Une résistance série appropriée est ici aussi impérativement néces-
saire.

Partie Il : Les montages

Le sequenceur
de lumiére

Au sommaire :

¢ la déclaration et I’initialisation d’un tableau (array) ;

¢ la programmation de plusieurs broches comme sortie (OUTPUT) ;
*]’utilisation d’une boucle for ;

¢ le sketch complet ;

* I’analyse du schéma ;

¢ la réalisation du circuit ;

* un exercice complémentaire.

Qu’est-ce qu'un séquenceur
de lumiére ?

Vous maitrisez maintenant suffisamment les LED pour étre en
mesure de réaliser des montages ou clignotent plusieurs diodes élec-
troluminescentes. Ca n’a I'air de rien dit comme ¢a, mais ce n’est pas
si simple. Nous allons commencer par un séquenceur de lumiére, qui
commande une par une différentes LED. Dans ce montage, les LED
branchées sur les broches numériques devront s’allumer conformé-
ment au modele présenté sur la figure 5-1.

Montage

2n

Figure 5-1
Séquence d'allumage des 7 LED

LEDT LED2 LED3 LED4 LEDS LED6 LED7

58 tour

wr QOOOO@V)
= OO0O0000

A chaque tour, la LED s’allume une position plus a droite. Arrivé i la
fin, le cycle reprend au début. Vous pouvez programmer les diverses
broches, qui toutes sont censées servir de sortie, de différentes
maniéres. Dans 1’état actuel de vos connaissances, vous devez
déclarer sept variables et les initialiser avec les valeurs de broche
correspondantes. Ce qui pourrait donner ceci :

O
®
Q)
®

int ledPini = 7;
int ledPin2 = §;
int ledPin3 = 9;

u

Chaque broche doit étre ensuite programmée dans la fonction setup
avec pinMode comme sortie, ce qui représente aussi un travail de saisie
considérable :

pinMode(ledPin1, OUTPUT);
pinMode(ledPin2, OUTPUT);
pinMode(ledPin3, OUTPUT);

Voici donc la solution. Je voudrais vous présenter un type intéressant
de variable, capable de mémoriser plusieurs valeurs du méme type de
donnée sous un méme nom.

Vous rigolez | Comment une variable peut-elle mémoriser plusieurs
valeurs sous un seul et méme nom ? Et comment dois-je faire pour
sauvegarder ou appeler les différentes valeurs ?

Partie Il : Les montages

272

Patience ! C’est possible. Cette forme spéciale de variable est appelée
tableau (array). On n’y accede pas seulement par son nom évocateur,
car une telle variable posséde aussi un index. Cet index est un nombre
entier incrémenté. Ainsi, les différents éléments du tableau — c’est le
nom donné aux valeurs stockées — peuvent étre lus ou modifiés. Vous
allez voir comment dans le code du sketch ci-apres.

Composants nécessaires

7 LED rouges
—_-y—— 7 résistances de 330 Q

//\\ Plusieurs cavaliers flexibles de couleurs et de
longueurs diverses

Code du sketch

Voici le code du sketch pour commander le séquenceur de lumiére a
sept LED :

leau de LED avec

int ledpin[] = {7, 8, 9, 10, 11, 12, 13}; //Tab!

s des broches

int waitTime
void setup()
{
for(int 1 = 0; 1 < 7; i+4)
pinMode(ledPin[i], OUTPUT); //T

[
e
(=]
o

A"

5 BN ms

5 les broches du tableau comme

//sorties
}
void loop()
{
for(int 1 = 0; 1 < 7; i++)
{ =
digitalWrite(ledPin[i], HIGH); //Elément du tableau au niveau HIGH
delay(waitTime);
digitalWrite(ledPin[i], LOW); //Elément du tableau au niveau LOW
}
}

Montage 5 : Le séquenceur de lumiére

273

Tableau 5-1 p

Variables nécessaires et leur objet

274

Figure 5-2 p
Déclaration du tableau

Revue de code

Les variables suivantes sont techniquement nécessaires 4 notre
programmation expérimentale.

Variable Objet

ledPin Tableau pour enregistrer les différentes broches sur lesquelles les LED sont bran-
chées.

waitTime Contient le temps d'attente entre les changements de LED (en ms).

Dans le sketch du séquenceur de lumiére, vous rencontrez pour la
premiere fois un tableau et une boucle. Cette derniere est nécessaire
pour accéder confortablement aux différents éléments du tableau par
le biais des numéros de broche. D une part les broches sont toutes
programmées en tant que sorties, et d’autre part les sorties numéri-
ques sont sélectionnées. L’acces a chaque élément se fait par un index
et comme la boucle utilisée ici dessert automatiquement un certain
domaine de valeurs, cette construction est idéale pour nous.
Commencons par la variable de type array. La déclaration ressemble a
celle d’une variable normale, & ceci prés que le nom doit étre suivi
d’une paire de crochets.

Type de donnée Nom du tableau Dimension

|
] 1
(ledPin[7] ;)

* Le type de donnée définit quel type les différents éléments du
tableau doivent avoir.

* Le nom du tableau est un nom évocateur pour accéder a la
variable.

¢ Le nombre entre les crochets indique combien d’éléments le
tableau doit contenir.

Vous pouvez imaginer un tableau comme un meuble a plusieurs
tiroirs. Chaque tiroir est surmonté d’une étiquette portant un numéro
d’ordre. Si je vous donne par exemple pour instruction d’ouvrir le
tiroir numéro 3 et de regarder ce qu’il y a dedans, les choses sont
plutét claires non ? Il en va de méme pour le tableau.

Partie Il : Les montages

Index 0] 2.3 4 5 b

e (0 (0)0 J{0J(0)0 J(0)

du tableau

Tous les éléments de ce tableau ont été implicitement initialisés avec
la valeur o apres la déclaration. L’initialisation peut toutefois étre
faite de deux maniéres différentes. Nous avons choisi la maniére
facile et les valeurs, dont le tableau est censé étre pourvu, sont
énumérées derriere la déclaration entre deux accolades et séparées par
des virgules :

int ledPin[] = {7, 8, 9, 10, 11, 12, 13};

Sur la base de cette ligne d’instruction, le contenu du tableau est le

suivant.
Index 0 1 2. .3 4 5 6
oens (7)(8)(9 J(10])(11)(12)(13]
du tableau

N’avons-nous pas oublié quelque chose d’important ? Dans la déclara-
tion du tableau, il n’y a rien entre les crochets. La taille du tableau
devrait pourtant y étre indiquée.

C’est vrai, mais le compilateur connait déja dans le cas présent — par
les informations fournies pour l’initialisation faite dans la méme
ligne — le nombre d’éléments. Aussi la dimension du tableau n’a-t-
elle pas besoin d’étre indiquée. L’initialisation, quelque peu fasti-

dieuse, consiste a affecter explicitement les différentes valeurs a
chaque élément du tableau :

int ledPin[7]; //Déclaration du tableau avec 7 éléments
void setup()
{

ledPin[o] = 7;

ledPin[1] = 8;

, ledpin[2] = 9;
@ ledPin[3] = 10;
I ledPin[4] = 11;
> ledPin(s] = 12;
L = 13;

ledPin[6]

— /]

Montage 5 : Le séquenceur de lumiére 275

276

Figure 5-3 p
Boucle for

Attention!

L'index du premier élément du tableau est toujours le chiffre 0. 5i, par exemple,
vous déclarez un tableau de 10 éléments, l'index admis le plus élevé sera le
chiffre 9 — soit toujours un de moins que le nombre d'éléments.

Si vous ne vous en tenez pas a cette régle, vous pouvez provoquer une
erreur a ['exécution que le compilateur, qui se cache derrieére 1'envi-
ronnement de développement, ne détecte ni au moment du dévelop-
pement ni plus tard pendant 1’exécution, c’est pourquoi vous devez
redoubler d’attention.

Venons-en maintenant a la boucle et regardons la syntaxe de plus

pres.

Instruction Initialisation Test Inerément

I I |

| | | | | | |
(for (i=0;1<7; i++))

La boucle introduite par le mot-clé for est appelée boucle for. Suivent
entre parenthéses certaines informations sur les caractéristiques-clés.

* Initialisation : a partir de quelle valeur la boucle doit-elle
commencer & compter ?

* Test : jusqu’a combien doit-elle compter ?

* Incrément : de combien la valeur initiale doit-elle étre modifiée ?

Ces trois informations déterminent le comportement de la boucle for
et définissent son comportement au moment de I’appel.

Pour aller plus loin

Une boucle for est utilisée la plupart du temps quand on connait au départ le
nombre de fois que certaines instructions doivent étre exécutées. Ces caracté-
ristiques sont définies dans ce que l'on appelle I'en-téte de boucle, qui corres-
pond a ce qui est entre parenthéses,

Mais soyons plus concrets. La ligne de code suivante :
for(int 1 = 0; 1 ¢ 7; i++)

déclare et initialise une variable i du type int avec la valeur o. L’ indi-
cation du type de donnée dans la boucle stipule qu'il s’agit d’une
variable locale qui n’existe que tant que la boucle for itére, c’est-a-
dire suit son cours. La variable i est effacée de la mémoire a la sortie
de la boucle.

Partie Il : Les montages

Le nom exact d’une telle variable dans une boucle est « variable de
controle ». Elle parcourt une certaine zone tant que la condition
(1 < 7) —désignée ici sous le nom de « test » — est remplie. Une mise
a jour de la variable est ensuite effectuée selon 1’expression de
I'incrément. L expression i++ ajoute la valeur 1 a la variable i.

Vous avez utilisé I'expression i++. Pouvez-vous m’expliquer exacte-
ment ce qu’elle signifie ? Elle doit augmenter la valeur de 1, mais son
écriture est étrange.

Les signes ++ sont un opérateur qui ajoute la valeur 1 au contenu de
I'opérande, donc a la variable. Les programmeurs sont paresseux de
naissance et font tout pour formuler au plus court ce qui doit étre tapé.
Quand on pense au nombre de lignes de code qu’un programmeur
doit taper dans sa vie, moins il y a de caractéres et mieux c’est. Il
s’agit aussi 4 terme de consacrer plus de temps a des choses plus
importantes — par exemple encore plus de code — en adoptant un
mode d’écriture plus court. Toujours est-il que les deux expressions
suivantes ont exactement le méme effet : i++; et i = i + 1;

Deux caracteéres de moins ont été utilisés, ce qui représente tout de
méme une économie de 40 %. Mais revenons-en au texte. La variable
de contrble i sert ensuite de variable d’index dans le tableau et traite
ainsi I'un aprés ’autre les différents éléments de ce tableau.

Ind 0 1 2 3 4 5 6
s ()B)E)0)0D)
du tableau

)

Sur cette capture d’écran d’une itération de la boucle, la variable i
présente la valeur 3 et a donc acces au 4¢ élément dont le contenu est
10. Autrement dit, toutes les broches consignées dans le tableau ledPin
sont programmées en tant que sorties dans la fonction setup au moyen
des deux lignes suivantes :

for(int 1 = 0; 1< 7; i++)
pinMode(ledPin[i], OUTPUT);

Une chose importante encore : si, dans une boucle for, il n’y a aucun
bloc d’instructions, formé au moyen d’accolades (comme nous en
verrons un bientdt dans la fonction loop), seule la ligne venant immé-

Montage 5 : Le séquenceur de lumiére

277

yrolles.

5E

201

opyright ©

C

diatement apres la boucle for est prise en compte par cette derniére.
Le code de 1a fonction loop contient seulement une boucle for dont la
structure de bloc donne cependant accés a plusieurs instructions :

for(int i = 0; 1 < 7; i++)

{
digitalWrite(ledPin[i], HIGH); //Elément de tableau au niveau HIGH
delay(waitTime);
digitalWrite(ledPin[i], LOW); //Elément de tableau au niveau LOW
}

Je voudrais vous montrer dans un court sketch comment la variable
de contrdle i est augmentée (incrémentée) :

void setup(){

Serial .begin(9600); //Configuration de 1’interface série
for(int 1 = 0; i < 7; i++)
Serial.println(i); //Impression sur 1’interface série
}
void loop(){/+ wvide #/}

Puisque notre Arduino n’a pas de fenétre d’affichage, nous devons
trouver autre chose. L’interface série sur laquelle il est quasiment
branché peut nous servir a envoyer des données. L’environnement de
développement dispose d’un Serial Monitor capable de recevoir et
d’afficher ces données sans probleme. Vous pouvez méme I’utiliser
pour envoyer des données a la carte Arduino. Vous en saurez plus
bientdt. Le code initialise par 1’instruction suivante :

Serial .begin(9600);

I'interface série avec une vitesse de transmission de 9 600 bauds.
La ligne suivante :

Serial.println(i);

envoie ensuite au moyen de la fonction println la valeur de la variable
i a I'interface. Il ne vous reste plus qu’a ouvrir le Serial Monitor pour
afficher les valeurs de la figure 5-4.

Partie Il : Les montages

Copyright © 2015 Eyrolles.

< Figure 5-4
Impression des valeurs dans le
Serial Monitor

|
o
1
z
3
|4
|
€

On voit ici comment les valeurs de la variable de contrdle i, dont
nous avons besoin dans notre sketch pour sélectionner les éléments
du tableau, sont imprimées de o a 6. J'ai placé le code dans la fonction
setup pour que la boucle for ne soit exécutée qu'une fois et ne
s’affiche pas constamment. La figure 5-5 montre de plus prés les
différents passages de la boucle for.

Test Incrémentation < Figure 5-5
Comportement de la boucle for

Variable de boucle

1" tour
2" tour
7% tour
8% tour
Montage 5 : Le séquenceur de lumiére @

280

Eh Ia, pas si vite ! Le code de programmation de I'interface série ¢’est
du chinois pour moi. On y trouve Serial, begin ou encore println avec
un point entre les deux. Qu’est-ce que ¢a veut dire ?

Vous aimez bien tout comprendre et ce n’est pas pour me déplaire !
Trés bien ! Il me faut maintenant parler de la programmation orientée
objet, car elle va me servir a vous expliquer la syntaxe. Nous revien-
drons plus tard sur ce mode de programmation puisque C++ est un
langage orienté objet (ou OOP sous sa forme abrégée). Ce langage est
tourné vers la réalité constituée d’objets réels tels que par exemple
table, lampe, ordinateur, barre de céréales, etc. Aussi les program-
meurs ont-ils défini un « objet » représentant 1’interface série. Ils ont
donné a cet objet le nom de Serial, et il est utilisé a ’'intérieur d’un
sketch. Chaque objet posseéde cependant d’une part certaines caracté-
ristiques (telles que la couleur ou la taille) et d’autre part un ou
plusieurs comportements qui définissent ce qu’on peut faire avec cet
objet. Dans le cas d’une lampe, le comportement serait par exemple le
fait de s’allumer ou de s’éteindre. Mais revenons a notre objet Serial.
Le comportement de cet objet est géré par de nombreuses fonctions
qui sont appelées méthodes en programmation orientée objet (OOP).
Deux de ces méthodes vous sont déja familieres : la méthode begin
qui initialise 1’objet Serial avec le taux de transmission voulu, et la
méthode println (print line signifie en quelque sorte imprimer et faire
un saut de ligne) qui envoie quelque chose sur 1’interface série. Le
lien entre objet et méthode est assuré par I’opérateur point (.) qui les
relie ensemble. Quand je dis par conséquent que setup et loop sont des
fonctions, ce n’est qu'une demi-vérité car il s’agit, a bien y regarder,
de méthodes.

Pour aller plus loin

Vous savez maintenant comment envoyer quelque chose a linterface série.
Vous pouvez vous en servir pour trouver une ou plusieurs erreurs dans un
sketch. Si le sketch ne fonctionne pas comme prévu, placez des instructions
d'écriture sous forme de Serial.println() a divers endroits qui vous parais-
sent importants dans le code et imprimez certains contenus de variable ou
encore des textes. Vous pouvez ainsi savoir ce qui se passe dans votre sketch et
pourquoi il ne marche pas bien. Vous devez seulement apprendre a interpréter
les données imprimées. Ce n'est pas toujours facile et il faut un peu d'entraine-
ment.

Partie Il : Les montages

v
Q

E Y rol

015

2

Copyright ©

Schéma

Le schéma montre les différentes LED avec leur résistance série de

330 ohms.
ek <« Figure 5-6
rauino 13 o 1 2 (arte Arduino commandant 7 LED
12 R E\"“ pour un séquenceur de lumiere
[l Loy . 1B
pwm |10 R A
LED
O pPwM i 4 {
< S—)
= " LED 5 _
S, PuM % LE D\\ﬁ
= PWM 12—y
3
R 5
LED
PWM 1Pt 2o \: -
R
1 &0
i N
Analog IN LES
ml-:rlm' NI .-.I o| 4

Réalisation du circuit

Votre plaque d’essais accueille toujours plus de composants €lectro-
niques sous forme de résistances et diodes électroluminescentes.

< Figure 5-7
Réalisation du circuit de séquenceur
de lumiére avec Fritzing

CRC Y

— i
—— i e
=
5 ——— T
) e
= e
Montage 5 : Le séquenceur de lumiére 281

m) Attention!

Quand vous branchez des composants électroniques tout pres les uns des
autres, comme c'est ici le cas, soyez tres attentif car il arrive souvent de se
tromper et d'occuper le trou voisin sur la plaque, si bien que le circuit ne fonc-
tionne qu'en partie, voire pas du tout. Cela devient sérieux si vous travaillez
avec les lignes d'alimentation et de masse placées I'une a coté de l'autre. Des
problémes peuvent aussi résulter de cavaliers flexibles mal enfoncés dans leur
trou, dont les fils conducteurs dénudés ressortent en partie. Des courts-circuits
peuvent se produire quand on bouge ces cavaliers, lesquels peuvent tout
abimer. Il faut donc se monter soigneux.

Problémes courants

Si les LED ne s’allument pas I'une aprés I’autre, débranchez le port
USB de la carte pour plus de sécurité et vérifiez ce qui suit.

* Vos fiches de raccordement sur la plaque correspondent-elles
vraiment au circuit ?
» Pas de court-circuit éventuel entre elles ?

* Les LED ont-elles été mises dans le bon sens 7 Autrement dit, la
polarité est-elle correcte ?

* Les résistances ont-elles bien les bonnes valeurs ?

* Le code du sketch est-il correct ?

Qu'avez-vous appris ?

¢ Vous avez fait la connaissance d’une forme spéciale de variable
vous permettant d’enregistrer plusieurs valeurs d’'un méme type
de donnée. Elle est appelée tableau (array). On accede a ses
différents éléments au moyen d’un index.

* La boucle for vous permet d’exécuter plusieurs fois une ou
plusieurs lignes de code. Elle est gérée par une variable de
contrble, active dans la boucle et initialisée avec une certaine
valeur initiale. Une condition vous a permis de définir pendant
combien de temps la boucle doit s’exécuter. Vous controlez ainsi
quel domaine de valeurs la variable traite.

v * Vous pouvez réunir plusieurs instructions, qui sont ensuite toutes
exécutées par exemple dans le cas d’une boucle for, en consti-
w tuant un bloc au moyen de la paire d’accolades.

* La variable de controle, dont nous venons de parler, est utilisée
=3 pour modifier I'index d’un tableau et accéder ainsi a ses diffé-
rents éléments.

282 Partie Il : Les montages

Exercice complémentaire

Dans cet exercice, je souhaiterais que vous fassiez clignoter le
séquenceur de lumiére de différentes manieres. Je vous propose :

* toujours dans le méme sens, une LED s’allumant a tour de rdle
(c’est le montage que vous venez de voir) ;

¢ dans un sens puis dans I’autre, une ou plusieurs LED s’allumant
a tour de role ;

¢ dans les deux sens en méme temps (la LED 1 s’allumant en
méme temps que la LED 7 au premier tour, puis la LED 2 s’allu-
mant au méme moment que la LED 6 au deuxiéme tour et ainsi
de suite) ;

¢ i chaque tour, une LED s’allume de maniére aléatoire.

Pour commander une LED au hasard, vous aurez besoin d’une autre
fonction que vous ne connaissez pas encore. Elle se nomme random, ce
qui signifie « aléatoire » ou « au hasard ». Il existe deux syntaxes
possibles pour cette fonction.

1" syntaxe

Vous utiliserez la syntaxe suivante pour générer une valeur au hasard
dans un domaine compris entre o et une limite supérieure :

Valeur maximale <« Figure 5-8
Instruction (non incluse) Instruction random
(avec un argument)

((7) ;)

Attention, la valeur maximale que vous indiquez sera toujours non
incluse. Dans cet exemple, vous générerez ainsi des chiffres au hasard
entre o et 6 inclus.

2¢ syntaxe

Vous utiliserez la syntaxe suivante pour générer une valeur au hasard
comprise entre une limite inférieure et une limite supérieure.

Montage 5 : Le séquenceur de lumiére

283

Figure 5-9 p
Instruction random
(avec deux arguments)

Valeur Valeur maximale
Instruction minimale (non incluse)

| I
C (2, 6)))

Cette instruction générera des valeurs comprises entre 2 et 5 inclus, la
valeur la plus élevée étant ici aussi exclue. Cette particularité pourra
surprendre certains, mais il n’est pas possible de faire autrement.

@)

Partie Il : Les montages

Extension de port

Au sommaire :
¢ la déclaration et I'initialisation de plusieurs variables ;
¢ la programmation de plusieurs broches comme sorties (OUTPUT) ;
* le registre a décalage de type 74HC595 avec 8 sorties ;

¢ la commande du registre & décalage par trois lignes de la carte
Arduino ;

* la définition d’une fonction particuliere ;
¢ le sketch complet ;

¢ I’analyse du schéma ;

» la réalisation du circuit ;

¢ les autres sketches ;

* 1’instruction shiftoOut ;

* un exercice complémentaire.

Le registre a décalage

Nous avons vu dans le montage précédent comment programmer la
commande des multiples LED d’un séquenceur de lumiere. Votre
carte Arduino ne disposant que d’un nombre limité de sorties numéri-
ques, ces précieuses ressources pourraient finir par vous manquer
pour ajouter d’autres LED a votre séquenceur de lumiere. Par ailleurs,
vous voulez peut-étre aussi connecter quelques capteurs sur des
entrées numériques.

Montage

285

Brochage du reqistre a décalage

286

Figure 6-1 p

T4H(595

Vous aurez donc encore moins de broches numériques a disposition.
Comment résoudre ce probléeme ? 1l existe plusieurs solutions, en voici
une. Je dois utiliser pour cela un registre a décalage. Vous vous
demandez certainement ce que c’est et comment il opere. Dans cette
expérimentation, un circuit intégré (IC pour Integrated Circuit) sera relié
pour la premiere fois a votre carte Arduino. Un registre & décalage est un
circuit géré par un signal d’horloge et doté de plusieurs sorties disposées
I'une derriére I'autre. A chaque période d’horloge, le niveau présent i
I’entrée du registre est transmis a la sortie suivante. Cette information
passe ainsi par toutes les sorties existantes.

Le circuit intégré 74HC595, que nous utilisons ici, dispose d’une entrée
série par laquelle les données sont entrées et de huit sorties équipées de
registres mémoire internes pour conserver les états. Seules trois broches
numériques sont nécessaires a 1’alimentation, lesquelles fournissent des
données au module qui, de son c6té, commande ses huit sorties. C’est en
soi une économie majeure car le circuit 74HCS595 peut étre cascadé,
permettant ainsi une expansion quasi illimitée des sorties numériques. De
quoi s’agit-il exactement ? Voyons de plus prés les différentes entrées et
sorties de ce circuit, La figure 6-1 illustre le brochage du circuit, vu de
dessus.

oz [T]O |\ 6] Ve
e 2] T4HC595 151 Q,
Qp [3] [14] DS
Qe [4] [13] O
Qg [5] [12] sT_cP
Qg [6] [11] SH_CP|
Qy [T [10] MR
GND [E] 9] Q"

Le tableau 6-1 récapitule les différentes broches et leur signification.

Partie Il : Les montages

Broche Signification

Ve Tension d'alimentation

GND Masse 0V

04-Qy Sorties paralléles 1a 8

Qy" Sortie série (entrée pour un deuxiéme registre a décalage)

MR Master Reset (actif LOW)

SH_CP Registre a décalage, entrée d'horloge (Shiftregister clock input)
ST_CP Registre mémoire, entrée d'horloge (Storageregister clock input)
OF Activation de la sortie (Output enable/actif LOW)

DS Entrée série (Serial data input)

Le mode de fonctionnement du registre 2 décalage peut se résumer ainsi :
quand le niveau a I’entrée d”horloge SH_CP passe de LoW a HIGH, le niveau
a I'entrée série DS est lu, transmis 4 I'un des registres internes et enre-
gistré temporairement. Mais cela ne signifie pas pour autant transmis aux
sorties Q, a Q. C’est seulement une impulsion d’horloge a I’entrée ST_
CP de Low a HIGH qui fait transmettre toutes les informations des registres
internes aux sorties. C’est utile car ce n’est que quand toutes les informa-
tions ont été lues a I’entrée série qu’elles sont censées étre détectées aux
sorties. Le changement du niveau logique de LOW a HIGH est appelé
contrdle par front montant d’horloge, car une action n’est entreprise que
quand un changement de niveau se produit de la maniere décrite.

Voyons maintenant un peu ce qui se passe dans le registre a décalage. ..

Voici justement SH_CP au travail. Quand il tourne la pancarte de LOW
a HIGH, le candidat potentiel, qui se trouve dans la zone DS-area, passe
dans le registre suivant et attend la suite de son voyage vers la sortie.

I . J—

SHIFT
IREG ISTER
B

<« Tableau 6-1
Signification des broches
du registre a décalage 74H(595

< Figure 6-2
SH_CP préparant les données série

287

Montage 6 : Extension de port

violles,

P
2015 E

right ©

opY

&

La figure 6-3 montre ST_CP en train de faire partir les données des
registres internes vers les sorties.

Figure 6-3 b

ST_(P autorisant le départ
des données des registres
vers les sorties

Tout le monde est la ?
On peut y aller |

Quand il tourne la pancarte de LOW a HIGH, les portes des registres
internes s’ouvrent et alors seulement les données peuvent trouver le
chemin de la sortie. Le procédé croqué ici sera reproduit dans
plusieurs sketches pour que vous puissiez voir en direct comment
marche le registre a décalage. Nous allons tout faire de A a Z, mais
vous verrez a la fin qu’il existe une instruction bien commode pour
toutes les actions a entreprendre 1'une derriere 1’autre, qui vous épar-
gnera bien du travail et vous facilitera les choses.

Composants nécessaires

1 reqgistre a décalage 74H(595

8 LED rouges
.y 8 résistances de 330 Q
F IS

1 résistance de 10 k€2

288 Partie Il : Les montages

\ 1 bouton-poussoir

//'\\ Plusieurs cavaliers flexibles de couleurs et de
longueurs diverses

Code du sketch

Voici le code du sketch pour commander le registre a décalage
74HC595 au moyen de trois lignes de sorties numériques. Les
broches suivantes sont nécessaires sur le registre :

* SH_CP (registre a décalage, entrée d’horloge) ;
¢ ST_CP (registre mémoire, entrée d’horloge) ;
* DS (entrée série pour les données).

Des variables sont affectées aux trois lignes de données, variables
auxquelles j’ai donné les noms suivants :

» SH_CP est shiftPin ;

¢ ST_CP est storagePin ;

¢ DS est dataPin.
Ce sketch met I’entrée série DS sur HIGH, niveau qui est ensuite trans-
féré dans le registre interne quand I’entrée d’horloge SH_CP du
registre a décalage passe de LOW a HIGH. Les sorties sont alors program-
mées et enregistrées via les registres internes au moyen de ’entrée
d’horloge ST_CP du registre mémoire.

int shiftPin = 8; //SH_€P
int storagePin = 9; //ST _CP
int dataPin = 10; //DS

void setup(){
pinMode(shiftPin, OUTPUT);
pinMode(storagePin, OUTPUT);
pinMode(dataPin, OUTPUT);
resetPins(); / Mise
//Mise de DS sur HIGH pour reprise ultérieure
digitalWrite(dataPin, HIGH); //DS
delay(20); //Bréeve pause avant traitement

outes les broc

//Transmission du niveau a DS dans registres mémoire internes
digitalWrite(shiftPin, HIGH);
delay(20); //Bréve pause avant traitement

ernes aux sorties

//SH CP

//Transmission des registres mémoire

Montage 6 : Extension de port

289

/rolles.

2015 Ey

\

Copyright €

Tableau 6-2 p
Variables nécessaires et leur objet

Figure 6-4 p
Structure de base d'une fonction

digitallirite(storagePin, HIGH); //ST CP
delay(20);
}

void loop(){/+ vide =/}

//Réinitialisation de toutes les broches — niveau LOW

void resetPins(){
digitallWirite(shiftPin, LOW);
digitalWrite(storagePin, LOW);
digitalWrite(dataPin, LOW);

}

Revue de code

Les variables suivantes sont techniquement nécessaires a notre
programmation.

Variable Objet

shiftPin N* broche SH_CP
storagePin N° broche ST_CP
dataPin N* broche DS

Les variables sont d’abord pourvues des informations de broche
nécessaires puis toutes les broches sont programmées en tant que
sorties au début de la fonction setup. Vous rencontrez pour la
premiére fois dans ce montage une fonction écrite par vous-méme.
Une fonction n’a en soi rien de nouveau pour vous puisque setup et
loop font déja partie de cette catégorie de structures logicielles. Je
souhaite cependant revenir sur le sujet pour en préciser le sens et
I’objet. Une fonction peut étre considérée comme une sorte de sous-
programme qui peut toujours étre appelé dans le déroulement normal
d’un sketch. Elle est invoquée par son nom et peut tout aussi bien
retourner une valeur a 1’appelant qu’enregistrer plusieurs valeurs
transférées nécessaires au calcul ou au traitement. La structure
formelle d’une fonction est la suivante :

(Type de donnée de retour Nom (parametre))
{

}

La partie entourée est appelée signature de la fonction et représente
I’interface formelle avec la fonction. Cette derniére est comparable a une

Partie Il : Les montages

290

black box, que vous connaissez déja. En fait, vous n’avez pas besoin de
savoir comment elle fonctionne. 11 vous suffit de connaitre la structure de
I’interface et de savoir sous quelle forme une valeur est retournée le cas
échéant. Vous programmez ici bien entendu la fonction elle-méme et
devez pour le moins connaitre la logique qu’elle renferme. Certaines
fonctions peuvent également étre obtenues par exemple sur Internet, dans
la mesure ol leur usage n’est pas limité techniquement par une licence, et
utilisées dans votre montage. Peu importe de savoir comment elles fonc-
tionnent du moment qu’elles ont ét€ programmées et testées avec succes
par d’autres. Le principal est qu’elles fonctionnent ! Mais revenons a
notre définition de la fonction. Si elle renvoie une valeur en retour a
I’appelant, comme le fait par exemple digitalRead, vous devez indiquer le
type de donnée en question dans votre fonction.

Supposons que vous vouliez retourner des valeurs qui sont toutes des
nombres entiers, le type de donnée est alors Integer défini par le mot-
clé int. Si toutefois aucun retour n’est requis, vous devez le faire
savoir par le mot-clé void (traduction : vide) qui précede déja les deux
fonctions principales setup et loop.

Excusez-moi mais j’ai une question. Vous avez dit que les fonctions
sont toujours invoquées par leur nom. Mais qu’en est-il des deux fonc-
tions setup et loop ? Pas besoin de stipuler quelque part dans le code
qu’elles doivent étre appelées et pourtant ¢ca marche. Comment est-ce
possible ?

Cette question est pertinente, pourtant ce comportement n’étonne
personne la plupart du temps. setup et loop sont des fonctions systémi-
ques qui sont appelées implicitement. Comme vous 1’avez remarqué,
vous n’avez pas besoin de vous en occuper.

v
v
—

Pour aller plus loin

Si cela vous intéresse, vous trouverez dans le répertoire d'installation sous
arduino-1.x.y\hardware\arduino\coresh\arduino le fichier main.cpp que vous
pourrez ouvrir avec un éditeur de texte. Yous verrez alors ce qui suit:

€2

= Montage 6 : Extension de port 291

#def}ne ARDUINO_MAIN
#1nclude ne.f

int main(void)

1

2

=

4

5 H{

6 nit();

¥

8 [#1f defined(USBCON)
9 USB.attach();
10 F#endaf

11

12 setup();

13

14 © for (;;) {

15 loop();

16 if (serialEventRun) serialEventRun();
17 1

18

19 return ©;

28 5}

La fonction directement appelée en début de programme avec C++ est
nommeée main, comme c'est le cas ici. Elle sert quasiment de point d'accés, pour
gue le programme sache par quoi il doit commencer. main contient plusieurs
appels de fonction qui sont traités I'un apres l'autre. On y trouve entre autres la
fonction setup et I'appel de la fonction loop dans une boucle sans fin définie
par for(;;). Vous reconnaissez certainement les déroulements ou plutét les
relations qui se créent en coulisses au début d'un sketch quand il sagit
d'appeler setup ou loop.

Si une ou plusieurs variables sont a fournir & votre fonction, celles-ci
sont indiquées entre parenthéses derriére son nom, séparées par des
virgules, avec leur type de donnée correspondant. Les parenthéses
sont nécessaires méme s’il n’y a rien entre elles faute de variables. La
signature est suivie du corps de fonction, formé par la paire d’acco-
lades. Toutes les instructions, qui se trouvent entre ces deux acco-
lades, font partie de la fonction et sont traitées séquentiellement de
haut en bas lors de I’appel. Mais revenons au code. En quoi est-ce
utile d’écrire une fonction particuliere 7 Trés simple ! Ca D'est
toujours quand les mémes instructions sont a exécuter plusieurs fois
dans le code et c’est ici le cas. Je dois exécuter la suite d’instructions
qui suit & divers endroits pour réinitialiser — autrement dit, pour
remettre sur LOW — les niveaux sur les différentes broches numériques.
Sans fonction, le sketch compterait un grand nombre de lignes de
code en plus et manquerait donc de clarté.

digitalWrite(shiftPin, LOW);
digitalWrite(storagePin, LOW);
digitallirite(dataPin, LOW);

Partie Il : Les montages

Pour aller plus loin

Le code source, qui revient plusieurs fois avec la méme séquence d'instructions
dans le sketch, est appelé code redondant ou redondance de code. Le mieux
est de le stocker dans une fonction a laquelle vous donnez un nom suffisam-
ment évocateur pour en saisir le sens. Si vous devez procéder a une modifica-
tion, vous intervenez de maniére centrale au sein de la fonction et non pas un
peu partout dans le code, ce qui est générateur de bien des erreurs et trés
chronophage.

Au début du sketch, I’appel de fonction :
resetPin() ; //Mettre toutes les broches sur LOW

permet de mettre les broches 8, 9 et 10 au niveau LoW.

Le premier signal de niveau HIGH est ensuite appliqué & DS par la
ligne :

digitalWrite(dataPin, HIGH); //DS

Puis une attente de 20 ms s’écoule avant que la ligne suivante ne
transmette le niveau HIGH de DS au registre mémoire interne :

digitalWrite(shiftPin, HIGH); //SH CP

Il faut ici tenir compte du fait que ce n’est possible qu’au moyen d’un
contrdle par front montant de LOW vers HIGH.

Il n’y a pas encore de transfert en direction du port de sortie. Une
nouvelle attente de 20 ms s’écoule, et enfin la ligne suivante
déclenche la transmission des registres mémoire internes aux sorties,
ce qui revient 2 commander les LED dans le cas présent :

digitalWrite(storagePin, HIGH); //ST CP

Un changement de niveau de LOW & HIGH est ici aussi nécessaire, d’ou le
recours a la fonction resetPin qui permettra plus tard de changer
encore le niveau de LOW 2 HIGH.

Schéma

Le schéma montre les différentes LED avec leurs résistances série de
330 ohms, qui sont commandées par le registre a décalage 74HC595.
L’entrée master reset de la puce est connectée, a travers la résistance
pull-up, a la tension d’alimentation +5 V, si bien que le reset ne se
déclenche pas tant que le bouton-poussoir n’est pas enfoncé puisque
I’entrée MR est active au niveau LOW. On notera la présence d’un trait
horizontal au-dessus de MR, qui correspond & une négation. L’entrée

Montage 6 : Extension de port

LOwW

VHIGH

293

— VCC

—— GND

Eyrolles.

)

01

{
L

2

yright ©

!

Cop

output enabled est également active au niveau LOW et reliée par un fil 4 la
masse car les sorties doivent étre toujours actives. Le registre a décalage
est commandé par les broches Arduino 8, 9 et 10 avec les fonctions
décrites plus haut.

Si vous lancez le sketch, la premiere LED s’allume immédiatement
sur la sortie Q4 car vous avez entré une seule fois 1 dans le registre a
décalage. Vous devez actionner non seulement le bouton-poussoir du
circuit mais aussi le bouton de reset de la carte Arduino pour effectuer
un reset (réinitialisation).

+5V

-] Résistances série
| Résistance pull-up

30
Arduino 13 ey
|12, | o
pwn [14 |ps aa |18 . LED
pun |10, | T ae 1 I iaasl *_HQ__‘_
9 ol Y 4l LED
Q PWN | BSH_C] Qc — |
ey g 100 \H:;\ QL' ‘:3' f JIU lLHQ‘ 4
-’é‘ own |6 12 NST_CP QF 5 —'—!‘%——
5 Pwn |2 13~ 3F ale m
L5 QH & ' S350 (Y 1
o _g_‘ O - 9 | 330 > .
(1 £ ol | LEDY
| 0, & 74HCH95 TP
Analog IN LED
LEREES J
7

GND

Figure 6-5 A
Carte Arduino commandant

le registre a décalage 74HC595 Ré a I isati on d u Ci rcu it

par trois lignes de signaux
Votre plaque d’essais se remplit et les choses deviennent intéres-
santes, n’est-ce pas ?

294 Partie Il : Les montages

Copyright © 2015 Eyrolles,

< Figure 6-6
Réalisation du circuit avec Fritzing

i
>
32
o
&
=)
o

Affectation

des broches
Broche & : SH_CP

Broche 9 : ST CP
Borche 10: DS

Extension du sketch :

premiere partie

: Bou lor- poussair

de reset

Complétons maintenant un peu le sketch de telle sorte que vous puis-
siez rentrer plusieurs valeurs dans I'entrée série. Ce n’est encore
qu’un degré intermédiaire et non pas la solution finale que je souhaite
vous présenter. Ce code doit transmettre au registre a décalage une
séquence stockée dans un tableau de données. La construction du

circuit reste la méme.

int shiftPin = 8; //SH CP
int storagePin = 9; //ST _CP

int dataPin = 10; / /DS

int dataArray[] = {1, 0, 1, 0, 1, 1, 0, 1};

void setup(){
pinMode(shiftPin, OUTPUT);
pinMode(storagePin, OUTPUT);
pinMode(dataPin, QUTPUT);

resetPins(); //Mettre toutes les broches a LOW

putPins(dataArray); //Régler les broches sur le

//de données

+ tableau

//Transmission des registres mémoire internes aux sorties

digitalWrite(storagePin, HIGH); //ST CP

Montage 6 : Extension de port

295

yrolles,

5E

201

ght ©

Copyri

296

void loop() {/+ vide =/}

void resetPins(){
digitalirite(shiftPin, LOW);
digitalWrite(storagePin, LOW);
digitalWrite(dataPin, LOW);

}

void putPins(int data[]){
for(int i = 0; 1 < 8; i++){
resetPins();
digitalWrite(dataPin, data[i]); delay (20);
digitalWrite(shiftPin, HIGH); delay (20);

}
}

Voyons maintenant comment le code accomplit son travail. Tout
tourne autour du tableau de données qui contient le modele de
commande des différentes LED. Il s’agit donc de la ligne de déclara-
tion et initialisation suivante :

int dataArray[] = {1, 0, 1, O, 1, 1, 0, 1};

Le code lit les éléments du tableau de gauche a droite et rentre les
valeurs dans le registre a décalage. Un 1 signifie une LED allumée et
un o une LED éteinte.

commander les LED. Ne vaut-il pas mieux travailler avec les noms de
constante HIGH et LOW ?

i Un moment s’il vous plait. Vous avez utilisé les valeurs 1 et 0 pour

Jai préféré utiliser les valeurs 1 et o parce que ce sont elles précisé-
ment qui se cachent derriére les constantes HIGH et LOW. Normalement,
je ne suis pas pour les magic numbers (voir page 224) mais il m’a
semblé que dans ce cas, je pouvais faire une exception. 1 et o étant
aussi les valeurs logiques, vous ne devriez pas avoir trop de mal a
comprendre ! Vous pouvez bien entendu écrire a la place de :

int dataArray[] = {1, 0, 1, 0, 1, 1, 0, 1};
la ligne suivante :
int dataArray[] = {HIGH, LOW, HIGH, LOW, HIGH, HIGH, LOW, HIGH};

Mais revenons au code et 4 sa manicére d’exploiter le tableau. La
chose n’est pas si simple car j’ai ajouté une fonction nommée putPins,
qui a pour tiche de remplir le registre 4 décalage. Elle présente un

Partie Il : Les montages

parametre de transmission capable d’enregistrer non pas une variable
normale mais tout un tableau de données. 11 suffit simplement de
transmettre le tableau de données comme argument dans la fonction :

putPins(dataArray);
La fonction est définie comme suit :

void putPins(int data[]){
for(int 1 = 0; 1 < 8; i++){
resetPins(); //R

‘Remise a zéro des broches et préparation

//a la commande par front montant
digitalWirite(dataPin, data[i]); delay(20);
digitalWrite(shiftPin, HICH); delay(20);

}
}

On peut voir qu’un tableau du type de donnée int a été déclaré avec
deux crochets dans la signature de la fonction. Au moment ot la fonc-
tion est appelée, le tableau initial dataArray est copié dans data, qui est
ensuite exploité dans la fonction.

Puis chaque élément du tableau est envoyé dans I’entrée série, au
moyen de la boucle for (que vous connaissez déja), via :

digitalWrite(dataPin, data[i]);
et placé lors de 1’étape suivante dans le premier registre interne via :
digitalWrite(shiftPin, HIGH);

Le tout s’effectue huit fois (de o a 7), chaque registre interne transmet-
tant ses valeurs au suivant. Les figures suivantes montrent les choses
encore plus clairement.

Registres internes

0 0 | 2 3 4 3 b /

100000000
FE S S S S T S S

B & & G

Sorties

Au début, les registres sont encore tous vides. Un 1 attend toutefois
déja a I’entrée d’€tre transféré dans le premier registre interne.

<« Figure 6-7
Registre a décalage

Montage 6 : Extension de port

297

2015 Eyrolles.

Copyright ©

Figure 6-8 p
Registre a décalage pendant
le premier temps SH_CP

Figure 6-9 p

Etats du registre 3 décalage
apres la premiére impulsion
de SH_CP

Figure 6-10 p

Etats du registre a décalage

apres lecture des valeurs du tableau
et aprés l'impulsion ST_CP

Registres internes

. . . . -

05 eermeen, (7

(]
(]
(]
=
(]
(]

—
A
-
| —
(=

1 23
PP
o M

0y Og Q¢ Oy
Sorties

P
T

U v U

)
7
N

Oy

- "
0 o’

Le 1 qui se trouve a I’entrée série est entré, pendant le front montant
de SH_CP, dans le premier registre interne. Les contenus de tous les
registres sont décalés d’une position vers la droite. Cette action donne
les états illustrés a la figure 6-9.

Registres internes

aEnonnnnnn
-~ DDDOHOE

e T oo 9 & o O g
Sorties

A Tl’entrée se trouve maintenant un o qui sera lui aussi entré a la
prochaine impulsion de SH_CP dans le premier registre interne. Mais
avant, I’état du septiéme registre interne sera passé au huitieme, le
sixiéme au septieéme, etc., et enfin le O est entré dans le premier
registre. Passons directement au moment ot toutes les valeurs du
tableau ont été entrées, conformément au schéma ci-dessus, dans les
registres internes et ol I'impulsion ST_CP a recopié les registres vers
les sorties.

Reqistres internes

298

Partie Il : Les montages

Les valeurs du tableau lu sont appliquées aux sorties seulement main-
tenant, la premiere valeur entrée se trouvant complétement a droite et
la derniére complétement & gauche.

Comment fait-on pour inverser le comportement ? Je voudrais mainte-
nant que la premiére valeur du tableau se trouve complétement & gauche
et que la derniére complétement & droite se trouve a la sortie, de telle
sorte que 1’ordre soit quasiment inversé.

Pas de probléme car oll les broches ont-elles été déterminées ? Exact,
dans la fonction putPins ! C’est la boucle for qui fixe I’ordre des diffé-
rentes broches. Celui-ci sera inversé si vous appelez la derniére
valeur a la place de la premiére et la transmettez au registre a déca-
lage. Voici le code modifié de la boucle for :

for(int 1 = 7; 1 »= 0; i--){

}

Extension du sketch :
deuxiéme partie

Maintenant que vous en savez assez sur le registre a décalage
T4HCS595, je voudrais vous présenter une instruction spéciale qui
vous épargnera du travail. shiftout est vraiment facile a utiliser. Mais
je dois auparavant vous livrer quelques informations sur la sauve-
garde des données dans 1’ordinateur, informations qui sont vraiment
importantes pour comprendre le fonctionnement d’un microcontrd-
leur. Je me sers pour mes réalisations du type de donnée byte, dont la
taille est de 8 bits et qui peut stocker des valeurs comprises entre o et
255. La figure 6-11 montre la valeur décimale 157 sous sa forme
binaire 10011101.

Puissances LA T - B N & S Y N |
Yaleurs 128 64 32 16 8 4 2 1
e (0)(JJOOEOE
de bits

Si on regarde les puissances de plus pres, on voit que la base est le
chiffre 2. Nous autres humains comptons en base 10 en raison des dix
doigts de nos mains. Les valeurs des différents chiffres d’un nombre
sont done 10° 10!, 102, etc. Pour le nombre 157, cela donne 7 x 10° +
5 x 10" + 1 x 10° qui font bien sfir 157. Le microcontroleur ne

Montage 6 : Extension de port

< Figure 6-11
Combinaison binaire
pour le nombre entier 157

&)

Figure 6-12 p-
Instruction shiftOut
ave(ses numbreux arguments

MSBFIRST

pouvant cependant stocker que deux états (HIGH et LoW), le systéme
binaire (du latin binarius, deux chacun) est fondé sur la base 2. La
valeur décimale de ladite combinaison binaire se calcule par consé-
quent comme suit, en commengant en principe par la valeur — ou bit —
1a plus petite :

IX204+0X2M+1X22+1X2+1X22+0Xx22°+0x20+1x20=157,,

Pour aller plus loin
La base figure derriére le nombre pour plus de clarté quand différents systéemes
de numeration sont utilises.

Avec un nombre de 8 bits (ou 1 octet), vous pouvez représenter
256 valeurs distinctes (de 0 a 255). Ceci dit, revenons a 'instruction
shiftOut, qui posséde différents parametres dont nous allons faire le
tour.

SH_CP Sens des ransmissions Yaleur

F (dataPin,shiftPin,MSBFIRST,value) ;)

Instruction

=

Les arguments dataPin, shiftPin ou encore la valeur a transmettre sont
censés étre clairs. Mais que signifie la constante MSBFIRST ? Cet argu-
ment permet de définir le sens de transmission des bits. Dans le cas
d’un octet, le bit de poids fort est nommé Most Significant Bit (MSB)
et le bit de poids faible Least Significant Bit (LSB). Vous pouvez
aussi définir quel bit doit étre transféré en premier dans le registre a
décalage.

LSBFIRST

—OEee0eg HOsOB0DT—~

300

Voici le code complet avec I’instruction shiftout. Le circuit n’a pas
non plus besoin ici d’étre modifié.

int shiftPin = 8; //SH CP
int storagePin = 9; //S
int dataPin = 10;
byte value = 157; /Naleur :
void setup(){
pinMode(shiftPin, OUTPUT);
pinMode(storagePin, OUTPUT);
pinMode(dataPin, OUTPUT);

}

void loop(){

Partie Il : Les montages

digitalWrite(storagePin, LOW);
shiftOut(dataPin, shiftPin, MSEI
digitalWrite(storagePin, Hi
delay(20);

RST, value);

) Pouraller plus loin

Vous pouvez saisir directement la combinaison binaire au lieu du nombre
décimal 157 lors de linitialisation des variables et éviter ainsi la conversion.
Tapez seulement B10011101. Le préfixe B indique qu'il s'agit d'une combinaison
binaire avec laquelle la variable doit étre initialisée.

Ce chronogramme vous montre les niveaux des trois lignes de
données, les unes par rapport aux autres, pour commander le registre
a décalage pendant le déroulement chronologique.

On voit tout en haut le signal d’horloge SH_CP pour la prise en A Figure 6-13
charge des données a I’entrée série DS. A I'issue de la 8° période, le ~ Chronogramme pourle nombre

niveau de ST_CP passe de LoW a HIGH et les données des registres transféré 157 (810011101)

internes sont transmises aux sorties. Essayez avec différentes valeurs
et différents sens de transmission pour bien comprendre.

2 Pour aller plus loin
Pour compléter ce chapitre, vous pouvez effectuer une recherche sur Internet
sur les mots-clés :

« 75HC595;
75HC595 fiche technigue ;
» 74HC595 datasheet.

Problémes courants

Si les LED ne s’allument pas 1'une aprés 'autre, débranchez le port
USB de la carte pour plus de sécurité et vérifiez ce qui suit.

Montage 6 : Extension de port 301

302

Vos fiches de raccordement sur la plaque d’essais correspon-
dent-elles vraiment au circuit ?
Pas de court-circuit éventuel ?

Les différentes LED sont-elles correctement branchées 7 La
polarité est-elle correcte ?

Les résistances ont-elles bien les bonnes valeurs ?

Le registre a décalage est-il correctement cédblé ? Contrdlez
encore une fois tous les raccordements qui sont nombreux.

Le code du sketch est-il correct ?

Qu'avez-vous appris ?

Vous savez ce qu’est un registre a décalage de type 74HC595
avec une entrée série et huit sorties.

Le premier sketch permet de commander les trois lignes de
données SH_CP, ST_CP et DS, les signaux d’horloge étant
contr6lés par un front d’horloge montant, autrement dit ne
réagissant que quand le niveau passe de LOW 2 HIGH.

L’instruction shiftout permet d’envoyer au registre 3 décalage
des combinaisons de bits au moyen de nombres non seulement
décimaux mais aussi binaires.

Vous pouvez initialiser une variable du type de donnée byte avec
un nombre entier, par exemple 157, ou a 1’aide de la combinaison
de bits correspondante qui doit étre précédée du préfixe B, soit
par exemple B10011101.

Exercice complémentaire

Dans cet exercice complémentaire, je vous propose d’abord de faire
s’allumer les LED au gré de toutes les combinaisons de bits possibles

entre 00000000 €t 11111111

Puis je vous invite 4 concevoir différents motifs ou séquences, selon
lesquels les LED doivent clignoter. Pour cela, je vous donne
I’exemple de la figure 6-14.

Partie Il : Les montages

= QOOOOOO
= QOQOOOOO)
s QOOOOOO
e OOOOOOO
= QOO
= QOO
= QOOO000

Le motif du 7¢ passage est le méme que celui du 1 et la séquence
revient au début, Il s’agit de deux LED allumées qui se rapprochent
I'une de I'autre pour s’éloigner & nouveau. Vous pouvez répéter ce
déroulement trois fois. Toutes les LED doivent clignoter a la fin
pendant | seconde 1’une aprés 1'autre, puis le cycle doit reprendre au
début.

< Figure 6-14
Séquence de LED commandée par
un registre a décalage 74H(595

303

Montage 6 : Extension de port

'$9](04A3 §T0Z @ 1ybLAdOD

Montage
La machine a états

Au sommaire :
* la déclaration et I'initialisation de plusieurs variables ;
* la programmation de plusieurs broches comme sortie (OUTPUT) ;
¢ la programmation d’un port comme entrée (INPUT) ;
¢ le sketch complet ;
¢ 1’analyse du schéma ;
* la réalisation du circuit ;
¢ le sketch élargi (circuit interactif pour feux de circulation) ;

* un exercice complémentaire.

Des feux de circulation

La programmation de feux de circulation est une tiche classique. La
plupart du temps, on y croise pour la premiere fois une state
machine — son nom complet est Finite State Machine ou FSM. 1l
s’agit d’une machine supportant des états certes différents, mais finis.
Voici ce qui caractérise ce modele :

* I'état ;

* la transition d’état :

* Iaction.

Voyons d’abord les différentes phases de signalisation possibles.

305

i Figure 1p Changement Changement Changement
Etats de signalisation de phase de phase de phase

~ hats - s

avec changement de phase -~ ~ - AN -~ N

Ici, on prévoit 4 phases de signalisation (de 1 a 4), le cycle reprenant
ensuite au début. Pour plus de simplicité, nous nous en tiendrons a
des feux pour un sens de circulation. La signification des différentes
couleurs est bien connue de tous :

* rouge : interdiction de passer ;

» orange : attendre le signal suivant ;

¢ vert : autorisation de passer.
Chaque phase a une durée d’allumage définie. L usager de la route
doit avoir en effet le temps de comprendre les différentes phases pour
réagir en conséquence. Voici les durées d’allumage qui seront utili-
sées dans notre exemple (voir tableau 7-1), qui n’ont rien a voir avec
la réalité. Bien évidemment, il est possible de régler le temps selon
vos gofits.

Tableau7-1 p

1" phase 2¢ phase 3¢ phase 4¢ phase
Phases avec durée d'allumage B B L B

/\gm

Durée:10s Durée:2s Durée:10s Durde:3s

Une fois le code transmis, les feux de circulation doivent exécuter les
4 phases énoncées précédemment, puis recommencer au début.

306 Partie Il : Les montages

Eyrolles.

)

201

yright ©

!

Cop

Composants nécessaires

1LED rouge

1LED orange

1LED verte

3 résistances de 330 €2

Plusieurs cavaliers flexibles de couleurs et de
longueurs diverses

N

Code du sketch

Voici le code du sketch pour commander les feux de circulation :

#define DELAY1 10000 //Pause 1, 10 secondes

#define DELAY2 2000 //Pause 2, 2 secondes

#define DELAY3 3000 //Pause 3, 3 secondes

int ledPinRed = 7; //Broche 7 commande la LED rouge
int ledPinOrange = 6; //Broche 6 commande la LED orange
int ledPinGreen = 5; //Broche 5 commande la LED verte
void setup(){

pinMode(ledPinRed, OUTPUT); //Broche comme sortie

pinMode(ledPinOrange, OUTPUT); //Broche comme sortie
pinMode(ledPinGreen, OUTPUT); //Broche comme sortie

}

void loop(){

digitalWrite(ledPinRed, HIGH); //M11lumage LED rouge

delay(DELAY1); //Attendre 10 secondes
digitalWrite(ledPinOrange, HIGH); //Allumage LED orange
delay(DELAY2); //Attendre 2 secondes
digitalWrite(ledPinRed, LOW); //Extinction LED rouge

digitalWrite(ledPinOrange, LOW); //Extinction LED orange
digitalWrite(ledPinGreen, HIGH); //Allumage LED verte

delay(DELAY1); //Attendre 10 secondes
digitalWrite(ledPinGreen, LOW); //Extinction LED verte

Montage 7 : La machine 3 états

Tableau 7-2 p-
Variables nécessaires et leur objet

308

Figure 7-2 p
La directive #define

digitalWrite(ledPinOrange, HIGH);

delay(DELAY3);

digitalWrite(ledPinOrange, LOW);
}

Revue de code

Voici les variables qui sont techniquement nécessaires a notre expéri-
mentation.

Variable Objet

ledPinRed Commande la LED rouge.
ledPinOrange Commande la LED orange.
ledPinGreen Commande la LED verte.

I’ai déja une question ! Le code du sketch commence par trois lignes
dont le contenu m’est complétement inconnu. Que signifient #define et
le reste de la ligne aprés ?

Encore une fois, vous allez plus vite que la musique ! En fait,
I'instruction #define n’est pas une véritable instruction, mais une
directive de prétraitement. Rappelez-vous la directive de prétraite-
ment #include, reconnaissable au point-virgule manquant en fin de
ligne qui caractérise normalement la fin d’une instruction.

Quand le compilateur entreprend de traduire le code source, une
partie spéciale de celui-ci appelée préprocesseur suit les directives de
prétraitement, qui sont toujours introduites par le signe diése #. Vous
croiserez encore d’autres directives de ce type au cours de ce livre. La
directive #define permet d’utiliser des noms symboliques et des cons-
tantes. La syntaxe pour "utiliser est la suivante (voir figure 7-2).

Directive [dentifiant Valeur

| | |
| | || |

|
(#define DELAY1 10000)

Cette ligne agit comme suit : partout ou le compilateur trouve 1’iden-
tifiant DELAY1 dans le code du sketch, il le remplace par la valeur 10000.
Vous pouvez vous servir de la directive #define partout ol vous
souhaitez utiliser des constantes dans le code. I’ai déja soulevé ce
probléme auparavant : pas de magic numbers !

Partie Il : Les montages

Pourquoi n’avez-vous pas utilisé #define partout oli des broches ont été
définies ? Ce sont pourtant également des constantes qui ne varient plus
au cours du sketch.

Vous avez raison ! I’aurais pu le faire partout et certains sketches
Arduino, que vous trouverez sur Internet, emploient ce mode d’écri-
ture. Au lieu de :

int ledPinRed = 7;

on peut alors écrire :

#define ledPinRed 7

Le sketch agit comme avant et cela ne change rien que vous utilisiez
la premiere ou la seconde variante — mais il est important de vous en
tenir a celle choisie et de ne pas en changer au gré de votre humeur.
Pour ma part, j’emploie dans mon sketch la déclaration et I'initialisa-
tion de variable quand il s’agit de broches, et la directive #define pour
les constantes. Revenons maintenant & notre sketch et voyons
comment il fonctionne.

< Figure 7-3
Commande des différentes phases
de signalisation

virolles

015 E

20

(&)

right

!

Copy

yitallWrite (ledPinCrange, HIGH);
elay (DELAY2) ;

digi lWrite (ledPinRed, LOW);
rite(ledPinODrange, LOW);
italWrite (letPinGreen, HIGH);
av (DELAY1) ;
italWrite{ledPinGreen, LOW);
italWrite {ledPinCrange, HIGH) ;
=]lay (DELAY3) ;

iigitalWrite (ledPinOrange, LOW);

o ' L Ne pas oublier d’éteindre
& la LED orange !

000 0Oe

Pensez non seulement & allumer les diverses LED, mais aussi a les
éteindre lors des différents changements de phase. Au passage de la
phase 1 a la phase 2, seule une LED orange vient s’ajouter a la LED
rouge. Mais au passage de la phase 2 a la phase 3, veillez a ce que les

Montage 7 : La machine 3 états

Figure 7-4 p
Chronogramme des feux
de circulation

Figure 7-5 p
Carte Arduino gérant nos feux
de drculation

310

LED rouge et orange s’éteignent avant que la LED verte ne s’ allume.
Jetez un coup d’ceil au chronogramme pour voir comment les LED
sont allumées a tour de role pendant les différentes phases.

Schéma

Le schéma montre les trois LED de couleur avec leurs résistances de
330 ohms. Les besoins en composants supplémentaires sont légeére-
ment moindres, mais les choses vont bientot changer.

Arduino

Digital 1/0

Analog IN

PWM
PWM
PWM

13

12

11

10

2 330 1Ll 2.
8 R (ED rotae

7 . cU ToOuge

5 R N f

oot

Partie Il : Les montages

vrolles

o

1L

|] o
| .

~

Réalisation du circuit

b
-
o
=
[
o
o

L L e L

R N N)
-
.
-
=
-

@ursm

Sketch élargi (circuit interactif
pour feux de circulation)

Ce sketch étant relativement simple dans sa programmation et sa
construction, modifions un peu les choses.

Imaginons maintenant des feux pour piétons installés sur un trongon
droit d’une route nationale. Il n’est pas utile que les phases pour les
automobilistes changent sans cesse si aucun piéton ne veut traverser
la voie de circulation. Comment les feux doivent-ils fonctionner avec
leurs phases ? Quel matériel supplémentaire faut-il et comment faire
pour étendre la logique ? Voici ce qu'il faut prendre en compte.

* Si aucun pi€ton ne se présente pour traverser la route, le feu reste
vert pour les automobilistes et rouge pour les piétons.

* Si un piéton appuie sur le bouton gérant les feux pour traverser
en toute sécurité, le feu passe a ’orange puis au rouge pour les
automobilistes. Le feu passe ensuite au vert pour les piétons.
Apres un temps prédéfini, le feu repasse au rouge pour les
piétons, et le feu rouge passe a I’orange puis au vert pour les
automobilistes.

< Figure 7-6
Réalisation du circuit pour feux
de circulation avec Fritzing

Montage 7 : La machine 3 états

in

/rolles.

Fyv
Y

L

201

-

Copyright €

1 phase

Automobiliste ~ Piéton Explications

Ces deux signaux lumineux restent allumés jusqu'a ce qu‘un pié-
ton s'approche et appuie sur le bouton gérant les feux. C'est alors
seulement que les changements de phase se déclenchent et font
en sorte que le feu passe au rouge pour les automobilistes et au
vert pour les piétons.

Automobiliste Piéton Explications

Le changement de phase est déclenché par I'appui sur le bouton
gérant les feux. Le feu passe a I'orange pour les automabilistes, ce
qui signifie qu'il va passer au rouge sous peu.

Durée:3s

3¢ phase

Automobiliste ~ Piéton Explications

Pour des raisons de sécurité, le feu est d"abord rouge pour les
automobilistes et pour les piétons. Cela permet aux automabilis-
tes de libérer le cas échéant le passage piétons.

Durée:7s

4¢ phase

Automobiliste Piéton Explications
Le feu passe au vert pour le piéton aprés un court moment.
Durée:10s

Partie Il : Les montages

5¢ phase

Automobiliste Piéton Explications
/—\‘ — Le feu repasse au rouge pour les piétons,
I p Durée:1s

6¢ phase

Automobiliste Piéton Explications

o F
2 B

Le feu passe du rouge a I'orange pour les automobilistes, ce quiles
avertit que le feu va bientdt passer au vert.

Durée:2s

7¢ phase

Automobiliste ~ Piéton Explications

/—\ /—\ Le feu repasse au vert pour les automobilistes et au rouge pour les
Q @ piétons. Cette derniére phase est semblable a la premiére.
Q O Durée : jusqu'au prochain appui sur le bouton

Composants supplémentaires

Ce sketch €largi nécessite les composants supplémentaires suivants.

/ 1LED rouge
/ 1 LED verte

— -y — 2 résistances de 330 Q2

Montage 7 : La machine 3 états

313

Copyright © 2015 Eyrolles.

— Sy 1 résistance de 10 k€2

-

1 bouton-poussoir

Le code élargi est alors le suivant :

#define DELAYo 10000 //Pause 0, 10 secondes

#define DELAY1 1000 //Pause 1, 1 seconde

#define DELAYz 2000 //Pause 2, 2 secondes

#define DELAY3 3000 //Pause 3, 3 secondes

int ledPinRedDrive = 7; //Broche 7 commande la LED rouge

//(feux pour automobilistes)
int ledPinOrangeDrive = 6; //Broche 6 commande la LED orange
//(feux pour automobilistes)
int ledPinGreenDrive = 5; //Broche 5 commande la LED verte
//(feux pour automobilistes)
int ledPinRedWalk = 3; //Broche 3 commande la LED rouge
//(feux pour piétons)
int ledPinGreenWalk = 2; //Broche 2 commande la LED verte
//(feux pour piétons)
int buttonPinLight = 8; //Bouton gérant les feux reliés
//a la broche 8
int buttonLightValue = LOW; //Variable pour 1’état
//du bouton gérant les feux
void setup(){
pinMode(ledPinRedDrive, OUTPUT); //Broche comme sortie
pinMode(ledPinOrangeDrive, OUTPUT); //Broche comme sortie
pinMode(ledPinGreenDrive, OUTPUT); //Broche comme sortie

pinMode(ledPinRedkalk, OUTPUT); //Broche comme sortie
pinMode(ledPinGreenWalk, OUTPUT); //Broche comme sortie
pinMode(buttonPinLight, INPUT); //Broche comme entrée

digitalWrite(ledPinGreenDrive, HICH); //Valeurs de départ
//(vert pour automobilistes)
digitalWrite(ledPinRedwWalk, HIGH); //Valeurs de départ
//(rouge pour piétons)
}
void loop()}{
//lire 1’état du bouton gérant les feux dans la variable
buttonLightValue = digitalRead (buttonPinLight);
//51 bouton appuyé, fonction appelée
if(buttonLightValue == HIGH)
lightChange();
}
void lightChange(){
digitallWrite (ledPinGreenDrive, LOW);

314 Partie Il : Les montages

yrolles.

5E

201

opyright ©

C

digitalWrite(ledPinOrangeDrive, HIGH); delay(DELAY3);
digitalWrite(ledPinOrangeDrive, LOW);
digitalWrite(ledPinRedDrive, HIGH); delay(DELAY1);
digitalWrite(ledPinRedWalk, LOW);
digitalWrite(ledPinGreenWalk, HICH); delay(DELAYo);
digitalWrite(ledPinGreenWalk, LOW);
digitalWrite(ledPinRedWalk, HIGH); delay(DELAY1);
digitalWrite(ledPinOrangeDrive, HIGH); delay(DELAY2);
digitalWrite(ledPinRedDrive, LOW);
digitalWrite(ledPinOrangeDrive, LOW);
digitalWrite(ledPinGreenDrive, HIGH);

}

Le nombre de ports nécessaires est passé a 6, mais cela ne signifie pas
pour autant que les choses sont devenues plus difficiles. Vous devez
seulement soigner un peu plus le cdblage et I'affectation des broches.
Commengons par les variables a spécifier tout au début du programme.

D’un point de vue logiciel, voici les variables nécessaires 4 notre
programmation expérimentale.

Variable Objet

ledPinRedDrive Commande la LED rouge (feux pour automobilistes)
ledPinOrangeDrive Commande la LED orange (feux pour automobilistes)
ledPinGreenDrive Commande la LED verte (feux pour automobilistes)
ledPinRedWalk Commande la LED rouge (feux pour piétons)
ledPinGreenWalk Commande la LED verte (feux pour piétons)
buttonPinLight Broche de raccordement du bouton-poussoir des feux pour
piétons
buttonLightValue Enregistre la valeur de I'état du bouton-poussoir

Les différentes broches sont programmées comme entrées ou sorties,
et la valeur de démarrage LOW est attribuée a la variable buttonLightValue
au sein de la fonction setup. Parce qu’aucun changement de phase ne
survient tant qu'on n’appuie pas sur le bouton, le circuit doit
présenter un état de départ bien défini. Aussi les feux pour automobi-
listes et piétons sont-ils initialisés par les deux lignes :

digitalWrite(ledPinGreenDrive, HIGH);
digitalWrite(ledPinRedWalk, HICH);

Au sein de la fonction loop, I'état du bouton-poussoir est constam-
ment interrogé par la fonction digitalRead et le résultat est affecté a la
variable buttonLightValue. L’évaluation intervient immédiatement
dans le test de la structure de contrdle if :

< Tableau 7-3
Variables nécessaires et leur objet

Montage 7 : La machine a états

315

if(buttonLightValue == HICH)
lightChange();

En cas de niveau HIGH, on passe directement a la fonction lightChange,
qui déclenche alors les changements de phase.

Et que se passe-t-il si j'appuie une deuxieme fois sur le bouton-
poussoir ? Le déroulement s’en trouve-t-il d’une maniére ou d’une autre
perturbé ?

Cette question vient a point nommé. Récapitulons le déroulement du
sketch. L’organigramme suivant devrait répondre a votre question.

Figure 7-7 p
Appel de la fonction l loop)
lightChange

4

outon-
poussoir

appuyé
Non

Oui

lightChange

Comme vous pouvez le voir, 1’état du bouton-poussoir est constam-
ment interrogé et évalué en début de traitement dans la fonction laop.
Ce sont les seules étapes de traitement dans cette fonction. Elle n’a
donc rien d’autre a faire que d’observer 1’état du bouton-poussoir et
de bifurquer dans la fonction lightChange quand le niveau passe de Lo
a HIGH. Une fois la fonction appelée, les divers changements de phase
sont initiés et les phases sont maintenues par différents appels de la
fonction delay.

Nous venons alors tout juste quitter la fonction loop. Un nouvel appui
sur le bouton-poussoir ne serait donc pas enregistré par la logique, car
...... la fonction digitalRead n’est plus constamment appelée. Il ne le serait
2 qu’apres avoir quitté la fonction lightChange.

o 316 Partie Il : Les montages

void loop () < Figure 7-8
{ \ _ Appel et retour

buttonLightValue = digitalRead(buttonPinLight);

lightChange();
}

void lightChange()
{

Retour }

Avant de passer au schéma, voici encore un chronogramme montrant
les différentes durées d’allumage I’une par rapport a ’autre. La situa-
tion de départ nous montre que le feu est vert pour les automobilistes
et rouge pour les piétons. Un piéton ayant I'intention de traverser la
route 4 un endroit supposé plus shr appuie sur le bouton gérant les
feux, ce qui initie les changements de phase.

Boutor_l-poussoir < Figure 7-9
gl ; Chronogramme des feux interactifs

Dans le schéma relatif au dernier sketch, vous pouvez voir les exten-
sions a ajouter pour faire fonctionner le circuit.

Montage 7 : La machine 3 états 317

es,

Copyright © 2015 Eyrolls

Figure 7-10 p
Circuit interactif avec feux
pour automobilistes et piétons

Figure 7-11 p
Réalisation du circuit interactif
pour feux avec Fritzing

318

Bouton-poussoir

Arduino i ——0 O_“—]
12 oy
pum |1 10K
pwm 1O,
O PwH [[Feux pour automobilistes
= |8 0 11 P2
= LFEL] R :
o 6 th} mmﬂr-
‘= PWM 3
o —{ 30} P
o PWM . LED orange
HUSS 1 2
o N
PWN 2 R LED verte
1 Feux pour piétons
I ¢
i L e som e T
Analog IN : LED rouge
--—M-
ml "l nl Nl ﬁl r_*al . P
LED verte
57 4
GMO
La construction est alors la suivante sur la plaque d’essais.
Bouton-
poussoir
Feux pour
1] automohilistes
3
=
Feux pour
piélons

Bypa o

Autre sketch élargi

Je vais maintenant modifier encore un peu le sketch gérant les feux de
circulation, afin que vous fassiez travailler davantage votre matiére
grise.

Dans la programmation du circuit pour feux de circulation, j’ai
toujours oublié d’éteindre I'une ou I’autre LED lors d’un changement

Partie Il : Les montages

de phase avant d’allumer la suivante lors du premier essai, ce qui m’a
géné. I’ai donc imaginé de configurer plus simplement 1’allumage et
I’extinction des LED. Certes, cela demande un peu de préparation
mais peut s’avérer utile pour vos montages a venir. Mais avant de
commencer, je dois d’abord vous parler un peu des bits et des octets.

Le circuit ne change pas. Ordinateur et carte Arduino stockent toutes
les données au niveau le plus bas de la mémoire sous forme de bits et
d’octets (8 bits). I’ai déja abordé ce theme dans le montage n° 6 sur
I’extension de port numérique. En voici les grandes lignes (voir
figure 7-12).

Puissances LA R - S | s
Valeur 128 64 37 16 8 4 2 1
e HRHOOOOD
de bits

Le nombre qui s’écrit en binaire 10011101 s’écrit en décimal :
IX294+0X2M+1X 22+ 1X 2+ 1 X222+ 0Xx25+0x2°+ 1 x27=157,

11 suffit maintenant que certains bits de cet octet servent a commander
les différentes LED de nos feux de circulation pour pouvoir allumer
ou éteindre toutes les LED au moyen d’une seule valeur exprimée en
décimal.

128 64 32 16 8

DOOOOOOO

Ne sont pas nécessaires

\J

Y

¥+ 00@

On voit que 5 bits de cet octet suffisent 4 commander les feux. Mais
comment fait-on au juste ? J'ai reporté dans le tableau 7-4 les
nombres décimaux correspondants, que j’ai déterminés a partir des
différentes phases.

4 Figure 7-12
Combinaison binaire pour
le nombre entier 157

< Figure 7-13
Quel bit pour quelle LED ?

Montage 7 : La machine a états

319

Eyrolles.

2015

Copyright €

Tableau 7-4 p
Nombres décimaux
pour commander les LED

Tableau 7-5 p
Opération ET bit a bit

Tableau 7-6 p
Controle de correspondance du bit

Automobiliste

LED Rouge Rouge Nombre décimal
Poids =8 2’=8 =4 =2 2'=1

Phase 1 0 1 1 0 0 12

Phase 2 0 1 0 1 0 10

Phase 3 0 1 0 0 1 9

Phase 4 1 0 0 0 1 17

Phase 5 0 1 0 0 1 9

Phase 6 0 1 0 1 1 n

Reste a trouver, a partir des nombres décimaux correspondants, quel
bit commande une LED particulieére. C’est possible avec 1’opérateur
ET bit a bit & Le tableau 7-5 montre que le résultat n’est 1 que si les
deux opérandes ont 1 pour valeur.

Opérande 1 Opérande 2 Opération ET
0 0 0
0 1 0
1 0 0
1 1 1

Voici un exemple : vérifions que la LED rouge des feux pour piétons
s’allume pendant la phase 1 de notre commande pour feux de circula-
tion.

Piéton Automobiliste

LED Rouge Rouge Nombre décimal
Poids 2=16 2=8 2=4 2'=12 =1

Phase 1 0 1 1 0 0 12

Opérande 0 1 0 0 0 8

Résultat 0 1 0 0 0 8

Le deuxieéme opérande avec la valeur décimale 8 sert en quelque sorte
de filtre. Il vérifie, seulement dans la position du bit de poids 23,
qu'un 1 se trouve bien dans le premier opérande. C’est le cas dans
notre exemple et le résultat est 8. Le tableau 7-7 donne les nombres
décimaux pour lesquels des opérations ET bit & bit doivent étre effec-
tuées avec les valeurs provenant des différentes phases pour déter-
miner 1’état voulu de la LED.

320

Partie Il : Les montages

« Tableau 7-7

LED Valeur du 2¢ opérande) .
" Valeurs pour déterminer les bits
LED rouge (automobiliste) 1 $1oud0
LED orange (automobiliste) 2
LED verte (automobiliste) 4
LED rouge (piéton) 8
LED verte (piéton) 16

Nous nous servons de 1’opérateur conditionnel ? pour la vérification.
Il s’agit d’une forme d’évaluation spéciale d’une expression. La
syntaxe générale est la suivante (voir figure 7-4).

< Figure 7-14
Opérateur conditionnel ?

(Condition?Instructionl:Instruction?)

Quand I’exécution du programme arrive a cette ligne, la condition est
d’abord évaluée. Si le résultat est vrai, Instructioni est exécutée,
sinon c¢’est Instructionz qui 1’est. Pour commander toutes les LED
avec cette structure, les lignes de code suivantes doivent étre écrites,
le nombre décimal pour commander les LED étant mémorisé dans la
variable lightValue.

digitalWrite(ledPinRedDrive, (lightValue&1)==1?HIGH:LOW);
digitalWrite(ledPinOrangeDrive, (lightValue82)==2?HIGH:LOW);
digitalWrite(ledPinGreenDrive, (lightValue&4)==4?HIGH:LOW);
digitalWrite(ledPinRedWalk, (lightValue88)==87HIGH:LOW);
digitalWrite(ledPinGreenWalk, (lightValue&16)==167HICH:LOW);

Ces 5 lignes de code permettent de commander 1’état (allumé ou
éteint) des 5 LED.

Il y a quelque chose que je ne comprends pas. Comment obtient-on les
différentes durées d’allumage des diverses phases de signalisation ? Je
ne vois nulle part I'instruction delay qui sert & définir les pauses.

Bonne remarque Ardus, aussi ces lignes de code sont-elles insérées
dans une fonction a part et complétées par lightValue et une deuxieme
valeur pour la fonction delay. Cela donne :

void putLEDs(int lightvalue, int pause){
digitalWrite(ledPinRedDrive, (lightValue&1)= =12HIGH:LOW);
digitallirite(ledPinOrangeDrive, (lightValue&2)==2?HIGH:LOW);
digitalWrite(ledPinGreenDrive, (lightValue84)==4?HICH:LOW);
digitalWrite(ledPinRedwalk, (lightValue&8)==87HIGH:LOW);
digitalWrite(ledPinGreenWalk, (lightValued16)==167HIGH:LOW);
delay(pause);

Montage 7 : La machine 3 états EY)

Pour commander les différentes phases de signalisation, il ne vous
reste plus qu’a appeler cette fonction avec les valeurs correspon-
dantes qui figurent dans le tableau 7-4. Les appels sont alors les
suivants :

void lightChange(){
putLEDs(10, 2000);
putLEDs(9, 1000);
putLEDs(17, 10000);
putLEDs(9, 1000);
putLEDs(11, 2000);
putLEDs(12, 0);

}

On voit que la fonction putLEDs est appelée dans la fonction lightChange.
Regardons maintenant les choses de plus pres a 1'aide d’un exemple.
La fonction présentant plusieurs paramétres, il est certainement utile
de savoir dans quel ordre ils sont transmis lors de 1’appel.

putLEDs (10, 2000):

/ O\

void putLEDs(int lightvalue, int pause)

L’ordre de transmission des arguments 10 et 2000 aux parametres de
la fonction putlLEDs est exactement celui dans lequel vous les avez
écrits entre parenthéses. Les parametres de la fonction sont définis
par les variables locales lightValue et pause, dans lesquelles les valeurs
transmises sont copiées.

H) Attention!
Respectez impérativement l'ordre des arguments lors de l'appel de la fonction.
Faute de quoi, le sketch ne plantera pas dans ce cas, mais le circuit ne réagira
pas comme prévu. |l faut donc que

» le nombre des arguments doit coincider avec celui des paramétres ;

- les types de données des arguments transmis doivent correspondre a ceux
des parametres ;

- l'ordre doit étre respecté lors de 'appel.

322 Partie Il : Les montages

yrolles,

5E

201

ght ©

Copyri

Vous avez employé encore une fois I’expression « variable locale ». Je
n’ai pas encore bien saisi la différence entre variable locale et variable
globale.

Pas de probleme! La différence est toute simple. Les variables
globales sont déclarées et initialisées en début de sketch et sont visi-
bles partout, méme a 1'intérieur des fonctions, pendant le fonctionne-
ment. La ligne de code suivante montre une variable globale de notre
sketch :

int ledPinRedDrive = 7; //Broche 7 commande la LED rouge (feux pour
//automobilistes)

i -

Celle-ci est utilisée plus tard dans la fonction setup. Elle y est donc

visible et vous pouvez y accéder.

void setup(){
pinMode(ledPinRedDrive, OUTPUT); //Broche comme sortie
}

Les variables locales sont déclarées ou initialisées dans des fonctions
ou, par exemple, dans une boule for. Elles ont une durée de vie
limitée et ne sont visibles que dans la fonction ou le bloc d’exécution.
« Durée de vie » signifie qu’une zone spéciale est mise a la disposi-
tion des variables locales lorsque la fonction est appelée dans la
mémoire. Une fois la fonction quittée, ces variables ne sont plus utiles
et la mémoire est libérée. Une variable locale n’est jamais visible
hormis dans la fonction ou elle a été déclarée et elle ne peut pas non
plus étre utilisée depuis I'extérieur.

Bon, j’ai compris. Mais qu’en est-il des valeurs définies avec #define
au début du sketch ? Quel comportement ont-elles ?

Vous pouvez aussi les considérer comme des définitions globales qui
sont visibles et accessibles partout dans le sketch. Maintenant que
vous connaissez la directive #tdefine, je peux vous dire que des cons-
tantes telles que HIGH, LOW, INPUT ou OUTPUT — et de nombreuses autres
encore — ont été également définies par ces directives.

Pour aller plus loin
Dans le répertoire suivant

arduino-1.x.y\hardware\arduino\cores\arduino

vous trouverez, entre autres, un fichier nommé Arduino.h, Ce fichier de I'EDI
d'Arduino contient beaucoup de définitions importantes, notamment celles
dont je viens de parler. En voici un court extrait :

Montage 7 : La machine 3 états

323

324

36 fde HIGH 0Ox

37 §define LOW Ox0O

38

39 ¥ e INPUT 0Ox0O
40 £ = CUTPUT Oxi
41

42 fde=f3 true Ox1
43 fdefine false Ox0
48

45

46

47

48

43

20

o 2 e SERIAL Ox0
52 = DISPLAY Oxl
53

54 ine LSBFIRST O
55 MSBFIRST 1

Cela ne vous rappelle rien ? Vous en saurez bientdt plus sur ce qu'est un fichier
d’en-téte dans le montage n” 9. Contentez-vous pour linstant de savoir qu'il
est intégré par le compilateur dans le projet et que toutes les définitions qu'il
contient sont globales et disponibles dans le sketch.

Problémes courants

Si les LED ne s’allument pas les unes apres les autres, débranchez le
port USB de la carte pour plus de sécurité et vérifiez ce qui suit.
* Vos fiches de raccordement sur la plaque d’essais correspon-
dent-elles vraiment au circuit ?
» Est-ce qu’il y a un court-circuit éventuel ?

* Les différentes LED sont-elles correctement branchées ? La
polarité est-elle correcte ?

¢ Les résistances ont-elles bien les bonnes valeurs ?
* Le code du sketch est-il correct ?

* Le bouton-poussoir est-il correctement cdblé ? Vérifiez encore
une fois les contacts en question avec un testeur de continuité.

Qu’avez-vous appris ?

¢ Vous avez découvert comment évaluer le nivean d’une entrée
numérique a I’aide de la fonction digitalRead.

* Vous avez réalisé un circuit pour feux de circulation a la fois
simple, car initiant automatiquement les différents changements
de phase indépendamment des influences externes, mais aussi
interactif car réagissant avec un capteur (ici, un bouton-poussoir)

Partie Il : Les montages

a des impulsions de I’extérieur et déclenchant alors seulement les
changements de phase.

» Utiliser la directive de prétraitement #define ne devrait plus vous
poser de problemes. Elle est employée la plupart du temps la o
des constantes sont définies. Le compilateur remplace partout
dans le code le nom de I’identifiant par 1’expression correspon-
dante.

* L’opérateur conditionnel ? peut étre employé pour retourner
différentes valeurs en fonction de 1’évaluation d’une expression.
Le mode d’écriture est vraiment compact et n’est pas toujours
immédiatement compréhensible.

¢ Vous avez appris 4 transmettre plusieurs valeurs a une fonction,
et vous savez en détail a quoi il faut faire attention.

* Vous connaissez la différence entre variable locale et variable
globale, et vous savez ce que visibilité et durée de vie signifient
dans ce cas.

Exercice complémentaire

Réalisez un circuit pour feux de circulation a un croisement. Le
dessin suivant peut vous servir de base.

Les paires de feux de circulation A et B doivent étre commandées en
méme temps. Cette fois-ci, il n’y aura pas de feux pour piétons.
Veillez a ce que quand un sens passe au rouge, I’autre ne passe pas
tout de suite au vert. Un délai de sécurité doit étre prévu pour que les
automobilistes déja engagés puissent encore franchir le croisement
quand le feu passe du vert au rouge.

Montage 7 : La machine 3 états

325

Copyright © 2015 Eyrolles.

Figure 7-15 p
Circuit pour feux de circulation
avec feux pour piétons

Cadeau !

Je vous propose ici une carte a construire facilement, qui vous servira
a réaliser le circuit pour feux de circulation avec feux pour piétons.

326

Partie Il : Les montages

Le dé électronique

Au sommaire :
» Ja déclaration et I’initialisation d’un tableau bidimensionnel ;
¢ la programmation de plusieurs broches comme sortie (OUTPUT) ;
* la programmation d’un port comme entrée (INPUT) ;
¢ le sketch complet ;
* I’analyse du schéma ;
¢ la réalisation du circuit ;
* un exercice complémentaire ;

* quelque chose d’intéressant.

Qu’est-ce qu'un dé
électronique ?

Bien que les derniers montages vous aient donné quelques bases pour
programmer la carte Arduino, vous pensez siirement étre encore loin
du compte... Aussi allons-nous appliquer, approfondir et élargir nos
connaissances en étudiant quelques circuits intéressants. La construc-
tion d’un dé électronique est toujours plaisante. Il y a quelques années
de cela, quand les microprocesseurs n’existaient pas ou étaient hors
de prix, on utilisait plusieurs circuits intégrés. Vous trouverez pour ce
faire de nombreuses instructions de bricolage sur Internet. Notre but
est ici de commander le dé électronique avec la seule carte Arduino.

Tout le monde a déja joué aux dés, que ce soit au 421, au 5000 ou au
Yams. Aussi notre prochain circuit sera celui d’un dé électronique. I
se compose d’une unité d’affichage avec sept LED et un bouton-

Montage

327

Eyrolles.

5

201

opyright ©

C

Figure 8-1 p

Numérotation des points du dé

328

Tableau 8-1 p
Quelle LED s'allume
pour quel nombre ?

poussoir pour lancer le dé. Voici d’abord la disposition des LED qui
est celle des points d’un véritable dé. Les points portent tous un
numéro pour mieux se repérer au moment de commander les LED. Le
numéro 1 se trouve en haut & gauche, la numérotation se poursuivant
vers le bas puis vers la droite jusqu’au numéro 7 qui se trouve en bas
a droite.

Notre construction doit comporter un bouton-poussoir qui lance le dé.
Lorsqu’on appuie dessus toutes les LED clignotent irrégulierement et
quand on le reliche, I’affichage s’ arréte sur une certaine combinaison
de LED, laquelle représente le nombre obtenu. Les différentes combi-
naisons de points sont répertoriées dans le tableau 8-1.

Dé Nombre LED

<
<
<

Partie Il : Les montages

Dé Nombre LED “ Tableal.l 8‘1 (suite}
Quelle LED s'allume
1 2 3 4 5 6 pour quel nombre ?
6 v v v v v v

Il est certes tout a fait possible de construire le circuit sur votre plaque
d’essais, mais ce n’est pas toujours simple compte tenu de la symétrie
des LED. Dans un montage a part (le n° 22), nous construirons le
circuit sur une carte spéciale appelée shield, et que nous brancherons
par-dessus la carte Arduino. C’est la maniére la plus propre et la plus
pratique de fabriquer un dé électronique durable. Mais utilisons
d’abord la plaque d’essais. Quel matériel nous faut-il ?

Composants nécessaires

/ 7 LED rouges

7 résistances de 330 Q

-k
P — 1 résistance de 10 kQ

*

1 bouton-poussoir

//_\\ Plusieurs cavaliers flexibles de couleurs et de
longueurs diverses

Code du sketch

Voici le code du sketch pour commander le dé électronique :

#tdefine WAITTIME 20
int pips[6][7] = {{0, 0, 0, 1, 0, O, 0}, //Nombre sorti
{1, 0, 0, 0, 0, 0, 1}, //

{1, 0, 0, 1, 0, 0, 1},

{1, o, 1, 0, 1, 0, 1},

W, B §, 170 U3 4

{1, 1, 1, 0, 1, 1, 1}}; //Nombre soiti 6

Montage 8 : Le dé électronique

329

yrolles.

5E

201

opyright ©

C

Tableau 8-2 p
Variables nécessaires et leur objet

330

int pin[] = {2, 3, 4, 5, 6, 7, 8};
int pinOffset = 2; //Premiére LED sur broche 2
int buttonPin = 13; //Bouton-poussoir sur broche 13

void setup(){
for(int 1 = 0; i < 7; i++)
pinMode(pin[i], OUTPUT);
pinMode(buttonPin, INPUT);
}

void loop(){
if (digitalRead (buttonPin) == HIGH)
displayPips(random (1, 7)); //Générer un nombre entre 1 et 6

}

void displayPips(int value){
for(int 1 = 0; i < 7; i++)
digitalWrite(i + pinOffset, (pips[value - 1][i] == 1)?HIGH:LOW);
delay(WAITTIME) ; //Ajouter une courte pause

}

Revue de code

Du point de vue logiciel, les variables présentées dans le tableau 8-2
sont nécessaires 4 notre montage.

Variable Objet

pips Tableau bidimensionnel contenant les informations sur les LED a commander pour
la valeur d'affichage respective

pin Tableau unidimensionnel contenant les numéros des différentes broches de LED

pinOffset ~ La premiére LED ne se trouve pas sur la broche 0. Cette variable contient une valeur
de décalage qui définit la position de départ pour une boucle for, afin de comman-
der la premiére LED et toutes les autres.

buttonPin Broche de raccordement du bouton-poussoir au dé

La programmation est déja plus compliquée et nous n’avons pas
seulement affaire cette fois a un tableau unidimensionnel comme
dans le montage n° 5 sur le séquenceur de lumiere. Un tableau bidi-
mensionnel est ici nécessaire pour mémoriser les numéros des LED
qui doivent s’ allumer en fonction du nombre obtenu. Rappelons-nous
encore une fois, par I'intermédiaire de la figure 8-2, comment un
tableau unidimensionnel fonctionne et comment nous pouvons y

accéder.

Partie Il : Les montages

Index 0 1 2 3 4 5 6
Contenu m 819 @m@ 13
dutableau

La déclaration et I'initialisation du tableau sont assurées par la ligne
suivante :

int ledPin[] = {7, 8, 9, 10, 11, 12, 13};

Le tableau contient ici sept éléments. Un tableau unidimensionnel est
reconnaissable a sa paire de crochets derriére le nom de variable. On

accéde a un élément particulier en indiquant l'index entre les
crochets. Vous écrivez donc ce qui suit pour accéder au 4¢ élément :

ledPin[3]

N’oubliez pas que 1’on compte a partir de 0 ! Un tableau bidimen-
sionnel possede au sens figuré une dimension spatiale de plus,
passant ainsi quasiment d’une droite unidimensionnelle a une surface.

Colonnes (LED)
Index Mo 1 45

EEIQCZZ

_\;JU;;
00080
100000
1000000

11 se comporte de la méme maniére que pour trouver une piéce sur un
jeu d’échec. On la localise plus facilement grice a des coordonnées :
par exemple Dame sur D1, D indiquant la colonne et 1 la rangée. Le
tableau présenté ici dispose de 6 x 7 =42 éléments. Déclaration et
initialisation se font comme d’habitude. Seule la paire de crochets est
rajoutée pour la nouvelle dimension.

(=)

=)

—_

‘]
J
~
J
-

—

.
g

e] Lee]
\

(-] L]
\
-

e] Lee]
\
-

Lignes (nombre)

BEEE

int pips[6][7] = {{0, 0, O, 1, O, 0O, O},
{o, o, 1, 0, 0, 0, 1},
{0, 0, 1, 1, 0, 0O, 1},
{1, 0, 1, 0, 1, 0, 1},

< Figure 8-2
Tableau unidimensionnel

<« Figure 8-3
Tableau bidimensionnel

Montage 8 : Le dé électronique

33

Figure 8-4 p

Affectation des valeurs

des colonnes du tableau aux LED
correspondantes

332

mbre sorti s

{1, 0, 1, 1, 1, 0, 1},
{1, 1, 1, 0, 1, 1, 1}}; //Nombre sorti &

La premiere valeur [6] entre crochets indique le nombre de lignes, le
deuxiéme [7] le nombre de colonnes. La double paire de crochets
permet aussi d’accéder a un élément :

pips[ligne][colonne]

Vous pouvez ainsi procéder ligne par ligne et lire les valeurs de LED
correspondantes pour y accéder. La figure 8-4 montre 1’affectation
des différentes valeurs.

O
oD
DD

~

—_— e —

2
0

h—
1
L=
J
N
—
S
——
L= ko
S’

I

()(o)
ono
Soogce
DOOOE

Il y a quelque chose que je trouve bizarre. On ne peut pas faire 0 avec
un dé. Pourtant le graphique, lui, commence par 0 et finit par 5 a la
place de 6. Pouvez-vous m’expliquer ?

o
(o]

UU]_J

—_
o

S
.

——
N/
‘

o]

\ J
—
S
e/

(¥]
s '8
J
'8
}
A,

La réponse est simple. Vous avez un peu tout mélangé... Ce ne sont
pas les points du dé qui sont énumérés mais I'index du tableau.
Rappelez-vous que I'index commence toujours a o et présente donc
un décalage numérique de — 1 par rapport aux points du dé. Voici
maintenant un petit sketch qui affiche les contenus du tableau bidi-
mensionnel sur le Serial Monitor :

int pips[6][7] = {{0, 0, O, 1, O, O, O}, //Nombre sorti 1
{1, 0, 0, 0, 0, 0, 1}, //Nombre sorti 2

Partie Il : Les montages

Eyrolles.

)

201

ight ©

Copyr

{1, 0, 0, 1, 0, 0, 1}, //Nombre sorti 3
{1, 0, 1, 0, 1, 0, 1}, //Nombre sorti 4
{1y O I, 1.7, 9; 13, //Nombre sorti s
{1, 1, 1, 0, 1, 1, 1}}; //Nombre sorti 6

void setup(){
Serial .begin(9600);
for(int row = 0; row < 6; row++){
for(int col = 0; col < 7; col++)
Serial.print(pips[row][col]);
Serial.println();
}
}
void loop(){..}

I1 s’agit ici de deux boucles for imbriquées. La boucle extérieure, qui
contient la variable de contrdle row (ligne), commence a compter a
partir de sa valeur de départ 0. Vient ensuite la boucle intérieure, qui
commence elle aussi par la valeur o de sa variable de contrdle col
(colonne). La boucle intérieure doit cependant avoir fini de traiter
toutes ses valeurs pour que la boucle extérieure incrémente la sienne.

Pour aller plus loin

Dans le cas de boucles imbriquées l'une dans l'autre, le traitement se fait de
lintérieur vers I'extérieur. Autrement dit, la boucle intérieure doit avoir exécuté
tous ses passages avant que la boucle extérieure ne compte un de plus et que
la boucle intérieure ne poursuive avec ses passages. Le cycle continue jusqu'a
ce que toutes les boucles aient été traitées.

La figure 8-5 présente le contenu du tableau imprimé sur le Serial
Monitor.

h 55 = == ;’ tﬁgur; 3;5L| § imé li
— ontenu du tableau imprimé ligne
- par ligne sur le Serial Monitor

0001000
1000001
1001001
1016101
1011100
1110111

Comparez cette impression a 1’initialisation du tableau et vous verrez
qu’elles coincident. Passons maintenant & I’analyse du code propre-

Montage 8 : Le dé électronique 333

virolles

> e

01:

20

T

ht ©

I":I
gl

Copyri

ment dite. La fonction setup a encore pour tiche d’initialiser les diffé-
rentes broches :

void setup(){
for(int 1 = 0; 1 < 7; i++)
pinMode(pin[i], OUTPUT);
pinMode(buttonPin, INPUT);
}

Les broches pour commander les LED, broches programmées comme
OUTPUT dans la fonction setup, sont également regroupées dans un
tableau. Il n’y a qu’au bouton-poussoir, qui est relié a une entrée
numérique, qu’une variable normale est affectée. La tiche principale
est encore exécutée par la fonction loop.

void loop(){
if(digitalRead(buttonPin) == HIGH)
displayPips(random (1, 7)); //Générer un nombre entre 1 et 6
}
void displayPips(int value){
for(int i = 0; 1 < 7; i++)
digitalWrite(i + pinOffset, (pips[value-1][i] == 1)?HIGH:LOW);
delay (WAITTIME);
}

Quand le bouton-poussoir est enfoncé, la fonction displayPips est
appelée. Un chiffre aléatoire compris entre 1 et 6 lui est transmis
comme argument. Voyons maintenant de plus pres le mode d’exploi-
tation de la fonction. Il s’agit essentiellement d’une boucle for, qui
commande les différentes LED correspondant au chiffre transmis.

Supposons qu’un 4 soit sorti : la fonction recoit cette valeur comme argu-
ment. La boucle for commence son travail. Elle commande les broches et
détermine le niveau HIGH/LOW nécessaire pour la LED en question :

for{int i = 0; 1 < 7 i++)
'7—3: ‘ digitalWrite { + pinDffset, (pipslvalue - 1][1] == 1)7HIGH:LOW;:
= | | | |

Broche dela LED Niveau RIGH/LOW

C’est la variable de décalage (offset) qui est utilisée, mais je n’ai pas
trés bien compris a quoi elle sert.

Pas de probleme, Ardus ! La variable pinOffset a pour valeur 2 et
établit que la premiére broche a traiter se trouve a cette place. La
premiére broche, portant le numéro o, est RX et la deuxiéme, portant le

334 Partie Il : Les montages

numéro 1, est TX. Ces deux broches sont en principe a éviter. La
boucle for commengant par la valeur o, la valeur de pin0offset lui est
rajoutée. Mais revenons a notre exemple, dans lequel un 4 est sorti. La
boucle for traite la 4¢ ligne du tableau pour déterminer les niveaux
HIGH/LOW nécessaires. Mais cette valeur doit étre diminuée de 1 du fait
que 1’on commence par la valeur d’index o.

4-1 {10, 0, 0, 1, 0, 0, 0},
11, 0, 0, G, O, O, 1},

| Lh, 8. D) B I 0 8,

i T T e B O 3

' e Mo T Op B o 00

: N T

La ligne sélectionnée dans le tableau comporte les valeurs 1, 0, 1, 0,
1, 0, 1 qui sont traitées une a une par la boucle for. Ceci est initié par
I’expression suivante :

(pips[Value - 1][1i] == 1)?HIGH:LOW)

Celle-ci vérifie que les valeurs sont bien 1 ou 0. Le niveau HIGH est
appliqué si c’est 1 et le niveau LoW si ¢’est 0. Les LED correspondant
au nombre sorti sont ainsi activées ou désactivées. Tant que le
bouton-poussoir est maintenu enfoncé, un nouveau nombre est déter-
miné et les LED clignotent toutes tres vite 'une derriere I’autre. Une
fois le bouton-poussoir reliché, le dernier nombre reste affiché. La
constante WAITTIME permet de régler la vitesse a laquelle les nombres
changent quand le bouton-poussoir est enfoncé, soit ici 20 ms.

Schéma

Le schéma montre les 7 LED du dé avec leurs résistances série de
330 Q et le bouton-poussoir avec sa résistance pull-down.

Arduino 1 PO e o
12, o
pwn AL — I }—=
pun [0, "
g mii. (T
- B R __LEDdu dé
L. 6 T 1 -
= PN —— ! " 1 3 1 ;3
2 w2 L TP PR
PN __2.._ | — - . = Ni-,'- 1’.|\‘: fa] ..h&"‘..-
Ll | | | o 2 . £ a0h
0. g [T~ S
Analog IN | |
_ﬂt,r) -l ol s I .
l | lml l:'l |
! o

< Figure 8-6

Sélection de I'élément du tableau
pertinent pour un nombre
préalablement sorti

< Figure 8-7
Carte Arduino commandant
chacune des 7 LED de notre dé

Montage 8 : Le dé électronique

335

Copyright © 2015 Eyrolles,

Figure 3-8 p

Réalisation du dé électronique

336

avec Fritzing

Réalisation du circuit

aquUTNpJY

<« Bouton-
« < pOUSSOIr

On voit que j'ai utilisé deux plaques d’essais pour construire ce
circuit. Il existe cependant des versions suffisamment larges pour
pouvoir placer tous les composants dessus. Faites des essais de dispo-
sition car vous n'étes pas obligé de suivre ce que j’ai fait. A vous de
trouver votre propre stratégie. La figure 8-9 montre la construction du
circuit sur une seule plaque, mais il a fallu « jongler » un peu pour y
arriver. Ceci dit, il devrait tres bien fonctionner.

Partie Il : Les montages

Eyrolles.

)

201

ight ©

Copyr

< Figure 8-9
Réalisation du dé électronique
sur une plague d'essais

Il m’est venu une idée. Je me suis souvenu du tableau unidimensionnel
et j’ai essayé quelque chose. Vous avez dit qu’il est inutile d’écrire la
dimension du tableau entre les crochets si celui-ci est initialisé aussitot
dans la méme ligne. Le compilateur déduirait alors des valeurs trans-
mises les dimensions que doit avoir le tableau. I’ai done voulu essayer
avec le tableau bidimensionnel mais j’ai eu une erreur.

\

L’idée n’est pas mauvaise et prouve que vous y pensez et appliquez
ce que vous avez appris. Mais les choses ne vont pas si bien avec le
tableau bidimensionnel. Si vous omettez toutes les indications sur la
taille du tableau et écrivez :

int pips[][] = {{o, 0, O, 1, 0, O, O}, //Nombre sorti 1
{1, 0, 0, 0, 0, 0, 1}, //Nombre sorti 2
{1, 0, 0, 1, 0, 0, 1}, //Nombre sorti 3
{1, 0, 1, 0, 1, 0, 1}, //Nombre sorti 4
{1, 0, 1, 1, 1, 0, 1}, //Nombre sorti 5
{1, 1, 1, 0, 1, 1, 1}}; //Nombre sorti 6

le compilateur renicle, comme vous avez pu le constater.

Le message d’erreur dit, pour résumer, que dans le cas d’un tableau
multidimensionnel, toutes les limites, hormis la premiére, doivent
étre indiquées. Vous pouvez donc écrire la ligne suivante :

int pips[]l7] = ..

Le compilateur acceptera ce code.

Montage 8 : Le dé électronique 337

2015 Eyrolles.

Copyright ©

Figure 8-10 p
Groupes de LED surle dé
électronique

Tableau 8-3 p
Points du dé et groupes de LED

Que pouvons-nous encore
améliorer ?

Il est presque toujours possible d’améliorer ou de simplifier les
choses. Il vous suffit de prendre un peu de recul et de considérer le
projet dans son ensemble. Ne vous creusez pas trop la téte. Les idées
viennent souvent quand on est occupé a autre chose. Revenons a
notre dé. Si vous regardez les différents points d’un dé pour diffé-
rentes valeurs, vous remarquerez peut-&tre quelque chose. Retournez
pour ce faire au tableau « Quelle LED s’allume pour quel nombre ? »
Question : les huit LED s’allument-elles toutes indépendamment les
unes des autres ? Ou se peut-il que certaines forment un groupe ?
Question idiote, non ? C’est le cas, bien évidemment : la figure 8-10
montre les différents groupes.

Groupe A Groupe B Groupe C Groupe D

LED 4 LEDT+7 LED3+5 [ED2+6

Pris séparément, le groupe A et le groupe B sont utilisables, ce qui est
moins le cas pour les groupes C et D.

Quoi qu’il en soit, les configurations souhaitées sont générées par un
groupe ou une combinaison de plusieurs groupes. Voyons maintenant
lequel ou lesquels des groupes est ou sont concerné(s) par quels
points du dé :

v v v

Groupe A

Groupe B v v v v v
Groupe C v v v
Groupe D v

Ainsi, nous pouvons contrdler les LED avec 4 lignes de commandes
au lieu de 7.

338

Partie Il : Les montages

yrolles.

|] o
| .

)1E

5

20
Ll

L

right ©

T

! =

Y\

Ble]

Si je comprends bien, il faut interconnecter deux LED dans les
groupes B, C, et D. Ne peut-on pas faire autrement ? Dois-je les céibler
en série ou en paralléle ?

C’est tout a fait ¢a, Ardus ! Dans le montage n° 2, nous avions calculé
la résistance série pour une LED rouge. Relisez-le si besoin. Si
plusieurs LED doivent étre commandées, il faut les brancher en série.
Il y a environ 2 V aux bornes d une seule LED rouge, autrement dit la
résistance série doit faire chuter 3 V. Deux LED étant ici branchées
I’une derriére 1’autre, il est possible de déterminer ce qui suit pour la
chute de tension aux bornes de la résistance série Ry, :

Urv = Usptate = Urepr — Urgp2 = #5V -2V -2V =1V

1 V doit donc étre « grillé » sur la résistance série Ry, pour que 2V
subsistent aux bornes de chaque LED. Pour ce qui est du courant, qui
circule de la méme facon dans tous les composants (rappelez-vous
comment le courant se comporte dans un montage en série), je le fixe
a 10 mA (10 mA =0,01 A). On obtient donc¢ les valeurs suivantes
dans la formule pour calculer la résistance série :

U —U =
totale " Y LEDI + LED2 _5V =4V _ 100 &

Ru=
¥ I 0.01 A

Le circuit ressemble a ceci :

GND +5V
B> Pomsiet
LED 1 LED 2 v
= = =
Upgp=2V Uin=2V Ugv=1V
<
Uite =+5 V
Attention!

Veillez a ce que les deux LED soient dans le méme sens, sinon pas d'allumage.
L'anode de la LED 1 est reliée a la cathode de la LED 2.

Ici aussi, j’ai vérifié le calcul de maniére pratique pour m’assurer que
tout est €galement en ordre.

< Figure 8-11
Deux LED avec une résistance série

339

Montage 8 : Le dé électronique

Copyright © 2015 Eyrolles.

Figure 8-12 p

Mesure du courant sur le circuit

340

de commande avec deux LED
et une nouvelle résistance

& ADITERAUT 98w

LED 1 LED 2 ¥

Le courant de 7,84 mA est absolument correct et encore inférieur a la
prescription de 10 mA maxi. Deux LED ayant naturellement besoin
du double de tension d’alimentation par rapport a une seule, la résis-
tance série doit étre plus faible pour que la luminosité des deux LED,
soit la méme que celle d’'une seule LED. Vous pouvez bien sir
utiliser la méme résistance de 330 €2 pour tous les groupes A a D, ce
qui signifie toutefois en théorie que la luminosité du groupe A sera
plus forte avec une seule LED que le reste des groupes.

Passons maintenant a la programmation. Par quoi commencer ? Je
vous suggere de revenir au tableau « Points du dé et groupes de
LED » et de voir s’il s’en dégage une systématique établissant quel
groupe de LED doit étre commandé, a quel moment et pour quelles
configurations de points du dé. Procédez étape par étape et observez
un groupe aprés 1’autre. Vous pouvez les traiter complétement & part
I'un de I"autre car la logique de commande se charge ensuite de les
rassembler pour un affichage en commun des véritables points du dé.
Je vous montre encore une fois de maniére simplifiée le groupe A du
dernier tableau.

Partie Il : Les montages

yrolles,

5E

g 201

right ©

Copy

Dé 1 2 3 4 5 6
Groupe A v v v

Encore un indice : qu’est-ce que les nombres 1, 3 et 5 ont en
commun ?

[Ce sont tous des nombres impairs. >

Oui Ardus ! C’est la solution,

Formulation pour commander
le groupe A

Commander le groupe A si le nombre aléatoire déterminé est impair.
Passons maintenant au groupe B. Voici I'extrait correspondant du tableau :

Dé 1 2 3 4 5 6
Groupe B v v v v v

Que constatez-vous ici 7-

[Tous les nombres sont concernés sauf le 1. > Ty 3
= - .

Bien, Ardus ! Mais a quoi pourrait bien ressembler une formulation
que le microcontréleur comprendrait sans probléme ? Une descrip-
tion quelque peu maladroite donnerait ceci : commander le groupe B
si le nombre est 2 ou 3 ou 4 ou 5 ou 6. Cherchez 1a encore le point
commun et vous pourrez raccourcir fortement la formulation.

Formulation pour commander
le groupe B
Commander le groupe B si le nombre aléatoire déterminé est supé-

rieur 4 1. Voyons maintenant le groupe C :

Dé 1 2 3 4 5 6
Groupe C v v v

Vous savez comment faire maintenant, n’est-ce pas ?

Montage 8 : Le dé électronique 341

violles,

{ s
| .

)18

o

20
=) LA

(&)

right

Y
DY

Formulation pour commander
le groupe C

Commander le groupe C si le nombre aléatoire déterminé est supé-
rieur a 3. Passons pour finir au groupe D :

Dé 1 2 3 4 5 6
Groupe D

Plus besoin de vous demander maintenant, n’est-ce pas ?

Formulation pour commander
le groupe D

Commander le groupe D si le nombre aléatoire déterminé est égal 4 6.
Nous pouvons a présent passer a la programmation proprement dite.
Vous verrez que cette solution est beaucoup plus simple que 'utilisa-
tion d’un tableau. Mais il faut suivre mentalement quelques pistes
jusqu’au bout avant de s’apercevoir que 4 broches au lieu de 7 sont
nécessaires pour commander les LED. Cela permet cependant
d’aborder cette thématique par le coté ludique. Voici le code du
sketch pour commander le dé électronique avec moins de lignes de
commande :

#define WAITTIME 20
int GroupA = §; //LED 4
int GroupB = 9; {/LED 1 + 7
int GroupC = 10; //LED 3 + 5
int GroupD = 11; //LED 2 + 6
int buttonPin = 13; //Bouton-pousscir a la broche 13
void setup(){
pinMode(GroupA, OUTPUT);
pinMode(GroupB, OUTPUT);
pinMode(GroupC, OUTPUT);
pinMode(GroupD, OUTPUT);
}

void loop(){
if(digitalRead(buttonPin) == HIGH)

Ble]

L

Partie Il : Les montages

2015 Eyrolles.

yright ©

!

Cop

displayPips(random(1, 7)); //Générer un nombre entre 1 et 6

}

void displayPips(int value){
//Eteindre tous les groupes
digitalWrite(GroupA, LOW);
digitalWrite(GroupB, LOW);
digitalWrite(GroupC, LOW);
digitalWrite(GroupD, LOW);
//Commande de tous les groupes
if(value%2 != 0) //La valeur est-elle impaire ?
digitalWrite(GroupA, HIGH);
if(value > 1)
digitalWrite(GroupB, HIGH);
if(value > 3)
digitalWrite(GroupC, HIGH);
if(value == 6)
digitalWrite(GroupD, HIGH);

delay(WAITTIME) ; //Ajouter une courte pause

}

Je viens de m’apercevoir que vous avez oublié quelque chose ! Vous
avez programmé les broches pour les groupes A & D comme sortie,
mais vous avez oublié de définir le bouton-poussoir comme entrée.

C’est vrai, Ardus! Je n’ai pas programmé cette entrée sur la
broche 13 comme entrée. Vous avez raison sur ce point. Mais je n’ai
pas non plus oublié puisque toutes les broches numériques sont défi-
nies comme entrée de maniere standard et n’ont donc pas besoin
d’étre explicitement programmées en cas d’utilisation appropriée.

Vous pouvez bien entendu le faire partout dans votre sketch car cela
aide certainement a comprendre.

J’ai en fait tout compris jusqu’a la ligne dans laquelle il est délerminé si
la valeur est impaire. Pouvez-vous m’expliquer s’il vous plait ?

Bien sir, Ardus! L’opérateur % (opérateur modulo) détermine
toujours le reste d’une division. Si le nombre est divisible par 2, il
s’agit d’un nombre pair. Le reste de la division étant dans ce cas
toujours o. La ligne :

if(value%2 != 0)

me permet cependant de demander si le reste est différent de o pour
ainsi commander le groupe A.

Montage 8 : Le dé électronique 343

Copyright © 2015 Eyrolles.

Arduino

Digital |/0

Analog IN

Encore une remarque avant d’en venir au circuit : cela ne change pas
grand-chose si, au lieu de la résistance série de 100 Q calculée pour
les groupes B a D, vous utilisez ici les anciennes résistances de
330 Q. La luminosité semble étre la méme, mais ce n’est qu’approxi-
matif. La figure 8-13 montre qu’il faut moins de résistances série
pour les LED que dans le montage précédent.

Lancement du dé

]

Figure 8-13 A
(arte Arduino commandant les 7 LED
denotre dé par groupe de LED

13 PR son W—
B B "_(}
12
il [T07}
10 R
__g_*.. N]| _ i
7 LED du dé
——a 530 .
P — 1 5
- —3- —Pig P
—L'—.. 2 4 6
I i | Pt
2., - Pis . S [l)
1 3 7
- P i
Groupe A:LED 4 Commande : broche 8
Groupe B LED 1+ 7 Commande ; broche G E&:
Groupe C:LED 3 +5 Commande : broche 10
Groupe D LED 2+ 6 Commande : broche 11

La réalisation sur la plaque d’essais s’ avere plus simple parce que les
lignes de commande sont moins nombreuses :

)

Partie Il : Les montages

5 Eyrolles.

yright © 201

!

Cop

Bouton-
poLssoIr

Problémes courants

Si les LED ne se mettent pas a clignoter apres avoir appuyé sur le
bouton-poussoir ou si les points du dé qui s’affichent sont bizarres,
voire incohérents, débranchez le port USB de la carte pour plus de
sécurité et vérifiez ce qui suit.
* Vos fiches de raccordement sur la maquette correspondent-elles
vraiment au circuit ?
* N’y a-t-il pas un court-circuit éventuel entre elles ?

* Les LED ont-elles été mises dans le bon sens 7 Autrement dit, la
polarité est-elle correcte ?

» Les résistances ont-elles bien les bonnes valeurs ?
* Le code du sketch est-il correct ?

* Le bouton-poussoir est-il correctement cdblé ? Vérifiez encore
une fois les contacts en question avec un testeur de continuité.

< Figure 8-14

Réalisation du dé électronique
utilisant des groupes de LED
avec Fritzing

Montage 8 : Le dé électronique

345

346

Qu’avez-vous appris ?

* Vous avez appris dans ce montage comment déclarer et initia-
liser un tableau bidimensionnel et comment accéder aux diffé-
rents éléments de ce tableau.

* Vous savez comment imprimer des contenus de variables avec le
Serial Monitor pour vérifier I’exactitude de ces valeurs. Vous
pouvez ainsi rechercher une erreur et analyser le code en cas de
comportement incorrect. Vous devez cependant étre siir que le
circuit est correctement ciblé, sinon vous chercherez dans le
code-source une erreur qui, en réalité, se situe au niveau du
matériel. Cela vous évitera de perdre du temps et vous épargnera
peut-étre méme une crise de nerf.

* Vous avez appris comment calculer une résistance série pour
deux LED montées en série, de maniére a ce que la luminosité
demeure pratiquement inchangée.

Exercice complémentaire

L’objet de cet exercice est déja un peu plus délicat. Vous vous
souvenez slirement du registre 4 décalage 74HC595 avec ses
8 sorties. Essayez de réaliser un circuit ou de programmer un sketch
qui commande un dé électronique au moyen du registre a décalage.
Combien de broches numériques économisez-vous avec cette
variante 7 Est-ce un avantage par rapport a la réalisation avec des
groupes de LED ?

Partie Il : Les montages

Montage

Comment creer
une bibliothéque ?

Le jour viendra ol vos connaissances vous permettront de réaliser des
idées 4 vous, que d’autres n’auront peut-€tre pas encore eues. Mais
peut-étre souhaiterez-vous aussi améliorer un projet existant parce
que votre solution est plus élégante et moins compliquée a transposer.
D’innombrables développeurs de logiciels se sont penchés avant vous
sur les questions les plus diverses et ont programmé des bibliotheques
pour épargner du travail et du temps aux autres développeurs. A
travers ce projet, nous allons découvrir les grands principes de ces
bibliothéques et leur création. Si le langage de programmation C++ —
programmation orientée objet incluse — vous a toujours intéressé,
vous allez étre servi !

Les bibliotheques

Une fois I'environnement de développement Arduino installé ou
plutét décompressé, vous disposez de quelques bibliothéques maison
prétes a I’emploi, appelées également librairies (libraries en anglais).
Elles traitent de thémes intéressants, tels que commander :

* un servomoteur ;

* un moteur pas-a-pas ;

* un écran LCD ;

* une EEPROM externe pour stocker des données. ..

Ces bibliotheques sont stockées dans le répertoire libraries du réper-
toire d’installation d’Arduino. Vous pouvez utiliser Windows
Explorer ou passer par I’environnement de développement Arduino
pour savoir quelles sont les bibliothéques disponibles. On y trouve

347

une entrée de menu spéciale Sketch>Import Library permettant d’affi-
cher la liste correspondante.

Figure 9-1 b [Sketch] Tools Help
Afficher ou importer

des bibliotheques

Verify / Compile Strg+R

Show Sketch Folder Strg+K

Add File...

Import Library... ’ Bounce

' EEPROM

Ethernet
Firmata
LiquidCrystal
Mouse
SD
Servo
SoftwareSerial
SP1
Stepper
Wire

Dice

Les entrées du menu coincident avec les répertoires du dossier libra-
ries. Tout cela est bien beau, mais voyons d’abord comment une
bibliothéque Arduino fonctionne et ce que nous pouvons faire avec.

Qu’est-ce qu’une bibliothéque
exactement ?

Avant de passer & un exemple concret, vous devez savoir ce qu’est
une bibliothéque. J’ai dit déja qu’elle servait quasiment & empaqueter
et réunir des tiches de programmation plus ou moins complexes en
un paquet de programme. La figure 9-2 montre la coopération entre
une bibliotheque Arduino et I’ API Arduino.

348 Partie Il : Les montages

pinMode

digitalWrite
analogRead
millis
digitalRead

i
analogWirite L

Nous avons affaire a deux couches de programme interdépendantes.
Je procede de I'intérieur vers 1’extérieur. J’ai appelé la couche interne
API Arduino. (API est 1’abréviation d’Application Programming
Interface et une interface vers toutes les instructions Arduino disponi-
bles.) Je n’en ai sélectionné que trés peu par manque de place. La
couche externe est constituée par la bibliothéque Arduino, qui enve-
loppe la couche interne. Elle est de ce fait appelée wrapper (enve-
loppe) et se sert de 1’API Arduino. Pour pouvoir accéder a la couche
wrapper, une interface doit étre mise en ceuvre car vous entendez bien
siir exploiter la fonctionnalité d’une bibliothéque. Une interface est
un portail d’acces a I'intérieur de la bibliotheque, qui est en soi une
unité fermée. Le terme technique est encapsulation. Vous allez bient6t
voir en détail de quoi il s’agit et en quoi cela concerne le langage de
programmation C++.

En quoi les bibliothéques
sont-elles utiles ?

Question idiote a laquelle j’ai déja répondu plusieurs fois. Aussi me
contenterai-je ici de vous en rappeler les avantages.

¢ Pour ne pas avoir a « réinventer la roue » chaque fois, les déve-
loppeurs ont trouvé un moyen de stocker le code de programme
dans une bibliothéque. Beaucoup de programmeurs dans le
monde profitent de ces structures logicielles, qu’ils peuvent
utiliser sans probléme dans leurs propres projets. Le mot-clé est
ici réutilisation.

* Une fois testée et débarrassée de ces erreurs, une bibliothéque
peut étre utilisée sans en connaitre les déroulements internes. Sa

Montage 9 : Comment créer une bibliothéque ?

< Figure 9-2
Comme fonctionne
une bibliothéque Arduino ?

350

fonctionnalité est encapsulée et cachée du monde extérieur. I
suffit au programmeur de savoir utiliser son interface.

* Son code propre en est d’autant plus clair et plus stable.

Que signifie programmation
orientée objet ?

La programmation orientée objet (ou POO) est du chinois pour la
plupart des débutants, et peut méme réserver maux de téte et nuits
blanches a certains. Mais ce n’est pas obligé et j'espere pouvoir y
contribuer, je veux dire 4 votre compréhension et non a vos maux de
téte ! Dans le langage de programmation C++, tout est considéré
comme objet et ce style — ou paradigme — de programmation s’oriente
vers la réalité qui nous entoure. Nous sommes cernés d’ innombrables
objets qui sont plus ou moins réels et que nous pouvons toucher et
observer. Si vous regardez un objet banal de plus prés, vous pourrez
constater certaines propriétés. Prenons par exemple un dé pour ne pas
sortir du sujet. Vous savez déja comment programmer et construire un
dé électronique. Vous avez slirement, dans I’un de vos jeux de société,
un dé quelconque que vous pouvez regarder de plus pres. Que pour-
riez-vous en dire, si vous deviez le décrire le plus précisément
possible a4 un extra-terrestre ?

* A quoi ressemble-t-il ?

Quelle taille a-t-il ?

L]

L]

Est-il léger ou lourd ?

De quelle couleur est-il ?

L]

A-t-il des points ou des symboles ?
* Quel nombre ou symbole est sorti ?
* Que peut-on faire avec ? (question idiote, non ?)

Les éléments de cette liste peuvent étre répartis en deux catégories.

Comportement

Mais quel élément fait partie de quelle catégorie ? Jetons un coup
d’ceil au tableau 9-1 puisqu’il s’agit de courant et de tension.

Propriétés

Partie Il : Les montages

yrolles.

L

|] o
| .

01:

20

right ©

5

! =

_opy

Propriétés Comportement 4 Tableau 9-1

g : Distinction entre propriétés
Taille Lancer le dé

Poids
Couleurs

et comportement

Points ou symboles

Nombre ou symbole sorti

Seuls deux éléments de la liste sont pertinents pour la programmation
prévue. Les autres sont certes intéressants, mais sans objet pour un dé
électronique. Ces deux éléments sont :

* le nombre de points sorti (état) ;

¢ lancer le dé (action).

Je n’ai pas la moindre idée de la maniére dont on charge des propriétés
ou un comportement dans un sketch. Comment fait-on ?

Ca ne pose aucun probleme Ardus ! Voyez plutdt sur la figure suivante.

- Comportement Fonctions

Les propriétés sont consignées dans des variables et le comportement
est géré par des fonctions. Mais dans le contexte de la programmation
orientée objet, variables et fonctions ont une autre désignation. Pas de
quoi paniquer cependant puisque c’est en définitive la méme chose.

Programmation procédurale POD

Vari iables membres

Fonctions = Méthodes

Les variables deviennent des variables membres (en anglais, fields) et
les fonctions des méthodes (en anglais, methods).

Quelle avancée formidable ! Il suffit de rebaptiser deux éléments d’un
programme pour avoir un nouveau — comme vous dites — paradigme de
programmation. Le progrés tient & peu de choses, non ?

Montage 9 : Comment créer une bibliotheque ? 351

015 Eyrolles.

)
£

Copyright €

352

Allons Ardus, ne soyez pas sarcastique. C’est que je n’ai pas fini.
Dans la programmation procédurale que nous connaissons a travers
les langages C ou Pascal, des instructions ayant un rapport logique,
qui sont nécessaires pour résoudre un probléme, sont rassemblées
dans ce qu’on appelle des procédures semblables & nos fonctions. Les
fonctions opérent en principe au mieux avec les variables qui leur ont
été transmises comme arguments ou, dans le cas défavorable, avec
des variables globales qui ont été déclarées au début d’un programme.
Celles-ci sont visibles dans tout le programme et chacun peut les
modifier a sa convenance. Toutefois, cela comporte certains risques et
c’est actuellement, tout bien pesé, la plus mauvaise variante pour
traiter des variables ou des données. Variables et fonctions ne forment
aucune unité logique et vivent quasiment les unes a c6té des autres
dans le code, sans avoir aucun rapport direct entre elles.

Variables
Variables I

Venons-en maintenant & la programmation orientée objet. Elle
comporte une structure appelée classe. On peut dire pour simplifier
que les servent de containers pour des variables membres ou des
méthodes.

Variables

Variables

La classe enveloppe ses membres, appelés members dans la POO, a la
maniére d’un grand manteau. On ne peut en principe accéder aux
membres qu’en passant par la classe.

Partie Il : Les montages

Construction d'une classe

Mais qu’est-ce donc qu’une classe ? Si vous n’avez jamais eu affaire
aux langages de programmation C++, Java et méme C# pour ne citer
que ceux-1a, le terme ne vous en dira pas plus qu’un caractére chinois
pour moi. Mais la chose est en fait assez facile a comprendre. Si vous
regardez encore une fois le dernier graphique, vous verrez qu’une
classe a vocation d’entourer et ressemble en quelque sorte a un
container. Une classe est définie par le mot-clé class, suivi du nom
qu’on lui a donné. Suit une paire d’accolades, que vous avez pu voir
dans d’autres structures comme une boucle for et qui amene la forma-

tion d’un bloc. L’accolade finale est suivie d’un point-virgule.

Mot-clé MNom de classe < Figure 9-3
| Définition générale d'une classe

| | |
name {

)/

Comme je vous I'ai déja dit, la classe est composée de différents
membres sous forme de variables membres et de méthodes, qui se
fondent, selon la définition de cette classe, en une unité, La POO offre
diverses possibilités de réglementer I’accés aux membres.

.

Oui, mais & quoi bon cette réglementation 7 Quand je définis une
variable ou plutdt une variable membre dans une classe, je veux pouvoir
y accéder n’importe quand. A quoi sert cela sert-il si je ne peux plus
ensuite accéder a la classe ? Ou peut-€tre ai-je mal compris le principe ?

Vous avez bien compris le principe, appelé d’ailleurs encapsulation.
On peut protéger certains membres contre le monde extérieur, de telle
sorte qu’ils ne soient pas directement accessibles depuis I’extérieur de
la classe. Le mot directement est ici important. Il existe bien shr des
possibilités d’y accéder. Ce sont les méthodes qui, par exemple, s’en
chargent. Mais vous devez vous demander quel est le sens de tout
cela.

Exact ! On peut donc toujours influer directement sur les variables
= membres, n’est-ce pas ?

Bon ! Je pense que les figures suivantes vous permettront de mieux
= comprendre le principe.

= Montage 9 : Comment créer une bibliotheque ? 353

Copyright © 2015 Eyrolles.

Figure 9-4 p
Accés a une variable membre
dela dasse

Figure 9-5 p
Pas d'accés a une variable membre
de la dlasse

354

Accés possible
depuis 'extérieur

L’acces a la variable membre de la classe depuis I'extérieur est ici
autorisé, car elle a re¢u une certaine étiquette appelée modificateur
d’acces. Elle a pour nom ici public et signifie a peu pres ceci : 1’acces
est autorisé au public et tout un chacun peut s’en servir a sa guise.

Imaginez maintenant le scénario suivant : une variable membre doit
piloter un moteur pas-a-pas, la valeur indiquant I’angle. Seuls des
angles compris entre 0° et 359° sont cependant admis. Toute valeur
inférieure ou supérieure peut compromettre 1’exécution du sketch, si
bien que le servo n’est plus commandé correctement. Quand vous
donnez libre acces 4 une variable membre au moyen du modificateur
public, aucune validation ne peut avoir lieu. Ce qui a ét€ enregistré
une fois produit immanquablement une réaction qui n’est pas forcé-
ment correcte. La solution du probléme consiste & isoler les variables
membres grice a un modificateur d’acces private (privé). Clest le
principe de 1’encapsulation déja évoqué qui est utilisé ici.

. - -----
Accés impossible

depuis I'extérieur

Mais comment fait-on pour accéder 4 la variable membre ?

Z <[C’est bien beau tout ¢a !

On y accede avec une méthode qui contient également un modifica-
teur d’acces. Il doit cependant étre public pour que 1’acces fonctionne
depuis I’extérieur. Le tout se présente comme sur la figure 9-6.

Partie Il : Les montages

< Figure 9-6
Accés a une variable membre
de la dasse par la méthode

5 Eyrolles.

yright © 201

!

Cop

Acces possible
depuis |'extérieur

On voit clairement que ’accés a la variable membre passe par la
méthode, ceci étant un avantage et non pas un inconvénient. Vous
pouvez maintenant procéder a la validation dans la méthode, seules
des valeurs admises étant alors communiquées a la variable membre.

Mais pourquoi la méthode a-t-elle acceés a la variable membre privée ?
Je croyais que c’était impossible.

Le modificateur d’acces private signifie que I'acces depuis I’extérieur
de la classe est impossible. Mais des membres de la classe comme les
méthodes peuvent accéder & des membres déclarés private. Ils appar-
tiennent tous a la classe et sont donc librement accessibles au sein de
celle-ci. Pour faire court, les modificateurs d’acceés gérent 1’accés aux
membres de la classe.

Modificateur d'accés Description

public L'acces aux variables membres et aux méthodes est possible depuis
n'importe ol dans le sketch. De tels membres constituent une interface
publique de la classe.

private L'acces aux variables membres et aux méthodes est réservé aux mem-
bres de la méme classe.

Si vous voulez ajouter une classe a votre projet Arduino, mieux vaut
créer un nouveau fichier se terminant par .cpp pour y stocker la défini-
tion de la classe. Vous verrez bientét comment dans 1’exemple concret
de la bibliotheque-dé. Encore un peu de patience.

Une classe a besoin d’aide

Nous avons vu ce qu’une classe réalise et comment la créer en bonne
et due forme. Mais je ne vous ai pas encore dit que la classe avait
besoin d’un autre fichier tres important. Celui-ci est appelé fichier
d’en-téte et contient les déclarations (informations initiales ou préala-
bles) pour la classe 4 concevoir. Si vous créez des variables membres

<« Tableau 9-2
Modificateurs d'acces
et leur signification

Montage 9 : Comment créer une bibliothéque ?

355

yrolles,

015 E

2

ght ©

ou des méthodes en C++, vous devez impérativement les faire
connaitre aupreés du compilateur avant de les utiliser. C’est chose faite
en définissant les variables et les prototypes de fonction ou de
méthode. Le fichier en question renferme également les consignes
relatives aux modificateurs d’acces public et private.

La construction formelle du fichier d’en-téte ressemble a celle de la
définition de classe, a ceci prés qu’il ne contient pas de formulation
de code. Autrement dit, seules les signatures des méthodes sont
mentionnées. Une signature se compose uniquement des informations
initiales avec le nom de la méthode, le type d’objet renvoyé et la liste
des paramétres. La construction générale est la suivante :

class Nom{
public:

//Membre public
private:

//Membre prive
};

La zone définissant le membre public vient apres le mot-clé public
suivi d’un deux-points. La zone définissant le membre privé vient
apres le mot-clé private, qui est suivi lui aussi d’'un deux-points. Le
fichier d’en-téte recoit 1’extension de nom .h.

Une classe devient un objet

Une fois créée par sa définition, une classe peut servir, comme lors de
la déclaration d’une variable, de nouveau type de donnée. Ce procédé
est appelé instanciation. Du point de vue du logiciel, la définition
d’une classe ne veut pas dire qu’on a créé réellement un objet. Elle
n’est qu'une sorte de modele ou plan de construction qu'on peut
utiliser pour concevoir un ou plusieurs objets.

Figure 9-7 p
Dela dasse a I'objet

Instanciation

Partie Il : Les montages

Copyri

L'instanciation se fait de la maniére suivante ;

Nomclasse Nomobjet();

Hola, il y a quelque chose qui ne va pas. Vous avez dit que Iinstancia-
tion d’un objet avait tout de la déclaration de variable ordinaire. Mais je
vois encore une paire de parenthéses derriére le nom que vous avez
donné a I'objet. Est-ce une double faute de frappe ? Slrement pas.
Qu’est-ce que c’est alors ?

Bien vu, Ardus ! Elle a naturellement son utilité. Une partie de ce
projet va lui étre consacrée car elle est extrémement importante pour
I’instanciation.

Initialiser un objet :
qu’est-ce qu'un constructeur ?

Une définition de classe contient en principe quelques variables
membres qui serviront apres 1’instanciation. Pour qu’un objet puisse
présenter un €tat initial bien défini, il s’avere judicieux de ’initialiser
en temps voulu. Quel meilleur moment pour cette initialisation que
directement lors de I'instanciation ? Aucun risque ainsi qu’elle soit
oubliée et pose plus tard probléme lors de 1’exécution du sketch. Mais
comment faire pour initialiser un objet ? Le mieux est d’employer une
méthode qui prend cette tiche en charge.

Il faut donc indiquer lors de I'instanciation une méthode a laquelle on
donne certaines valeurs comme arguments. Mais comment savoir quelle
méthode prendre ?

Exact, Ardus ! 11 faut appeler une méthode et lui donner le cas échéant
quelques valeurs en passant. Mais quel nom lui donner ? La solution
est a la fois trés simple et géniale. La méthode pour initialiser un objet
porte le méme nom que la classe. Cette méthode étant trés spéciale,
elle porte aussi un nom a elle. On I’appelle constructeur. Comme son
nom I'indique, elle construit en quelque sorte 1’objet. Mais puisqu’il
n’est pas impérativement nécessaire d’initialiser dés le début un objet
avec certaines valeurs, elle n’a pas forcément de liste de parameétres.
Elle se comporte alors comme une méthode a laquelle aucun para-
metre n'est donné et qui n'a que la paire de parenthéses vide. Ceci
répond a votre question concernant la paire de parenthéses que vous
avez vue dans I'instanciation.

Montage 9 : Comment créer une bibliotheque ?

357

violles,

{ s
| .

)18

o

20
Ll

(&)

yright

Vous ne devez en aucun cas I’omettre ou I’oublier. Il me faut mainte-
nant étre un peu plus concret pour vous en montrer la syntaxe. Voici le
contenu du fichier d’en-téte de notre bibliotheque-dé :

class Dice{
public:

Dice(); //Constructeur
private:

b
¥ S—

};

Sous le modificateur d’acces public se trouve le constructeur qui porte
le méme nom que la classe. Il présente une paire de parentheses vide,
d’ol son nom de constructeur standard.

<,
Ne venez-vous pas de dire qu’on peut donner des arguments 2 un cons-

tructeur tout comme a une méthode pour initialiser I'objet ? La paire de
parentheses vide indique pourtant que le constructeur ne peut recevoir
aucune valeur. Comment est-ce possible ? La deuxieéme chose que j ai
remarquée concerne le type présumé d’objet retourné par une méthode.
Vous ne I’avez pas indiqué pour le constructeur. Pourquoi ?

-

Vous avez tout a fait raison Ardus quand vous dites que le construc-
teur ne peut accueillir aucune valeur sous cette forme. C’est une
bonne introduction au prochain théme. Mais je vais d’abord répondre
a votre question sur le type d’objet renvoyé manquant. Si une
méthode renvoie une valeur a son appelant, le type de donnée en
question doit naturellement étre indiqué. Si aucun renvoi n’est prévu,
le mot-clé void est utilisé. Revenons maintenant a notre constructeur.
11 est appelé, non pas explicitement par une ligne d’instruction, mais
implicitement par l'instanciation d’un objet. C’est pour cette raison
que rien ne peut étre retourné a un appelant et que le constructeur n’a
pas méme le type de renvoi void.

La surcharge

Ce que je vais vous dire 12 peut sembler déroutant 2 premiére vue : on
peut définir un constructeur et bien entendu également des méthodes
plusieurs fois avec le méme nom.

Je vous avoue que j'ai du mal a le croire. C’est pourtant contraire au
principe de clarté. Si par exemple une méthode apparait deux fois avec
le méme nom dans un sketch, comment le compilateur peut-il savoir
laquelle des deux est appelée ?

Yy

LS ¢

Partie Il : Les montages

C’est vrai Ardus. Mais il n’y a pas que le nom qui soit déterminant, il
y a aussi la fameuse signature dont je vous ai parlé plus haut.
L’exemple suivant montre deux constructeurs acceptables qui portent
le méme nom mais dont les signatures différent :

Dice();
Dice(int, int, int, int);

Le premier constructeur représente le constructeur standard et sa
paire de parentheses vide, qui ne peut accueillir aucun argument. Le
deuxiéme porte une toute autre signature car il peut recevoir quatre
valeurs du type int. Vous pouvez alors choisir entre deux variantes
pour instancier un objet Dice :

Dice myDice();
ou:
Dice myDice(8, 9, 10, 11);

Le compilateur est assez intelligent pour savoir quel constructeur il
doit appeler.

La bibliotheque-dé

Toute cette introduction était nécessaire pour bien vous faire
comprendre la création d’une bibliothéque Arduino. Le deuxiéme
projet de dé servira de base pour constituer une bibliothéque. Il s’agit
d’une variante améliorée avec commande des groupes de LED. Deux
fichiers sont donc nécessaires pour réaliser la bibliothéque.

Fichiers d'une bibliotheque

Déclaration lmPIémental|on
Fichier d'en-téte h (Mise en ceuvre)

Fichier de classe .cpp

Le fichier d'en-téte

Commencons par le fichier d’en-téte, qui ne contient que les informa-
tions de prototype et ne présente aucune information de code expli-
cite. Occupons-nous d’abord des membres de la classe qui sont
nécessaires. Pour piloter les groupes de LED, il faut quatre broches
numériques commandées par les variables membres :

Montage 9 : Comment créer une bibliothéque ?

359

yrolles.

5E

201

opyright ©

C

360

® pinGroupA ;

* pinGroupB ;

* pinGroupC ;
* pinGroupD.

Ces informations seront transmises au moment de 1’instanciation au
constructeur, qui posséde quatre parametres du type int. Les variables
membres sont déclarées privées (private) car elles ne sont traitées
qu’en interne par une méthode appelée roll, qui n’a aucun argument
et qui ne retourne rien. La classe recoit le nom évocateur de Dice (dé).

#ifndef Dice_h
#define Dice h

#if ARDUINO < 100
#include <WProgram.h>
#else

#include <Arduino.h>
#tendif

class Dice{

public:
Dice(int, int, int, int); //Constructeur
void roll(); //Méthode pour lancer le dé
private:
int GroupA; //Variable membre pour groupe de LED A

int GroupB; //Variable membre pour groupe de LED B
int GroupC;

int GroupD;

ole membre pour groupe de LED C
de LED D

pouY EJ FOUpE
b
#endif

Quelques informations supplémentaires méritant une explication ont
été ajoutées a la définition de la classe. La classe tout entiere a été
enveloppée dans la structure suivante :

#ifndef Dice_h
#define Dice_h

#endif

Des inclusions multiples étant possibles quand il y a du code
imbriqué, un moyen a été trouvé pour les empécher et éviter une
double compilation. Cette précaution a pour but de garantir une inclu-
sion unique du fichier d’en-téte. Les instructions #ifndef, #define et
#tendif sont des instructions de prétraitement. #ifndef, qui introduit une

Partie Il : Les montages

compilation conditionnelle, est la forme abrégée de if not defined qui
signifie « si non défini ». Si le terme Dice_h (nom du fichier d’en-téte
avec un tiret bas) — appelé macro — n’a pas encore été défini, faites-le
maintenant et exécutez les instructions dans le fichier d’en-téte. Si ce
dernier était appelé une deuxiéme fois, la macro serait placée sous le
nom et cette partie de la compilation serait rejetée. Les instructions
include sont nécessaires pour faire connaitre 2 la bibliotheque les
types de données ou constantes propres a Arduino (par exemple : HIGH,
LOW, INPUT ou OUTPUT).

#if ARDUINO < 100
#include <Wprogram.h>
#else

#tinclude <Arduino.h>
ftendif

Il y aici un truc : toutes les versions Arduino antérieures a la version
1.0 nécessitent un fichier d’en-téte nommé Wprogram.h pour utiliser par
exemple lesdites constantes. Il sert & bien autre chose encore, mais
restons-en 1a pour le moment. Le numéro de version d’ Arduino figure
dans la définition du terme ARDUINO et peut donc étre lu pour
I’environnement de développement actuel. C’est ce que nous faisons
dans notre cas. Si le numéro de version est <100 (soit la version 1.00),
I’ancien fichier d’en-téte Wprogram.h doit étre intégré. Sinon, le
nouveau fichier d’en-téte Arduino.h sera utilisé. Cette modification des
fichiers d’en-tétes fait souvent riler et je dois dire que cette adaptation
ne m’enchante pas non plus.

Pouvez-vous me dire pourquoi le constructeur n’indique que le type de g ‘3
donnée pour les paramétres et pourquoi le nom de la variable corres- o

pondante est absent ?

Cela tient au fait que nous n’avons besoin ici que des informations de
prototype. Le code en question apparait plus tard avec une extension
.cpp dans le fichier de classe.

Le fichier de classe

v La véritable mise en ceuvre du code est effectuée au moyen du fichier
de classe présentant I’extension .cpp :

(L #if ARDUINO < 100

el #include <WProgram.h>
#else

#include <Arduino.h>
#endif

Montage 9 : Comment créer une bibliotheque ? 361

2015 Eyrolles.

Copyright ©

362

#include 'Dice.h’
#tdefine WAITTIME 20

//Constructeur paramétré
Dice::Dice(int A, int B, int C, int D){

GroupA = A;
GroupB = B;
GroupC = C;
GroupD = D;

pinMode(GroupA, OUTPUT);

pinMode(GroupB, OUTPUT);

pinMode(GroupC, OUTPUT);

pinMode(GroupD, OUTPUT);
}

//Méthode pour lancer le dé

void Dice::roll(){
int number = random(1, 7);
digitalWrite(GroupA, number%2!= O?HIGH:LOW);
digitalWlrite(GroupB, number>1?HIGH:LOW);
digitalWrite(GroueC, number>3?HIGH:LOW);
digitallirite(GroupD, number==6?HIGH:LOW);
delay(WAITTIME); //Ajouter une courte pause

}

Pour que la liaison vers le fichier d’en-téte précédemment créé soit
possible, référence est faite a ce dernier au moyen de l'instruction
include :

#include 'Dice.h’

Son intégration intervient lors de la compilation. include est ici égale-
ment nécessaire pour pouvoir utiliser ce qu’on appelle les éléments de
langage Arduino.

#if ARDUINO < 100
#include <Wprogram.h>
#else

#include <Arduino.h>
#endif

Passons maintenant au code, qui contient la mise en ceuvre propre-
ment dite. Commencons par le constructeur :

Dice::Dice(int A, int B, int C, int D){

GroupA = A;
GroupB = B;
GroupC = G
GroupD = D;

Partie Il : Les montages

pinMode(GroupA, OUTPUT);

pinMode(GroupB, OUTPUT);

pinMode(GroupC, OUTPUT);

pinMode(GroupD, OUTPUT);
}

Vous avez stirement remarqué que la méthode roll était 1égérement
différente de celle du montage n” 8.

Oui, aucune LED n’a été éteinte avant de commander I'allumage des
nouvelles. Je ne vois pas bien pourquoi !

C’est vrai, Ardus ! Et ce n’est pas grave puisque les différents groupes
de LED sont commandés par I’opérateur conditionnel ? que vous avez
déja rencontré dans le montage n° 7 sur la machine a états. Cet opéra-
teur retourne soit LOW soit HIGH quand la condition a été évaluée, si bien
que le groupe de LED correspondant a toujours le bon niveau et n’a
pas besoin d’étre remis auparavant sur LOW. Une autre chose suscep-
tible de vous étonner est le préfixe Dice:: qui préceéde aussi bien le
nom de la structure que la méthode roll.

Il s’agit du nom de la classe, qui permet au compilateur de savoir a
quelle classe la définition de la méthode appartient. Cette derniére est
qualifiée par cette notation. L’objet dé que nous voulons créer devant
commander quatre groupes de LED, il est préférable de transmettre
ces informations au moment de I’instanciation. Ce serait bien entendu
possible aussi apres la génération de I’objet, en utilisant une méthode
distincte que nous appellerions par exemple Init. Mais le risque est
grand que cette étape soit oubliée. C’est pourquoi le constructeur a
été inventé. Voyons maintenant le sketch qui utilise cette biblio-
theque.

Création des fichiers nécessaires

Je vous propose de programmer les deux fichiers de la bibliotheque .h
et .cpp indépendamment de 1’environnement de développement
Arduino. Il existe pour ce faire de nombreux éditeurs, par exemple
Notepad++ ou Programmers Notepad. Les deux fichiers sont stockés
dans un répertoire au nom évocateur, par exemple Dice (dé), qui est
copié une fois prét dans le dossier des bibliothéques Arduino.

.\arduino-1.x.y\libraries

L’environnement de développement Arduino est ensuite redémarré et
la programmation du sketch peut commencer.

Montage 9 : Comment créer une bibliotheque ?

363

Mise en surbrillance de la syntaxe
pour une nouvelle bibliotheque

Des types de données élémentaires (par exemple : int, float ou char)
ou d’autres mots-clés (par exemple : setup ou loop) sont signalés en
couleurs par I’environnement de développement. Il est possible, lors
de la création de ses propres bibliothéques, de faire connaitre a I'IDE
des noms de classes ou de méthodes, pour qu’ils apparaissent alors
aussi en couleurs. Un fichier nommé keywords.txt, ayant obligatoire-
ment une syntaxe spéciale, doit étre créé pour que cela fonctionne.

Commentaires

Des commentaires explicatifs sont introduits par le signe # (diese) :

Ceci est

Types de données et classes (KEYWORD1)

Les types de données mais aussi les noms de classes figurent en
orange et doivent étre définis en respectant la syntaxe suivante :

Nomclasse KEYWORD1

Méthodes et fonction (KEYWORD?2)

Meéthodes et fonctions apparaissent en marron et doivent étre définies
en respectant la syntaxe suivante :

Méthode KEYWORD2

Constantes (LITERALT)

Les constantes sont en bleu et doivent étre définies en respectant la
syntaxe suivante :

Constante LITERAL1

Voici maintenant le contenu du fichier keywords.txt de notre biblio-
theque-dé :

ffectation des couleurs pour la bibliothéque Dice

@)

Partie Il : Les montages

Dice KEYWORD1

Utilisation de la bibliotheque

Le fait que la bibliothéque-dé se trouve dans le répertoire indiqué
précédemment vous permet de la retrouver dans la derniére entrée du
menu (voir figure 9-8).

[Sketch| Tools Help
Verify / Compile Strg+R

Show Sketch Folder Strg+K

Add File...

Import Library... » Bounce
EEPROM
Ethernet
Firrnata
LiquidCrystal
Mouse
sD
Setvo
SoftwareSerial
SPI
Stepper
Wire

Dice

Le terme importer est quelque peu mal venu puisque absolument rien
n’est importé a ce moment précis. Seule la ligne suivante est ajoutée
dans votre fenétre de sketch :

#include <Dice.h>

La ligne include est impérative pour pouvoir accéder a la fonctionna-
lité de la bibliothéque-dé. Comment le compilateur saurait-il sinon a

Montage 9 : Comment créer une bibliotheque ?

< Figure 9-8
Importer la bibliotheque-dé

365

366

quelle bibliotheque il doit accéder ? Les différentes bibliotheques
disponibles ne sont pas incluses par 1’opération du Saint-Esprit !
Passons maintenant a I’instanciation, qui €éléve la définition de classe
au statut d’objet réel. L'objet créé mybice est également appelé
variable d’instance. Ce terme revient souvent dans la littérature.

Dice myDice(8, 9, 10, 11);

Les valeurs transmises 8, 9, 10 et 11 figurent les broches numériques
auxquelles les groupes de LED sont reliés. Un objet dé a ainsi été
initialisé de maniére & pouvoir opérer en interne quand la méthode
pour lancer le dé est appelée. Les arguments sont transmis dans
I’ ordre indiqué.

AN

Ils sont stockés dans les variables locales A, B, C et D, qui sont a leur
tour transmises aux variables membres GroupA, GroupB, GroupC et GroupD.
Vient ensuite 1’appel de la méthode a condition qu’un potentiel HIGH
soit appliqué a 1’entrée numérique, appel qui peut se faire par le
bouton-poussoir raccordé.

void setup(){
pinMode(13, INPUT); //Pas obligatoire - oui

nais pourguoi ?

}
void loop(){

if(digitalRead(13) == HIGH)
myDice.roll();
}

On voit ici aussi que la mise en surbrillance de la syntaxe fonctionne
puisque le nom de classe et la méthode sont en couleurs. La méthode
roll étant un membre de la définition de classe Dice, une liaison vers
la classe doit étre établie en cas d’appel de celle-ci. Un appel par :

roll();

provoquerait ici une erreur. La relation est établie par I'opérateur
point inséré entre classe et méthode et faisant office de lien.

Partie Il : Les montages

Opérateur point

|

myDice.rell () ;

.

Variable d'instance Méthode

Vo

us serez amené plus tard a programmer 1'une ou 'autre biblio-

théque qui pourra vous étre utile 4 vous ou a d’autres programmeurs.
Vous acquerrez alors un peu de pratique dans la manipulation du
langage C++ et la programmation orientée objet.

Pouraller plus loin ()
Pour compléter ce chapitre, vous pouvez effectuer une recherche sur Internet

sur

les mots-clés :

programmation orientée objet ;
POO;

» Arduino Library.

Qu’'avez-vous appris ?

Montage 9 : Comment créer une bibliotheque ?

Je reconnais que les choses sont devenues un peu plus difficiles
dans ce projet, mais le jeu en vaut la chandelle. Vous en savez
maintenant plus sur le paradigme de programmation orientée
objet.

Vous savez bien faire la différence entre une classe et un objet.

Dans la POO, méthode remplace fonction et variable membre
remplace variable.

Le constructeur est une méthode avec une tdche particuliére. 11
initialise 1'objet de manieére a obtenir un état de départ bien
défini.

Vous connaissez les informations de code qu’un fichier d’en-téte
ou .cpp doit contenir. Les différents modificateurs d’acces public
ou private réglementent 1’accés aux membres de 1’objet, private
assurant I’encapsulation des membres.

[’objet instancié a partir d’une classe est également appelé
variable d’instance.

Un opérateur point, ajouté apres le nom de la variable d’instance
et servant quasiment de lien entre les deux, est utilisé pour
accéder aux variables membres et aux méthodes.

367

yrolles.

5E

201

opyright «

C

368

* Vous savez comment créer une bibliotheque Arduino et a quel
endroit copier celle-ci dans le systéme de fichiers pour pouvoir y
accéder a tout moment.

* Vous avez enfin appris a configurer certaines méthodes en tant
que mots-clés avec un marquage couleur.

Partie Il : Les montages

Montage

Des détecteurs l o
de lumiére

Au sommaire :

¢ la mesure d’une quantit¢ de lumiére par une photorésistance
(LDR) ;

¢ la programmation de plusieurs broches comme sortie (OUTPUT) ;

* I'interrogation d’une entrée analogique avec I’instruction
analogRead() ;

¢ le sketch complet ;

¢ T’analyse du schéma ;

»]a réalisation du circuit ;

¢ la communication avec Processing ;

* un exercice complémentaire.

Comment fonctionne
un détecteur de lumiére ?

Dans ce projet, nous allons construire un circuit capable de réagir a
des influences ou réalités extérieures. Les valeurs environnementales
vraiment marquantes qui agissent sur nous sont la température et la
luminosité. Toutes deux peuvent étre ressenties différemment par les
étres humains et sont des impressions subjectives. L’un aura bien
chaud tandis que I’autre aura la chair de poule. Il existe bien entendu
des appareils ou détecteurs qui mesurent la température et la lumino-
sité de maniére objective. Notre prochain circuit sera consacré a la
luminosité, que nous entendons mesurer au moyen d’une photorésis-

369

tance ou résistance photosensible, également appelée LDR (Light
Dependent Resistor).

Il s’agit d’'un semi-conducteur, dont la résistance dépend de la
lumiére. Plus la quantité de lumiére atteignant la LDR est élevée, plus
la résistance est faible. Notre circuit doit commander, en fonction de
la valeur de luminosité, une rangée de LED qui éclaire alors plus ou
moins. Le circuit ressemble a celui de notre séquenceur de lumiére, a
ceci prés que les différentes LED ne sont pas commandées 1’une
apres I'autre par une boucle mais par une logique qui évalue la lumi-
nosité sur la résistance photosensible.

Composants nécessaires

U 1LDR
/ 10 LED rouges
— Sy 10 résistances de 330 Q2
— Sl 1 résistance de 10 k2

//'\ Plusieurs cavaliers flexibles de couleurs et de
longueurs diverses

Code du sketch

int pin[] = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11}; //Tableau des broches
int analogPin = 0; //Broche de 1’entrée analogique
int analogValue = 0; //Stocke la valeur analpgique mesurée

void setup(){
i for(int i = 0; i < 10; i++)

LN pinMode(pin[i], OUTPUT);

370 Partie Il : Les montages

/rolles.

Fyv
Y

L

201

\

Copyright €

void loop(){
analogValue = analogRead(analogPin) ;
controlLEDs(analogValue);

//Fonction pour commander les LED
void controllLEDs(int value){
int bargraphValue = map(value, 0, 1023, 0, 9);
for(int i = 0; 1 < 10; i++)
digitalWrite(pin[i], (bargraphValue >= i)?HICH:LOW);

Revue de code

Du point de vue logiciel, les variables du tableau 10-1 sont néces-
saires a notre atelier.

Variable Objet

pin[] Stocke les numéros des broches pour commander les 10 LED.
analogPin Numéro de broche pour I'entrée analogique
analogValue Stocke la valeur analogique mesurée.

Le grand nombre de LED impose d’utiliser un tableau qui est stocké dans
pin[]. La fonction loop lit continuellement la valeur a I’entrée analogique
broche AQ. La fonction controlLEDs est ensuite appelée avec la valeur
mesurée, et se charge de commander les différentes LED. Chaque entrée
analogique a une résolution de 10 bits et des valeurs comprises entre O et
1023 peuvent donc y étre mesurées. N’utilisant cependant que 10 LED
pour notre exemple, nous devons convertir le domaine des valeurs
d’entrée trop grand en un domaine des valeurs de sortie adapté allant de O
a9 (10 LED).

Ce code me donne "occasion d’introduire une nouvelle instruction
trés intéressante qui permet de transposer un domaine de valeurs dans
un autre domaine. Cette instruction est notée map (abréviation de
mapping : transposition). L’image 10-1 illustre le processus de
mapping réalisé par cette instruction. Il doit convertir le domaine des
valeurs d’entrée, qui s’étend de 0 4 1023, en un domaine de valeurs de
sortie allantde 0 a 11.

<« Tableau 10-1
Variables nécessaires et leur objet

3n

Montage 10 : Des détecteurs de lumiére

372

Figure 10-1 p
Principe du mapping

Figure 10-2 p
Instruction map

—1023

Entrée

Mapping Sortie

— 0

La syntaxe de I’instruction map est la suivante :

Entrée Sortie

Instruction \faleurc|l’emrée Minimum Maximum Minimum Maximum
| | | |
((value, 0, 1023, 0, 11)))

La valeur renvoyée par l’instruction map appartient au nouveau
domaine de valeurs défini.

Ici, le résultat est consigné dans la variable bargraphvalue. Chaque
LED est ensuite commandée en la comparant a la valeur
bargraphValue alors déterminée. Si cette valeur est supérieure ou égale
au numéro de la LED en question, elle est aussitét mise sur HIGH ;
sinon, elle est mise sur Low. Plus la valeur est élevée, plus le nombre
de LED allumées est important.

Schéma

Le schéma ressemble a s’y méprendre a celui du séquenceur de
lumiére, a ceci pres qu’il dispose en plus d’une extension lui permet-
tant de mesurer I'intensité lumineuse.

Partie Il : Les montages

Eyrolles.

)

01

{
L

2

\xg'[ght ©

!

Cop

{30
i,
Arduino 3 CE
R W
12 LED
pwn |11 : 3
PWM 100
QO pPwn b |
= 8.] ; LED
i 7 —{38)
x 6] 'DQ
_ T K~ il i 1 -)
—] Ve 2 - e
>—1 GND 4 LED
3 I—Em,;l—-—ﬂ—-ﬂ
PuM ™
h o
1 =
s ¥
L, 8 LED
Analog IN 330 S
LED
FEENER | LA ~ .
¥
' LED
]l LDR [I |' 10K ||
Gl
Vous savez déja ce qu’est un diviseur de tension. A Figure 10-3
Circuit pour mesurer I'énergie
Entrée analogique lumineuse

I~
b GNO

Les deux résistances (LDR et 10K) forment un diviseur de tension, la
prise de tension intermédiaire est raccordée a I'entrée analogique de
la carte Arduino. Le rapport des résistances et donc des tensions varie
en fonction de la luminosité existante sur la LDR. La tension la plus
élevée se trouve naturellement aux bornes de la plus grande résis-
tance. Si la résistance de la LDR diminue sous I'influence d’une
augmentation de la lumiére, la tension a ses bornes diminue. Cela
veut donc dire que la tension aux bornes de la résistance de 10K est
plus élevée, laquelle se retrouve sur I'entrée analogique. Une valeur
plus élevée est mesurée sur cette broche, autrement dit plus de LED
s’allument. Ce processus s’inverse si moins de lumiére parvient a la
LDR.

Montage 10 : Des détecteurs de lumiére

373

5 Eyrolles.

yright © 201

!

Cop

374

Figure 10-4 p
Résistances et tensions
selon I'ensoleillement

Encore une fois, s’il vous plait. Si la tension la plus élevée se trouve aux
bornes de la plus grande résistance, la tension la plus élevée doit se
trouver 4 I’entrée analogique quand la LDR s’assombrit.

Je comprends votre probléme, Ardus. Je vais me servir de la figure
suivante pour vous expliquer.

RouU RoulU

v ﬁi

GND Rangée de LED Rangée de LED

Entrée
analogique

La longueur des fleches indique la grandeur de la tension. Si le ciel
est couvert, la résistance ou plutdt la tension est élevée sur la LDR.
Mais si le soleil brille, résistance et tension sont faibles. Comme le
diviseur de tension est alimenté sous 5 V, il ne reste que la différence
de tension aux bornes de la résistance située a la partie inférieure.
Cette tension est mesurée entre 1’entrée analogique et la masse.

Pour aller plus loin
Pour compléter ce chapitre, vous pouvez effectuer une recherche sur Internet
sur les mots-clés :

- LDR;
- photorésistance ;
- résistance photosensible.

Partie Il : Les montages

violles,

{ s
| .

)18

o

Ll

20

(&)

right

s
-Opy

L

Réalisation du circuit

< Figure 10-5
Réalisation du circuit avec Fritzing

A droite de la plaque d’essais se trouvent les 10 LED pour afficher
I’intensité lumineuse, le diviseur de tension se trouve quant a lui, avec
sa LDR et sa résistance fixe, sous la carte Arduino.

<« Figure 10-6
Réalisation du circuit détecteur
de lumiére

Nous devenons communicatifs

11 est certes intéressant a mes yeux d’observer le cycle des LED sous
différentes conditions de lumiére, mais le déroulement chronologique
reste difficile a voir sur une longue période. Aussi voudrais-je vous
présenter ici un projet qui vous plaira siirement, puisque agréable a
regarder.

Montage 10 : Des détecteurs de lumiére 375

Figure 10-7 p-

Courbe des valeurs de I'énergie

376

[umineuse dans la fenétre
graphique de Processing

Le langage de programmation Processing s’impose quand il s’agit de
générer des graphiques. Vous trouverez I’environnement de dévelop-
pement pour le langage de programmation Processing sur le site
Internet http://processing.org. Le coté pratique de la chose est que,
tout comme pour Arduino, il suffit de décompresser le fichier télé-
chargé dans un répertoire. Aucune installation n’est a faire. Ce qui
prendrait un temps fou avec des langages de programmation tels que
C++ ou C# sera plus vite fait et sera moins fastidieux avec Proces-
sing. Je vous montre d’emblée le résultat dans la fenétre graphique de
Processing pour que vous sachiez a quoi vous attendre.

[& ReadLDRData

Les valeurs affichées sont actualisées en permanence, la courbe
évoluant de droite & gauche dans la fenétre. Les nouvelles valeurs
apparaissent a droite et les anciennes valeurs disparaissent a gauche
de la fenétre.

Pouvez-vous me dire comment deux langages de programmation diffé-
rents font pour échanger des données ?

Jallais y venir, Ardus. Une base commune leur permettant de se
comprendre doit étre définie. L interface série vous dit siirement déja
quelque chose. Tout langage de programmation ou presque a dans
son vocabulaire des instructions pour envoyer ou recevoir par cette
interface.

Notre exemple montre un émetteur et un récepteur. La communica-
tion est unidirectionnelle, autrement dit se fait dans un seul sens.
Certes, l'interface est capable de communiquer presque simultané-
ment dans les deux sens, mais nous nous contenterons d’un seul.

Partie Il : Les montages

Série

Emetteur

Arduino

Tout ce que votre carte Arduino doit faire ¢’est enregistrer les valeurs
mesurées et envoyer les données via I’interface série. Plus vite a dire
qu’a faire 7! Non, pas du tout car la plupart du travail de calcul se fait

du coté de Processing. Voyons d’abord du coté de 1'émetteur ce

qu’Arduino doit faire.

- I
Arduino I'émetteur
Co6té matériel, il ne vous faut que le diviseur de tension avec sa LDR
et sa résistance de 10 kQ fixe, connecté a I’entrée analogique broche

o, pour envoyer les valeurs de luminosité a I'interface série.

void setup(){
Serial.begin(9600);

}
void loop(){
Serial.println(analogRead(0));
Voyons maintenant ce que ce bout de code donne. Dans la fonction
setup, I’interface série est préparée pour la transmission. Vous avez eu
vos premiers contacts avec la programmation orientée objet lors de la
création de votre propre bibliotheque dans le montage n° 9. L’inter-
face série est considérée comme étant un objet logiciel nommé Serial.

}
Vous disposez de quelques méthodes, que nous entendons maintenant

utiliser.
Opérateur point

|

Serial .pegin (9600);

Méthode

Objet

Montage 10 : Des détecteurs de lumiére

377

Figure 10-8 p

Edition des données dans le Serial

378

Monitor

La méthode pour initialiser Iinterface a pour nom begin et recgoit une
valeur qui détermine la vitesse de la transmission. Il s’agit dans notre
cas de g600. L'unité de mesure est ici le baud, le nombre indiquant la
cadence. 1 baud signifie 1 changement d’état par seconde. Lisez la
littérature technique ou allez sur Internet pour d’autres informations.
La deuxieme méthode que nous utiliserons se nomme println. Elle
envoie la valeur qui lui a été transmise a 1'interface série. Il s’agit de
la valeur mesurée sur la broche analogique o dans notre bout de
sketch. L’interrogation de la broche analogique et la transmission a
I’interface ont lieu continuellement dans la fonction loop.

Attention!
Pour que la communication entre émetteur et récepteur puisse se faire, le
réglage du taux de transfert doit étre le méme sur les deux stations.

Vous pouvez suivre |a transmission des valeurs déterminées en temps réel, de
préférence en ouvrant le Serial Monitor de l'environnement de développe-
ment.

(/] Autoscroll

Cela fonctionne évidemment aussi avec n’importe quel autre
programme de terminal ayant accés a Dinterface série. Pensez ici
aussi a régler le taux de transfert tout en bas a droite de la fenétre.

Processing le récepteur

Venons en maintenant au programme en question, chargé principale-
ment de représenter graphiquement les valeurs recues. Le code est
assez conséquent, mais voici quand-méme une courte description
pour que vous ne soyez pas perdu.

Partie Il : Les montages

2015 Eyrolles.

Copyright ©

import processing.serial.s;

Serial mySerialPort;
int xPos = 1;

int serialValue;
int[] yPos;

void setup(){
size(400, 300);
println(Serial.1ist());

mySerialPort = new Serial(this, Serial.list()[o0], 9600);

mySerialPort.bufferUntil ("\n');
//Set initial background
background(0);

yPos = new int[width];

}

void draw(){
background(0);
stroke(255, 255, 0, 120);
for(int i=0; i < width; i+=50)
line(i, 0, i, height);
for(int i=0; i < height; i+=50)
line(o, i, width, i);

stroke(255, 0, 0);
strokeWeight(1);
int yPosPrev = 0, xPosPrev = 0;
println(serialValue);
//Décaler les valeurs de 1’array vers la gauche
for(int x = 1; x < width; x++)
yPos[x-1] = yPos[x];
//Joindre les nouvelles coordonnées de la souris
//a 1’extrémité droite de 1’array
yPos[width - 1] = serialValue;
//Affichage de 1’array

for(int x = 0; x < width; x++){

if(x > 0)
line(xPosPrev, yPosPrev, x, yPos[x]);

xPosPrev = x; //Stockage de la derniére position x
yPosPrev = yPos[x]; //Stockage de la derniére position y

}

void serialEvent(Serial mySerialPort){

Montage 10 : Des détecteurs de lumiére

379

380

Figure 10-9 p
Correspondance entre
deux fonctions principales

String portStream = mySerialPort.readString();

float data = float(portStream);

serialValue = height - (int)map(data, 0, 1023, 0, he
}

Processing comprend également deux fonctions principales, qui
ressemblent a celles d’ Arduino.

G\rduino Processing\

Y

- 4

La fonction setup est appelée une seule fois elle aussi en début de
sketch et sert a initialiser des variables. La fonction draw est une
boucle sans fin semblable a la fonction loop dans Arduino, qui doit
son nom au fait qu’elle sert & dessiner (en anglais: fo draw) les
éléments graphiques dans la fenétre d’édition. Pour pouvoir traiter
Iinterface série dans Processing, vous devez écrire la ligne :

import processing.serial.s;
qui permet d’importer un paquet en langage Java. Eh oui, Processing

est un langage basé sur Java, contrairement & Arduino qui, lui, utilise
C ou C++.

Les deux langages ont une syntaxe trés similaire, aussi la programma-
tion dans Processing ne semble-t-elle pas compliquée a ceux qui
connaissent bien C ou C++. Si vous écrivez la ligne :

println(Serial.list());

Processing vous donne une liste de toutes les interfaces série disponi-
bles. L’affichage dans la fenétre de messagerie ressemble alors a ceci.

Elle indique que deux ports sériels sont disponibles. Arduino utilisant
le premier port COM3 correspondant a la premiére entrée de la liste
[0], cet index est reporté dans la ligne ci-aprés :

mySerialPort = new Serial(this, Serial.list()[0], 9600);

Partie Il : Les montages

..'\

Attention!

Si, sur votre ordinateur, le port série utilisé n'est pas le premier de la liste, il faut
alors remplacer dans la ligne précédente Serial.list()[0] par "COMn", ol n est
le numéro du port série effectivement utilisé par Arduino.

Un nouvel objet sériel est ainsi généré, et instancié avec le mot-clé new
dans Processing. La valeur 9600 apparait une fois de plus, elle doit
correspondre a celle qui est dans le sketch Arduino. Tous les éléments
graphiques tels que trame de fond et courbe sont alors dessinés dans
la fonction draw. Les valeurs Arduino transmises s’accumulent dans la
fonction serialEvent et sont stockées dans la variable serialvalue.
Cette variable sert a dessiner la courbe dans la fonction draw.

Attention!

Si vous avez ouvert un programme de terminal, par exemple Serial Monitor,
pour visualiser les valeurs envoyées par Arduino, vous aurez des problémes si
vous démarrez en méme temps l'affichage graphique des valeurs dans Proces-
sing. Le port COM concerné est en effet exclusivement utilisé par le
programme de terminal, interdisant tout accés supplémentaire par un autre
programme. Fermez par conséguent le programme de terminal avant de
démarrer Processing pour évaluer les données.

Problémes courants

Si les différentes LED ne réagissent pas aux modifications des condi-
tions lumineuses ou si aucun changement du tracé de la courbe n’est a
observer par la suite dans la fenétre d’édition, il peut y avoir plusieurs
raisons.

* Vérifiez que vos fiches de raccordement sur la plaque d’essais
correspondent bien au circuit.

e Vérifier qu'il n’y a pas de court-circuit entre elles.

* Les résistances ont-elles bien les bonnes valeurs ?

¢ Toutes les LED sont-elles correctement polarisées ?

* Vérifiez encore une fois I'exactitude du code du sketch coté
Arduino et c6té Processing.

¢ QOuvrez le Serial Monitor dans I'IDE Arduino pour vous assurer
que des valeurs différentes sont transmises a l’interface série,
lorsque les conditions lumineuses varient. Dans le code de
Processing, vous pouvez ajouter la ligne println(serialValue) de
maniére a4 ce que les valeurs transmises (pour peu qu’elles le
soient) s’ affichent également dans la fenétre de messagerie.

¢ Vérifiez que I'interface série utilisée n’est pas bloquée par un
autre processus et que seul Processing y accede.

Montage 10 : Des détecteurs de lumiére

381

382

Qu’avez-vous appris ?

* Vous savez comment interroger une entrée analogique a laquelle
est reliée une résistance photosensible (LDR) avec I’instruction
analogRead.

¢ Un diviseur de tension sert a diviser la tension appliquée a ses
bornes dans un rapport déterminé. Nous avons utilisé cette
propriété pour amener A ’entrée analogique une tension fonc-
tion de I’intensité lumineuse.

* Vous savez comment échanger des données entre deux
programmes au moyen de I’interface série. L’émetteur est ici la
carte Arduino et le récepteur un sketch Processing reproduisant
visuellement les données recues sous forme de courbe.

Exercice complémentaire

Créez un sketch Arduino faisant clignoter régulierement toutes les
LED concernées quand par exemple un certain seuil de flux lumineux
est franchi, pour vous avertir qu’un état critique est maintenant atteint
et qu'une creme solaire avec indice de protection 75+ doit étre
utilisée.

Partie Il : Les montages

L'afficheur
sept segments

Au sommaire :

¢ la commande d’un afficheur a sept segments ;
¢ le sketch complet ;

* I’analyse du schéma ;

* la réalisation du circuit ;

* un exercice complémentaire.

Qu’est-ce qu’un afficheur
sept segments ?

Pour visualiser des états logiques (vrai ou faux) ou des données (14, 2.
5, "Hello User") sous une forme quelconque, il nous faut commander
les LED dans un premier temps et revenir au Serial Monitor dans un
deuxiéme temps. Il existe en électronique d’autres éléments d’affi-
chage que les LED, I’afficheur sept segments étant I'un deux. Comme
son nom l'indique, cet afficheur se compose de sept segments qui,
disposés d’une certaine maniére, peuvent représenter des chiffres et,
dans une moindre mesure, des signes. La figure 11-1 présente un tel
afficheur de maniere schématisée.

Montage

< Figure 11-1
Afficheur sept segments

383

/rolles.

Fyv
Y

L

201

\

Copyright €

Tableau 11-1 p
Commande des sept segments

On voit que chaque segment est pourvu d’une petite lettre. L ordre
n’est pas primordial mais la forme montrée ici s’est imposée et a été
adoptée pratiquement partout. Aussi ’utiliserons-nous également
toujours sous cette forme. Si maintenant nous commandons les diffé-
rents segments avec habileté, nous pouvons afficher des chiffres
allant de 0 a 9. On peut aussi afficher des lettres, nous y reviendrons
plus tard. Votre quotidien est stirement rempli de ces afficheurs sept
segments sans que vous n’y ayez jamais prété attention. Faites un tour
en ville et vous verrez a quel point ils sont courants. Voici d’ailleurs
une petite liste des possibilités d’utilisation :

» l’affichage des prix sur les stations-service (toujours en hausse

hélas !) ;

» l’affichage de I’heure sur certains batiments ;
» I'affichage de la température ;

* les montres numériques ;

* les tensiometres médicaux ;

¢ les thermometres numériques.

Le tableau 11-1 indique une fois pour toutes, en vue de la program-
mation, quels sont les segments a allumer pour chacun des chiffres.

Afficheur a b 4 d e f g

|

1 0

—

H

=)

H

—
1
—y
—

L=}

—_

-
L=}
—_

=)
I|

_—y

—y

=y

-

(=]

(=]

=y

=5

[

=
—l_

(=]

—

—

(=]

(=}

—

—

—_

ﬂ

e
4".:_:;'

—_
L=}

—_

—_

(=]

—

—_

=)
_I

@)

Partie Il : Les montages

/rolles.

2015 Ey

\

Copyright €

Afficheur a b 4 d e f g

E—
I

—_—
-
(=]
—_
—_
-
—
—_

=
|

—_—

—_—

=y

(=}

(=]

(=]

(=]

=)

J

—
I

—_—

—

—

—

—_

—

a—y

—

S— I
—I

=

=

—y

-

(=]

—

—y

—
_l

Le chiffre 1 dans ce tableau ne signifie pas forcément niveau HIGH,
mais c’est la commande de 1’allumage du segment concerné. Celle-ci
peut se faire soit avec le niveau HIGH que nous connaissons (+5 V
résistance série incluse), soit avec un niveau LoW (0 V). Vous voulez
peut-étre savoir maintenant en fonction de quoi on choisit une
commande. Cela dépend en fait du type de I’afficheur sept segments.
Deux approches sont possibles :

¢ la cathode commune ;
*]’anode commune.

En cas de cathode commune, toutes les cathodes des diverses LED de
I’afficheur sept segments sont réunies en interne et reliées a la masse
a I'extérieur. Les différents segments sont commandés par des résis-
tances série diiment raccordées au niveau HIGH. Notre exemple porte
cependant sur un afficheur sept segments avec anode commune. Ici,
c’est exactement le contraire : toutes les anodes des diverses LED
sont reliées entre elles en interne et raccordées au niveau LOW a 1’exté-
rieur. Les segments sont commandés par des résistances série correc-
tement dimensionnées, en passant par les différentes cathodes des
LED qui sont accessibles a 1’extérieur.

<« Tableau 11-1 (suite)
Commande des sept segments

Montage 11 : L'afficheur sept segments

385

Dans le circuit pour afficheur sept segments avec anode commune de
gauche, toutes les anodes des diverses LED en service sont reliées a

Afficheur sept segments
anode commune)

~ipide—i latension d’alimentation +5 V. Les cathodes sont reli¢es par la suite
;’;ﬁ‘a_ .. au sorties numériques de votre carte Arduino et pourvues des diffé-
. 2. . rents niveaux de tension conformes au tableau de commande. Nous
W iy i :
. P e, | utilisons pour notre essai un afficheur sept segments avec anode
L.._'i__ commune de type SA 39-11 GE. La figure suivante illustre le
ol ‘t brochage de cet afficheur.
._.-.._’I.g.-‘
"LNSJ" B Broche 3
| 1 C?) 110
¢ . — |
. | o f b,
g f d D ! 5 b a 3 | CE— 18
2 4| €| 4| | 4| 2| < g
Figure 11-2 b | . t 1 e c 37
Commande de I'afficheur . ! ! ! g
sept segments de type SA39-11GE Broche 1 2 4 5 6 7 9 10 s “——- s

Le graphique de gauche montre les broches utilisées de 1’afficheur
sept segments, et le graphique de droite le brochage du type utilisé.
DP est 1a forme abrégée de point décimal.

Composants nécessaires

1 afficheur sept seqments (par exemple de type SA
39-11 GE avec anode commune)

7 résistances de 330 Q2

//\\ Plusieurs cavaliers flexibles de couleurs et de
longueurs diverses

Code du sketch

int segments[10][7] = {{1, 1, 1, 1, 1, 1, O}, //O
o {0, 1, 1, 0, 0, 0, 0O}, //1
i, 85 9 1, 095 1) 40

{1, 1, 1, 1, 0, 0, 1}, //3

386 Partie Il : Les montages

ac
o,

/roll

015 Ey

)
£

Copyright €

{0, 1, 1, 0, 0, 1, 1}, //4
{1, 0, 1, 1, 0, 1, 1}, //5
{1, 0, 1, 1, 1, 1, 1}, //¢
{1, 1, 1, 0, 0, 0, O}, //7
{1, 1, 1, 1, 1, 1, //
{1, 1, 1, 1, 0, 1,

int pinArray[] = {2, 3, 4, 5, 6, 7, 8} ;

void setup(){
for(int 1 = 0; 1 < 7; i++)
pinMode(pinArray[i], OUTPUT);
}
void loop(){
for(int i = 0; 1 < 10; i++){
for(int j = 0; j < 7; j++)
digitalWrite(pinArray[j], (segments[i][j]==1)?L0W:HIGH);
delay(1000); //Pause de 1 seconde
}

Revue de code

Du point de vue logiciel, les variables suivantes sont nécessaires a
notre programmation expérimentale.

Variable Objet <4 Tableat! 11-2' '
Variables nécessaires et leur objet

segments Tableau bidimensionnel pour stacker I'information des segments pour chaque
chiffre

pinArray Tableau unidimensionnel pour stocker les broches connectées a I'afficheur

Un tableau bidimensionnel s’impose d’emblée pour stocker les informa-
tions sur les segments a allumer pour chaque chiffre de o a 9. Ces valeurs
sont définies dans la variable globale segmente en début de sketch :

int segments[10][7] = {{.},
{1}
Le tableau comprend 10 x 7 cases mémoire, le contenu de chacune
d’elles pouvant étre obtenu par les coordonnées :
segments[x][y]

La coordonnée x sert pour tous les chiffres de o a 9 (soit 10 cases
mémoire), et la coordonnée y pour tous les segments de a & g (soit
7 cases mémoire). On détermine par exemple les segments a allumer
du chiffre 3 en écrivant la ligne :

Montage 11 : L'afficheur sept segments 387

> Evrolles.

|] o
| .

)18

20
Ll

T

=
)

388

segments[3][y]

les résultats pour la variable y allant de o & 6 étant obtenus par une
boucle for. Les données des segments sont alors celle de la figure
suivante.

a 3
f b
n 1r1r1r1;0,0,1
g>
e o]
d

Minute, s’il vous plait ! Vous avez dit que ce type d’afficheur sept
segments disposait d’une anode commune. Pourtant, il y aun 1 1a ot il
devrail y avoir une mise & la masse dans le tableau des segments. Ce
n’est donc pas le cas alors !

Je confirme la premiere partie de ce que vous venez de dire. Mais
pour la deuxieme, vous n’avez slirement pas été totalement attentif.
Jai dit qu’un 1 ne voulait pas forcément dire niveau HIGH, mais
simplement que le segment en question devait étre allumé. Dans le
cas d’un afficheur sept segments & cathode commune, on commande
I’allumage du segment souhaité avec le niveau HIGH, tandis que dans
le cas d’un afficheur sept segments & anode commune, on le
commande avec le niveau Low. On écrit ainsi la ligne suivante :

digitalWrite(pinArray[j], (segments[i][j]==1) ?LOW:HICH);

Si 'information est un 1, LOW est alors transmis comme argument a la
fonction digitalWrite. Sinon, c’est HIGH. Le segment correspondant
s’allume si ¢’est LOW, et se voit géré de maniere a rester éteint si ¢’est
HIGH. Notre sketch affiche tous les chiffres de o 4 9 au rythme d’une
seconde. Le code suivant est utilisé pour ce faire :

for(int i = 0; i < 10; i++){
for(int j = 0; j < 7; j++)
digitalWrite(pinArray[j], (segments[i][j]==1)2L0W:HICH);
delay(1000); //Pause de 1 seconde

}

Partie Il : Les montages

Copyright © 2015 Eyrolles.

La boucle extérieure avec la variable de controle i sélectionne dans le
tableau le chiffre a afficher tandis que la boucle intérieure avec la
variable j sélectionne les segments a allumer.

Schéma

Le circuit ressemble a celui du séquenceur de lumiere. Mais pas si ¥ Figure 11-3

vite, il va se compliquer. Commande de I'afficheur
sept segments

Arduino 13 -

11 e @
PWM -I-d-e Afficheur sept segments

PWM |——= 1 10
O pwm |2 _‘_Ep 1 5 9/ /a 9
e fa f f b
= 7 %H eard
b R |
s, pwm -8 5 e/ /c 6
— vee 2 e I d op
— GND a %
%
! R

Analog IN = w -
of <] ~{<]

Réalisation du circuit v Figure 114

Réalisation du circuit de I'afficheur
sept segments avec Fritzing

| Afficheur sept segments |
|a anode commune !
| {broche 3} |
{1] 10
sis M 12 19 |
.. :3| is i
T 17 |
- 5[................ |6 |
» i
Montage 11 : L'afficheur sept segments -

Sketch amélioré

Les divers segments d’un chiffre étaient commandés jusqu’ici au moyen
d’un tableau bidimensionnel, la premiére dimension servant a sélectionner
le chiffre désiré, et la deuxiéme les différents segments. Le sketch suivant
va nous permettre de tout faire avec un tableau unidimensionnel.
Comment ? C’est simple puisque bits et octets n’ont déja plus de secret
pour vous. L’ information de segment doit maintenant tenir dans une seule
valeur. Quel type de donnée s’impose ici ? Nous avons affaire a un affi-
cheur sept segments, et a un point décimal que nous laisserons de coté
pour I'instant. Cela fait donc 7 bits, qui tiennent idéalement dans un seul
octet de 8 bits. Chaque bit est simplement affecté a un segment et tous les
segments nécessaires peuvent étre commandés avec un seul octet. I'en
profite pour vous montrer comment initialiser directement une variable
par le biais d’une combinaison de bits :

void setup(){
Serial .begin(9600);

byte a = Bioooioii; //Déclarer + initialiser la variable
Serial.println(a, BIN) //Imprimer en tant que valeur binaire
Serial.println(a, HEX); // mer en tant que valeur hexadécimale

Serial.println(a, DEC); //Imprimer en tant que valeur décimale

void loop(){/+Vides+/}
La ligne décisive est bien sir la suivante :
byte a = Biooolon;

Ce qui est remarquable pour ne pas dire génial la-dedans, c’est le fait
que le préfixe B permet de représenter une combinaison de bits qui
sera affectée a la variable située a gauche du signe =. Cela simplifie
les choses quand par exemple vous connaissez une combinaison de
bits et souhaitez la sauvegarder. Il vous faudrait sinon convertir la
valeur binaire en valeur décimale avant de sauvegarder. Cette étape
intermédiaire n’est ici plus nécessaire.

Je ne comprends pas bien. Le type de donnée byte est bien — du moins,
il me semble — un nombre entier. Type de donnée et nombres entiers
sont bien composés de chiffres allant de 0 &4 9. Pourquoi maintenant
peut-on commencer par la lettre B et la faire suivre d’une combinaison
de bits ? Ou s’agit-il d’une chaine de caractéres ?

Partie Il : Les montages

Le type de donnée byte est un type de nombre entier. Vous avez
raison sur ce point. La ol vous avez tort, c’est sur le fait qu’il pourrait
s’agir d’une chaine de caractéres. Celle-ci serait alors entre guille-
mets. Il s’agit en fait de tout autre chose. Aucune idée ? Je ne dirai
qu’un mot : #define. Ca vous dit quelque chose ? Voyez plutot. 11
existe dans les tréfonds d’ Arduino un fichier nommé binary.h qui se
trouve dans le répertoire: arduino-1.x.y\hardware\arduino\cores\

arduino.

Voici un court extrait de ce fichier, dont les nombreuses lignes n’ont
pas toutes besoin d’étre montrées.

i = f Binary b

- Binary h

3

9 BO O

s BOG O

1 BOOO &

T BO0OD 0

- BO000O O

9 BOOOOOOD O
10 80000000 O
1% BOOGOO0QOD O
12 e Bl 1

13 ne BO1 1

ig BOO1 1

15 BoOO1 1

16 BOO0OO1 1
17 BO0OO0O1 1
18 BOOO0D001 1
19 BOOO0O0DO1 1

Ce fichier contient toutes les combinaisons de bits possibles pour les
valeurs de 0 a 255, qui y sont définies en tant que constantes symboli-
ques. Je me suis permis de retirer la ligne pour la valeur 139 (décon-
seillé, 4 moins de restaurer ensuite 1’état initial !) pour voir comment
le compilateur réagit. Voyez plutét :

void setup(){
Serial.begin(9600);
byte a = B10001011; //Déclarer + initialiser la variable
Serial.println(a, BIN); //Imprimer er
Serial.println(a, HEX); /
Serial.println(a, DEC); //1

}

void loop (){/#Videsx/}

‘BI000101 1 was not declared jn g scope

Montage 11 : L'afficheur sept segments

2015 Eyrolles.

Copyright ©

392

Le message d’erreur indique que le nom B10001011 n’a pas été€ trouvé.
Il me faut encore vous expliquer les lignes suivantes avant d’en
revenir au projet :

Serial.println(a, BIN); //Imprimer en tant que valeur binaire
Serial.println(a, HEX); //Imprimer en tant que valeur hexadécimale
Serial.println{a, DEC); //Imprimer en tant que valeur décimale

La fonction println peut accueillir, en plus de la valeur & imprimer, un
autre argument qui peut étre indiqué séparé par une virgule. Je vous ai
mis ici les trois plus importants. Vous en trouverez d’autres sur la
page de référence des instructions Arduino sur Internet. Des explica-
tions parlantes figurent sous forme de commentaires derriere les
lignes d’instructions. L’ impression dans le Serial Monitor est alors la

suivante :

10001011
3B
139

Passons maintenant a la commande de 1’afficheur sept segments au
moyen du tableau bidimensionnel. Voici auparavant le sketch
complet que nous allons analyser :

byte segments[10] = {Bonnmo, //0
Boonoooo, //1
Bonono1, //2
Bonmoo1, //3
Boonoon, //4
Boionon, //5
Boionm, //6
Bommoooo, //7
Botinmn, //8
Bonmomn}; //9
int PinAIIaY[] = {2: 3, 4, 5, 6, 7, 8};

void setup(){
for(int 1 = 0; 1 < 7; i++)
pinMode(pinArray[i], OUTPUT);
}
void loop(){
for(int i = 0; 1 < 10; i++){ //Commande du chiffre
for(int j = 6; j »= 0; j--){ //Interrogation des bits pour
//1les segments
digitalWrite(pinArray[6-j],bitRead(segments[i],])==12L0W:HIGH);
}
delay (500); //Attendre une demi-seconde
}
}

Partie Il : Les montages

/rolles.

Fyv
Y

L

201

\

Copyright €

Dans la figure 11-5, on voit trés bien quel bit est en charge de quel
segment au sein de 1’octet.

. ;] ; « Figure 11-5
P 7 G 5 4 3 i 1 0
ufssances 2 2 2 2 2 ! 2 2 Un octet gére les segments de
Valeur I'afficheur (ici par exemple pour

128 64 32 16 g 4 2 1
e POOODHOO o
a C e I q

de bits
—>o
a
L]
g

e c
(d:
Ayant seulement sept segments a4 commander et ne tenant pas compte
du point décimal, j’ai constamment donné au MSB (rappelez-vous :
MSB = bit le plus significatif) la valeur o pour tous les éléments du
tableau.

Tout se joue bien entendu encore — et comment en serait-il autrement —
a I’intérieur de la fonction loop. Jetons-y un coup d’ceil :

void loop(){
for(int i = 0; i < 10; i++){
for(int j = 6; j »>= 0; j--){

du chiffre

//1les sesments

digitalwrite(pinArray[e-j],b[LReac(ségments[i],j)::1?LOW:H|GH),-
}
delay(500); //Attendre une demi-seconde
}
}

La boucle extérieure for avec la variable de contréle i commande
encore les divers chiffres de o a 9. C’était déja le cas dans la premiere
solution. Le code est ensuite différent. La boucle intérieure for avec
la variable de contr6le j est chargée de choisir le bit dans le chiffre
sélectionné. Je commence du c6té gauche par la position 6, qui est en
charge du segment a. Le tableau des broches gérant cependant la
broche 8 pour le segment g a la position 6 de I'index, la commande
doit se faire en sens inverse. On y parvient en soustrayant le nombre 6
puisque j’ai gardé tel quel le tableau des broches du premier
exemple :

pinArray[6 - j]

Montage 11 : L'afficheur sept segments 393

Voici maintenant a une fonction intéressante, permettant de lire un bit
déterminé dans un octet. Elle porte le nom bitRead.

Figure 11-6 b Argurments
Instruction bitRead

l l | l | VJ_\
(bitRead (139, 3);)

Cet exemple donne le bit de la position 3 pour la valeur décimale 139
(binaire : 10001011). Le comptage commence pour 'index o au LSB
(bit le moins significatif) du coté droit. La valeur renvoyée serait par
conséquent un 1. La ligne :

digitalWrite(pinArray[6-j],bitRead(segments[i],j) == 1?LOW:HIGH);

permet de vérifier que la lecture du bit sélectionné renvoie bien un 1.
Si ¢’est le cas, la broche sélectionnée est commandée avec le niveau
Low, autrement dit le segment s’allume. N’oubliez pas: anode
commune ! Sauriez-vous expliquer la différence entre les deux
solutions ?

<(Laissez-moi réfléchir. Bon ! Dans la premiére version avec le tableau 1
bidimensionnel, le chiffre & afficher est sélectionné par la premiére
dimension tandis que les segments 4 commander le sont par la
deuxiéme. Cette information se trouve dans les différents éléments du
tableau. Dans la deuxieme version, le chiffre a alTicher est également
sectionné par la premiére dimension. S’agissant d’un tableau unidimen-
sionnel, elle est cependant la seule dimension. Seulement, 1’information
pour commander les segments est contenue dans les diverses valeurs de
I'octet. Ce qui était fait auparavant par la deuxieme dimension est main-
tenant fait par les bits d’un oclet.

F >,

Tres bien, Ardus ! La technique est comparable.

o 394 Partie Il : Les montages

Problémes courants

Si I’affichage ne correspond pas aux chiffres 1 4 9 ou si des combinai-
sons incohérentes s’ affichent, vérifiez les choses suivantes.

Vos fiches de raccordement sur la maquette correspondent-elles
bien au circuit ?

Vérifiez qu’il n’y a pas de court-circuit entre elles.

Le code du sketch est-il correct ?

Si des caracteres incohérents s’ affichent, il se peut que vous ayez
interverti des lignes de commande. Vérifiez le ciblage avec le
schéma ou la fiche technique de 1’afficheur sept segments.

Le tableau des segments est-il initialisé avec les bonnes valeurs ?

Qu'avez-vous appris ?

Dans ce montage, les principes de la commande d’un afficheur
sept segments vous sont expliqués.
L’initialisation d’un tableau vous permet de définir les différents

segments de 1’affichage pour pouvoir les commander a votre aise
par la suite.

Le fichier d’en-té€te binary.h contient un grand nombre de cons-
tantes symboliques que vous pouvez utiliser dans votre sketch.

Vous savez comment convertir un nombre A imprimer dans une
autre base numérique en ajoutant un deuxiéme argument (BIN, HEX
ou DEC) a la méthode println.

La fonction bitRead vous permet de lire 1’état de certains bits
d’un nombre.

Exercice complémentaire

Elargissez la programmation du sketch de telle sorte que certaines
lettres puissent s’afficher a ¢6té des chiffres 0 a4 9. Ce n’est certes pas
possible pour tout 1’alphabet, donc & vous de trouver lesquelles pour-
raient convenir. La figure suivante vous fournit quelques exemples
pour commencer.

Montage 11 : L'afficheur sept segments

NN

|
HYEFRNN

Eyrolles.

015

{
L

2

yright ©

!

Cop

39

Pour aller plus loin
Il existe un nombre infini de déclinaisons dafficheurs sept segments. L'affi-
chage peut étre de différentes couleurs, telles que :

« jaune;

- rouge;

- vert;

« rouge trés clair,

Il faut bien entendu s'assurer du type de connexion avant d'acheter :
- l'anode commune ;

» la cathode commune.

lls ont des tailles différentes. En voici deux proposées par le fournisseur
Kingbright :

+ type SA-39: hauteur des chiffres = 0,39"= 99 mm ;
+ type SA-56 : hauteur des chiffres = 0,56"= 14,2 mm.

Partie Il : Les montages

Montage

Le clavier numérique 1 :z

Au sommaire :
* la fabrication d’un clavier numérique ;
¢ apprendre a interroger les différentes touches élégamment ;
* le sketch complet ;
¢ I’analyse du schéma ;
* la réalisation du circuit ;

* un exercice complémentaire.

Qu’est-ce qu'un clavier
numérique ?

Vous connaissez déja le bouton-poussoir, dont nous avons parlé au
cours de certains montages. Mais ici, plusieurs boutons-poussoirs
(touches) sont réunis en une matrice —donc disposés en lignes et
colonnes — de maniére a proposer les chiffres 0 4 9 et deux touches
spéciales telles que = et #. A quoi cela sert-il ? Eh bien, vous utilisez
ce jeu de touches tous les jours, entre autres pour téléphoner.

< Figure 121
Clavier de téléphone

397

virolles

2015 E

(&)

right

!

Copy

Il s’agit d’une matrice de 4 x 3 touches (4 lignes et 3 colonnes). Cette
matrice est également appelée keypad (clavier numérique) et peut étre
achetée préte a I’emploi en différentes variantes. La figure 12-2
montre deux claviers numériques a film. Celui de gauche possede
méme quelques touches supplémentaires A a D, qui peuvent s’avérer
trés utiles si les 12 touches du clavier numérique de droite ne suffi-
sent pas pour votre projet.

Figure 12-2 p

(lavier numérique a film 4 x 4

a 16 touches et clavier numérique
afilm 43 12 touches.

-
Je vois mal comment brancher par exemple le clavier numérique a film

4 x4 sur mon Arduino sans rencontrer des probléemes de broches. On
pourrait bien sfir raccorder les 16 touches d’un c6té aux +5 V et les
16 prises correspondantes aux entrées numériques. On pourrait égale-
ment se servir des entrées analogiques en cas de besoin. C’est ce que
nous avons fait déja.

”

Vous pourriez bien siir procéder ainsi et cela fonctionnerait s’il n'y
avait pas les limites physiques de la carte Arduino Uno. Une solution
consisterait a utiliser la carte Arduino Mega, dont le nombre d’inter-
faces est bien €levé. Mais soyons ingénieux ; il existe une biblio-
théque pour claviers numériques préte a I'emploi sur le site Internet
Arduino, aussi allons-nous tout faire par nous-mémes. Nous utilise-
rons le clavier numérique 4 X 3 que nous aurons fabriqué de nos
propres mains. Voici la liste du matériel nécessaire.

398 Partie Il : Les montages

yrolles,

5E

g 201

right ©

Copy

Composants nécessaires

&

% 12 boutons-poussoir

T

1 jeu de connecteurs femelles empilables

1 carte de dimensions 10 > 10 ou mieux 16 10
(vous pourrez alors en faire deux shields). La découpe
du shield est déja indiquée, et je reviendrai bientot
sur cette derniére.

Fil, si possible de différentes couleurs

Réflexions préliminaires

Ardus vient de nous faire remarquer que notre clavier numérique
4 x 4 nécessitait 16 lignes pour interroger toutes les touches. Un
clavier numérique 4 x 3 n’aurait quant a lui besoin que de 12 lignes.
Mais ce serait encore beaucoup trop a mon avis. Une solution astu-
cieuse existe, dont 1'idée de base a déja servi pour commander les
deux afficheurs sept segments. Vous vous demandez slirement ce que
des afficheurs sept segments ont a voir avec ces touches. Le mot
commun est multiplexage. Il signifie que certains signaux sont
regroupés et envoyés par un moyen de transmission pour minimiser
I"utilisation des lignes et en tirer profit le plus possible. Sur les affi-
cheurs sept segments, les lignes de commande de deux segments sont
montées en paralléle et utilisées pour commander les deux. Sept ou
huit lignes par segment sont ainsi économisées. La solution trouvée

Montage 12 : Le clavier numérique

yrolles.

5 E

201¢

Copyright €

Latou

400

Figure 12-3 p
(Cablage des 12 touches
d’un dlavier numérique 4 < 3

Figure 12-4 p

che 5 est enfoncée (les lignes
en gras montrent le passage
du courant),

pour interroger les différentes touches d’un clavier numérique est
relativement simple. Voici le cdblage des 12 touches.

Colonnes
) {|}
l.® [) =® ‘7@ }

—1e . 2

//
/ ./© "/@ Lignes
D

° 1
u/ o/®
. 0

0/@ a7© 0/@

Imaginez une grille composée de 4 + 3 fils métalliques posés I'un sur
I’autre sans pour autant se toucher. Voila a quoi ressemble ce
graphique. On voit que les 4 fils horizontaux en bleu forment des
lignes numérotées de 0 a 3. Au-dessus, les trois fils verticaux en
rouge forment a peu de distance des colonnes numérotées de 0 a 2.
Chaque intersection présente des petits contacts reliant, quand on
appuie sur la touche, la ligne et la colonne en question pour former un
troncon de circuit électrique. Regardez bien la figure 12-4, ol la
touche 5 est enfoncée.

Colonnes
%A . ﬁ- 3
7@ 07@ 07@
9 —ro—)
/ @ ./© Lignes

. 1

D Ve Vo
/@ 17@ '7@

0

Le courant peut alors passer de la ligne 2 via I’intersection 5 dans la
colonne 1 et y étre détecté.

Partie Il : Les montages

Jenregistrerai une impulsion correspondante sur la colonne 1.

Mais si une tension est appliquée simultanément a toutes les lignes, la
touche 2 au-dessus de la touche 5 peut tout aussi bien étre appuyée et
Comment faire la différence ?

Je vois, Ardus, que vous n’avez pas completement compris le prin-
cipe. Pas de quoi fouetter un chat cependant. Disons grossieérement
que nous envoyons tour a tour un signal par les lignes 0 a 3 et interro-
geons ensuite également tour a tour le niveau sur les colonnes 0 a 2.
Le déroulement est alors le suivant :

¢ Niveau HIGH sur le fil de la rangée 0
— Interrogation du niveau sur la colonne 0
— Interrogation du niveau sur la colonne 1
— Interrogation du niveau sur la colonne 2
¢ Niveau HIGH sur le fil de la rangée 1

Interrogation du niveau sur la colonne O

Interrogation du niveau sur la colonne 1

Interrogation du niveau sur la colonne 2

— etc.
Cette interrogation est bien slr si rapide que suffisamment de
passages ont lieu en une seule seconde pour que pas un appui de

touche ne soit omis. Le shield a été cablé a demeure avec les numéros
de broches des entrées et sorties indiqués sur la figure 12-5.

< Figure 12-5
(ablage des différentes lignes
et colonnes avec les broches

0:../® l;}'@ *7@ numeérigues

Colonnes
roche 8 Broche 7 Br(f-chef}

o]

Broche 5

Broche 4

WO e
“/® "7 ")@ Broche 3
L) @ o7® 0,7®

Broche 2

Pimentons ici un peu les choses et créons notre propre bibliothéque
qui servira plus tard a d’autres montages. Elle offre une certaine fonc-
tionnalité de base et pourra bien entendu étre modifiée ou élargie si

Montage 12 : Le clavier numérique @

besoin est. Le sketch principal demande continuellement au shield
quelle touche a été appuyée. Le résultat est affiché dans le Serial
Monitor pour visualisation. Pour vérifier le bon fonctionnement de la
bibliotheque, fixons-nous les spécifications suivantes :

* si vous n’appuyez sur aucune touche, aucun caractére n’est
affiché dans le Serial Monitor ;

* si vous n’appuyez que brievement sur une touche, le chiffre ou le
caractere s’ affiche dans le moniteur ;

* si vous appuyez sur une touche un long moment, qui peut étre
préalablement défini en conséquence, le chiffre ou le caractere
s’affiche plusieurs fois 1'un derriére 1’autre jusqu’a ce que la
touche soit relichée.

Code du sketch

Sketch principal avec revue de code

Commencons par le sketch principal qui, du fait de la fonctionnalité
délocalisée dans une bibliothéque, semble clair pour ne pas dire spar-
tiate. Mais attendez seulement. Les choses vont devenir plus
complexes et plus intéressantes.

#include "MyKeyPad.h"

int rowArray[] = {2, 3, 4, 5}; //Initialiser le tableau avec les
‘/numéros de broche des lignes

int colArray[] = {6, 7, 8}; //Initialiser le tableau avec les
//numéros de broche des colonnes

MyKeyPad myOwnKeyPad(rowArray, colArray);//Inc
void setup(){
Serial.begin(9600);
myOwnKeyPad . setDebounceTime(500);

tanciation d’un objet

}

void loop(){
char myKey = myOwnKeyPad.readKey(); //Lecture de la touche appuyée
if(myKey != KEY_NOT_PRESSED) 7 Un .

Serial .println(myKey);

}

La premiere ligne incorpore, tout comme dans la bibliotheque-dé du
montage n°9, le fichier d’en-téte permettant d’utiliser la biblio-
theque. Nous verrons bientét ce qu’il contient. Déclarons pour

Partie Il : Les montages

commencer deux tableaux, que nous initialisons avec les numéros des
broches de connexion aux lignes et aux colonnes du clavier numé-
rique. Cela offre une plus grande flexibilité et permet d’adapter les
constructions différentes. La ligne :

MyKeyPad myOwnKeyPad(rowArray, colArray);

génere I'instance myOwnKeyPad de la classe MyKeyPad qui est définie dans
la bibliothéque, et transmet les deux tableaux au constructeur de la
classe. Ces informations lui sont nécessaires pour commencer 2
évaluer sur laquelle des 12 touches on a appuyé. Le temps de rebond
est déterminé par la ligne suivante :

myOwnKeyPad. setDebounceTime(500) ;

La méthode setDebounceTime avec 1'argument 500 est ainsi appelée.
L’instance est ensuite continuellement interrogée au sein de la fonc-
tion loop, la question posée étant : « Indique moi la touche qui est
actuellement appuyée sur le clavier numérique ! » Pour y arriver, il
faut écrire la ligne suivante :

char myKey = myOwnKeyPad.readKey();

Elle affecte le résultat de la requéte a la variable myKey du type char.
On peut maintenant réagir en conséquence. Il le faut car la méthode
renvoie toujours une valeur, qu’une touche ait été appuyée ou non.
Mais vous souhaitez sirement voir a I’écran si une touche a été
appuyée. Aussi la valeur KEY _NOT_PRESSED est-elle renvoyée quand
aucune touche n’est appuyée. La requéte if n’envoie donc le carac-
tére correspondant 2 la touche au Serial Monitor que si une touche est
véritablement appuyée.

if(myKey = KEY _NOT PRESSED)
Serial.println(myKey);

(Une question en passant : qu'y a-t-il derriére KEY_NOT_PRESSED ? } e

Question pertinente car j'en serais venu de toute facon a parler du

fichier d’en-téte. De nombreuses constantes symboliques y sont défi-
i nies. Parmi ces constantes se cache le caractére -, qui est toujours
= envoyé lorsqu’aucune touche n’est appuyée. Je lui ai donné ce nom
évocateur pour que le code soit plus lisible.

Montage 12 : Le clavier numérique @

yrolles.

5E

201

opyright ©

C

404

Fichier d’en-téte avec revue de code

Le fichier d’en-téte sert, comme nous I’avons déja expliqué, a faire
connaitre les variables et les méthodes nécessaires a la définition de la

classe en question. Voyons maintenant ce qu’on y trouve :

#ifndef MYKEYPAD H
#define MYKEYPAD_H

#if ARDUINO < 100
#tinclude <WProgram.h>
#else

#include <Arduino.h>
#endif

#idefine KEY_NOT_PRESSED '-' //Nécessaire si aucune touche
//n’est appuyée

#define KEY 1
#define KEY_ 2
fidefine KEY_3 '3'
#define KEY_g '4'
#define KEY .5 '5'
#define KEY 6 '6'
idefine KEY_7 "7’
#define KEY_8 '3’
#define KEY g '9'
#define KEY o 'O’
#idefine KEY_STAR '+’
#define KEY_HASH '’

(S

class MyKeyPad{
public:
MyKeyPad(int rowArray[], int colArray[]); //

//paramétré

onstructeur

void setDebounceTime(unsigned int debounceTime);
//Réglage du temps de rebond
char readKey(); 1/ i
//le clavier numérique

]
&

la touche appuyée sur

private:
unsigned int debounceTime; //Variable locale pour temps de
long lastValue; //Derniére valeur de la fonction millis

int row[4]; //Tableau pour les lignes
int col[3]; //Tableau pour les colonnes
b
tendif

rebond

La partie supérieure est consacrée aux constantes symboligues et aux
caracteres correspondants. Vient ensuite la définition formelle de la

Partie Il : Les montages

classe sans formulation du code qui, comme chacun sait, se trouve
dans le fichier .cpp.

Eh, une minute ! Vous cherchez encore 4 me faire gober quelque chose
que je ne connais pas. Que veut dire unsigned int dans la déclaration
des variables ?

Eh bien Ardus, vous avez une bien pidtre opinion de moi ! Evidem-
ment que j’allais en parler ! Le type de donnée int vous est déja fami-
lier. Son domaine s’étend des valeurs négatives aux valeurs positives.
Le mot-clé unsigned placé devant indique que la variable est déclarée
sans signe, autrement dit son domaine de valeurs double puisque les
valeurs négatives sont supprimées. Ce type de donnée nécessite
également (comme int) de deux octets pour que les valeurs positives
soient toutes représentées. Le domaine de valeurs va de 0 a 65 535.

Fichier ccp avec revue de code

yrolles,

Y15:E

20
Ll

right ©

s
—opy

L

Voici maintenant un peu de code « fait maison » :

#include "MyKeyPad.h"
//Constructeur paramétre
MyKeyPad: :MyKeyPad(int rowArray[], int colArray[]){
//Copier le tableau des broches
for(int r = 0; 1 < 4; r++)
row[r] = rowArray[r];
for(int ¢ = 0; C < 3; C++)
col[c] = colArray[c];
//Programmation des broches numériques
for(int ¥ = 0; ¥ < 4; 1++)
pinMode(row[r], OUTPUT);
for(int ¢ = 0; € < 3; C++)
pinMode(col[c], INPUT);

//Définition initiale de debounceTime a 300 ms
debounceTime = 300;
//Méthede pour régler le temps de rebond

void MyKeyPad: :setDebounceTime(unsigned int time){
debounceTime = time;
}
//Méthode pour déterminer la touche appuyee
//fsur le clavier numérigue
char MyKeyPad::readKey(){
char key = KEY_NOT_PRESSED;
for(int r = 0; 1 < 4; 1++){
digitalWrite(row[r], HIGH);

Montage 12 : Le clavier numérique

)

yrolles.

5E

201

opyright «

C

406

for(int ¢ = 0; ¢ < 3; c++){
if((digitalRead(col[c]) == HIGH)&&(millis() - lastValue) »>=
debounceTime){

if((c==2)88(r==3)) key = KEY_1;

if((c==1)88(r==3)) key = KEY 2;

if((c==0)8&(r==3)) key = KEY_3;

if((c==2)8&(r==2)) key = KEY_g4;

if((c==1)8&(r==2)) key = KEY_s;

if((c==0)88&(r==2)) key = KEY_6;

if((c==2)8&(r==1)) key = KEY_7;

if((c==1)8&(r==1)) key = KEY_8;

if((c==0)8&(r==1)) key = KEY_g;

if((c==2)88(r==0)) key = KEY_STAR; // =
if((c==1)88(r==0)) key = KEY_o;

if((c==0)88&(r==0)) key = KEY_HASH; // #

lastValue = millis();

}
}
digitalWrite(row[r], LOW); //Restauration du niveau initial
}

return key;

}

Voyons d’abord le constructeur. Il sert & initialiser I’objet a créer et 4
lui donner des valeurs initiales définies. Un constructeur doit
permettre d’initialiser autant que possible completement 1’instance,
de telle sorte qu’aucun appel de méthode ne soit plus en principe
nécessaire pour ’initialisation. Elles ne sont plus utilisées que pour
corriger certains parametres qui, le cas échéant, doivent ou peuvent
étre modifiés en cours de sketch. Le constructeur n’est appelé qu’une
seule fois et de maniére implicite lors de I'instanciation, et apres cela
plus jamais dans la vie de 1’objet. Dans notre exemple, les tableaux
des lignes et des colonnes lui sont communiqués lors de 1’appel, de
maniere a pouvoir étre transmis ensuite aux tableaux locaux au
moyen de deux boucles for :

//Copie des tableaux de broches
for(int ¥ = 0; ¥ < 4; T++)
row[r] = rowArray[r];
for(int ¢ = 0; € < 3; c++)
col[c] = colArray[c];

Les broches numériques sont ensuite initialisées et leurs sens de
transfert sont définis :

//Programmation des broches numérigues

for(int ¥ = 0; ¥ < 4; T++)

Partie Il : Les montages

pinMode(row[x], OUTPUT);
for(int ¢ = 0; € < 3; C++)
pinMode(col[c], INPUT);
//Définition initiale de debounceTime a 300 ms

debounceTime = 300;

-
Vous avez dit qu'un objet devait toujours étre complétement instancié

au moyen d'un constructeur. Mais vous lui transmettez uniquement les
tableaux de broches pour les lignes et les colonnes. Un autre paramétre
important est néanmoins le temps de rebond. Celui-ci n’est pourtant pas
transmis a 1’objet par le constructeur. Vous avez pour ce faire une
méthode propre. Cela ne contredit-il pas ce que vous venez de dire ?

\

Oui et non, Ardus ! Il est vrai que le constructeur ne connait pas le
temps de rebond. Mais regardez sa derniére ligne. Le temps y est
réglé sur 300 ms. Il s’agit pratiquement d’une initialisation cdblée en
dur, comme on dit si bien dans les milieux de la programmation. Si la
valeur ne vous dit rien, vous pouvez toujours I’adapter 4 vos besoins,
tout comme je 1’ai fait d’ailleurs pour la méthode setDebounceTime. La
valeur de 300 (ms) m’a semblé ici convenir. J'aurais évidemment pu
la définir directement, mais je voulais vous montrer cette possibilité.
La tiche en question est accomplie par la méthode readkey, qui est
appelée sans cesse dans la boucle loop pour pourvoir réagir immédia-
tement & un appui sur une touche. Au début de 1’appel de la méthode,
la ligne suivante fait en sorte que la variable key soit immédiatement
pourvue d’une valeur initiale :

char key = KEY_NOT_PRESSED;

Allez voir dans le fichier d’en-téte de quelle valeur il s’ agit.

Si aucune touche n’est en effet appuyée, c’est précisément ce signe
qui est réexpédié comme résultat. Vient ensuite I'appel des deux
boucles for imbriquées 1'une dans I'autre. La premiére ligne du
clavier numérique est mise au niveau HIGH par :

digitalWrite(row[r], HIGH);

Les niveaux de toutes les colonnes sont ensuite testés.

for(int ¢ =0 ; c < 3 ; c++)f
if((digitalRead(col[c]) == HIGH)&&(millis() - lastValue) >=
debounceTime){
if((c==2)88(r==3)) key = KEY_1;
if((c==1)8&(r==3)) key = KEY_2;
if((c==0)8&(r==3)) key = KEY_3;

1}

Montage 12 : Le clavier numérique

)

virolles

ght © 2015 Ey

!

if((c==2)88(r==2)) key = KEY_4;
if((c==1)88&(r==2)) key = KEY_s;
if((c==0)8&(r==2)) key = KEY_6;
if((c==2)88&(r==1)) key = KEY_7;
if((c==1)8&(r==1)) key = KEY_8;
if((c==0)8&(r==1)) key = KEY g;
if((c==2)88&(r==0)) key = KEY_STAR; //+
if((c==1)88&(r==0)) key = KEY_o;
if((c==0)8&(r==0)) key = KEY_HASH; //i
lastValue = millis();

Si une colonne présente également un niveau HIGH et si en plus le
temps de rebond a été pris en compte, alors la premiére condition if
est remplie et toutes les conditions if subséquentes sont évaluées. Si
une condition est vérifiée pour le compteur de lignes r et le compteur
de colonnes c, la variable key est initialisée avec la valeur initiale
correspondante et renvoyée a 'appelant, en fin de méthode, par
Iinstruction return. Une fois la boucle intérieure terminée, les lignes
qui viennent d’étre mises au niveau HIGH doivent étre remises dans
leur état initial, qui est le niveau LowW. Si 1’état HIGH était conservé, une
interrogation ciblée d’une certaine ligne ne serait alors plus possible.
Toutes les lignes auraient un niveau HIGH une fois la boucle extérieure
terminée, ce qui mettrait toute la logique d’interrogation sens dessus
dessous.

Je ne comprends pas bien ce qui se passe avec le femps de rebond.
Réexpliquez moi la fonction en question s’il vous plait. J'ai bien
compris qu’elle était nécessaire mais je ne vois pas bien comment tout
cela fonctionne.

Mais volontiers, Ardus ! La fonction millis renvoie le nombre de millise-
condes écoulées depuis le début du sketch. La derniére valeur est pour
ainsi dire stockée temporairement dans la variable lastValue une fois la
boucle intérieure terminée. Si la boucle est de nouveau appelée, la diffé-
rence entre la valeur actuelle en millisecondes et la valeur précédente est
calculée. Ce n’est que si elle est supérieure au temps de rebond défini que
la condition est jugée vérifiée. Elle se trouve cependant liée avec
I’expression qui la précede par un & logique.

if((digitalRead(col[c]) == HIGH)&&(millis() - lastValue) >=
debounceTime)..

Copy

Partie Il : Les montages

yrolles,

5E

201

right ©

0O .D \’.-'

&

Ce n’est que si les deux conditions délivrent le résultat logique vrai a
I’instruction if que la ligne se poursuit avec 1’accolade. Cette struc-
ture permet d’obtenir une interruption temporelle, qui se produit aussi
toute seule dans certains sketches.

Schéma

Le circuit est assez simple, mais les besoins en programmation sont
eux plus importants.

] 4 Figure 12-6
rauino % , Commande de notre dlavier
o numérique
puw |10,
O pum -2
> 5 |)
55 7 =
o e = G (S
-~ <]
— vec C ol I ' M i
— GND = 4 vi % ! 5
3 2 PG |G
PWM 3 ‘ "E ‘% wg :
- bfireto |
L 0 1B]
Analog IN 15 =1 ? il i
EEECED L

Une chose me frappe d’emblée dans ce schéma. Si aucune touche n’est
actionnée, les entrées numériques 6, 7 et 8 se retrouvent pour ainsi dire
le bec dans I'eau. N'avez-vous pas dit au débul qu’une entrée devait
toujours avoir un niveau défini ?

C’est vrai, Ardus ! Mais le clavier numérique doit rester relativement
simple et, & moins que la foudre ne tombe sur votre siége et ne
provoque une grande perturbation électrostatique de votre environne-
ment, il fonctionne parfaitement bien. Je n’ai pas eu de probléme avec
ce circuit. Essayez-le seulement. Et tant que vous y étes, réécrivez
donc votre sketch de maniére a utiliser les résistances pull-up
internes. Le shield n’a pas besoin d’étre modifié. Seul le code doit
&tre un peu adapté. Voici un indice pour commencer : si les résis-
tances pull-up sont activées, il vous faut interroger les différentes
broches non pas sur leur niveau HIGH mais sur leur niveau Low. A vous
de trouver le reste par vous-méme. Considérez cela comme une partie
de I'exercice a venir.

Montage 12 : Le clavier numérique @

violles,

{ s
| .

)18

o

Ll

20

(&)

right

s
-Opy

L

Réalisation du shield

Figure 12-7 p
Réalisation du clavier numérique
avec son propre shield

La construction du shield n’est pas mal du tout, n’est-ce pas ? Je vous
avais dit au début que je vous montrerai comment faire une carte a la
bonne taille. La carte présentée page 399 comporte un marquage
correspondant 2 la taille définitive du shield. Vous trouverez des
informations détaillées sur sa fabrication dans le montage n” 22 de

réalisation d’un shield.

Figure 12-8 b

Taille du shield basée sur les écarts | . S .
entre les trous . R — '

Ligne de
découpe

o LR
l]eg:—:.

»

logiq

'f;L@nede
% découpe

| e—— 51005
I-I'.."‘I'I"‘
... . Brochesana

On voit sur I’image les positions exactes des connecteurs femelles et
des touches. 11 suffit de compter les trous sur la carte et de positionner
ensuite les composants. Ne commencez a souder que quand vous
avez tout placé sur la carte. Vous évitez ainsi les positionnements
incorrects, et les erreurs vous sautent tout de suite aux yeux. Si vous

soudez les composants aussitot apres les avoir placés, il se peut que

410 Partie Il : Les montages

yrolles,

5E

201

right ©

0O .D \’.-'

&

vous vous aperceviez plus tard que vous avez commis une erreur, et
que vous ayez tout & dessouder. La figure 12-9 illustre I’envers de la
carte une fois tous les composants soudés et tous les fils raccordés.

< Figure 12-9
Envers de la carte

R

Touches Connexions des lignes

Broches numériques

L O

Touches Connexions des colonnes

Les fils verts établissent les liaisons vers les lignes, et les fils jaunes
vers les colonnes. Les fils rouges sont les connexions intermédiaires
des colonnes, qui passent au-dessus des fils horizontaux.

Problémes courants

La réalisation de ce shield nécessitant beaucoup de soudure, les
erreurs peuvent étre d’autant plus nombreuses.

¢ Vérifiez que les fils sont bien raccordés aux bonnes broches.

* Avez-vous correctement relié les différentes touches entre elles,
de maniére a ce qu’elles forment des lignes et des colonnes ?
Servez-vous du schéma. Voyez s’il n’y a pas de court-circuit
entre eux. Le mieux est de prendre une loupe et de vérifier
chaque soudure. Un court-circuit de la taille d’un cheveu n’est
souvent pas visible a I'ceil nu.

Qu’avez-vous appris ?

* Vos avez vu qu’on peut fabriquer soi-méme un clavier numé-
rique avec des composants treés simples et peu onéreux. Pour
ceux qui ont la patience nécessaire et qui ont envie de faire par

Montage 12 : Le clavier numérique

412

eux-mémes au lieu de toujours se servir des composants tout
préts vendus dans les magasins, ceci a pu étre un bon début et
leur a permis de montrer ou plutdt d’entretenir leur créativité.

* Le soudage qui, il y a des décennies, était excessivement
pratiqué dans les premiers bricolages électroniques, n’est selon
moi plus a la mode aujourd’hui. Mais j’espere du moins que
I'odeur d’étain fondu et de plastique briilé vous aura charmé,
comme elle a su le faire dans ma jeunesse.

¢ Nous avons créé ensemble notre propre classe, qui peut servir a
interroger la matrice de touches. Vous avez certainement tiré
parti des principes de la POO, qui vous avaient été expliqués
auparavant.

Exercice complémentaire

La bibliothéque KeyPad fait pour le moment partie du sketch que vous
avez créé. Je pense que ce serait une bonne idée de la copier quelque
part, a I’attention de tous les autres sketches qui pourraient en avoir
besoin. Si vous ne savez plus ou, relisez le montage n° 8 du dé élec-
tronique, au cours duquel vous aviez créé votre premiere biblio-
theque. Vous y trouverez les informations nécessaires. Il faut pour ce
faire rajouter le fichier keyword.txt dans votre bibliotheque. Entrez-y
les mots-clés nécessaires, qui sont indiqués en couleurs dans I'IDE
Arduino.

Partie Il : Les montages

Un afficheur
alphanumeérique

Au sommaire :

* la définition d’un afficheur LCD ;

* le fonctionnement d’un tel afficheur ;
¢ le sketch complet ;

¢ I’analyse du schéma ;

» la réalisation du circuit ;

* unjeu;

* un exercice complémentaire.

Qu’est-ce qu’un afficheur LCD ?

Que serait un microcontrdleur sans son afficheur pour correspondre
avec le monde extérieur sans passer par 1’ordinateur ou le Serial
Monitor ? Bien siir, on a déja vu comment, par exemple, utiliser des
afficheurs sept segments pour représenter des chiffres. S’il s’agit de
représenter plusieurs chiffres ou des lettres ou encore des caractéres
spéciaux tels que par exemple *, #, %... les limites du possible sont
vite atteintes. On utilise dans ces cas-la un afficheur a cristaux
liquides ou LCD (Liquid Cristal Display) sous sa forme abrégée. Ces
afficheurs contiennent des cristaux liquides capables de modifier leur
orientation en fonction d’une tension appliquée, et de jouer ainsi plus
ou moins sur I'incidence de la lumiere.

Montage

13

413

Figure 13-1 4
Plusieurs types d'afficheurs LCD

414

Graphic LCD4884 Shield OPTREX DMC-2047 HMC162235G

Pour aller plus loin

Pour compléter ce chapitre, vous pouvez effectuer une recherche sur Internet
sur les mots-clés :

- LCD;

« LCD Module AVR;

- Dot matrix display.

De tels éléments d’affichage utilisent en général des motifs composés
de points (Dot-Matrix) pour représenter a peu pres tous les signes
(chiffres, lettres ou caractéres spéciaux). Leur taille et leur équipe-
ment varient. La figure 13-1 en montre trois différents.

Le premier afficheur, LCD4884, avec une résolution de
84 x 48 pixels est déja monté sur un shield ; il dispose d’un joystick
miniature pour naviguer dans les menus, et peut étre commandé
directement avec la bibliothéque appropriée. 11 peut méme afficher
des graphiques miniatures et se veut donc trés souple pour représenter
des éléments d’affichage. Le deuxieme afficheur, DMC-2047, est
équipé de 4 LED et d’une diode réceptrice a infrarouge (/R). Le troi-
sieme, de type HMC16223SG, est un afficheur a deux lignes avec un
contréleur compatible a celui de I’'Hitachi HDD44780, sur lequel
nous reviendrons bientdt. Pour une utilisation plus facile, beaucoup
d’afficheurs sont dotés d’un contrbleur intégré qui commande les
différents points ou segments. Si nous avions a le faire, le sketch
serait beaucoup plus long. Dans ’environnement Arduino, un affi-
cheur LCD avec pilote HD44780 est relativement souvent utilisé. Ce
pilote, qui s’est imposé comme le quasi-standard, est souvent adapté
par beaucoup d’autres fabricants. La figure 13-2 montre un afficheur
de ce type.

Partie Il : Les montages

violles,

P
2015 E

right ©

opY

&

< Figure 13-2
Afficheur LCD

11 existe pour cet élément une bibliotheque livrée avec I'IDE Arduino.
Vous pouvez bien entendu raccorder n’importe quel afficheur ou
presque, 4 condition de trouver une bibliothéque appropriée ou de la
créer vous-méme. Nous utilisons pour notre montage 1’afficheur ci-
dessus, a 2 lignes de 16 caractéres chacune.

Composants nécessaires

ST

SELLLLLLLL LU L) S —

Bl

1LCD HD44780 + barrette de 16 broches
au pas de 2,54 mm

1 trimmer de 10 k€2 ou 20 k2

//'\\ Plusieurs cavaliers flexibles de couleurs
et de longueurs diverses

Remarque préliminaire sur
I'utilisation de l'afficheur LCD

Si vous achetez un afficheur LCD tout neuf, il se peut que seuls des
trous de connexion soient présents sur le circuit imprimé, comme
vous pouvez le voir sur I'image ci-dessus. Vous pouvez alors, soit
équiper de fils les contacts nécessaires et vous en servir plus tard pour
le circuit sur la plaque d’essais, soit —et c’est le mieux — vous
procurer une barrette a broches, comme vous pouvez le voir égale-
ment sur I’image suivante.

Montage 13 : Un afficheur alphanumérique

Des barrettes sont par exemple proposées avec une rangée de
40 broches et un pas de 2,54 mm. Coupez-les 4 une longueur de
15 broches en les pliant délicatement a 1’endroit souhaité. Allez-y
doucement car elles ont tendance a casser 14 ol on ne veut pas.
Enfilez ensuite les broches de la barrette depuis le bas dans les trous
et soudez-les sur la face supérieure.

2. Souder depuis le haut

TI . Enfiler depuis le bas dans les trous

Vous pouvez ainsi brancher sans probléme le module sur votre plaque
d’essais.

Principes intéressants

Avant d’utiliser I’afficheur LCD, voici quelques principes importants
et intéressants a connaitre. Comment un afficheur de ce type fonc-
tionne-t-il 7 Nous avons déja vu que les différents caractéres étaient
composés a partir d'une matrice de points (Dot-Matrix). Dot signifie
point et se trouve étre le plus petit €lément représentable dans cette
matrice. Tout caractére est construit avec une matrice de points 5 x 8.

Figure13-3p0 HEEENR

La matrice de points 5 % 8 =====
de I'afficheur LCD EEEEE
EEERNE

EEEENR

EEERER

EEEERN

Un emploi judicieux des différents points permet de générer les
caracteres les plus divers. La figure 13-4 montre le mot Arduino et les
différents points a partir desquels les lettres sont composées.

Fowels4> GES83 59537 58308 B398 BREOR SE3E5 S38%C
= Le mot Arduino composé apartit gEOOm mOmED OEEOE EOOOE COEEO0 EOEE0 OEEED
(L des différentspoints WOOCE EEOO EO0O0ON OONOO EECOON oo
L [|] oodod B EOOOR OOEOO m Oom oood
BOOOR EBEOOOO WEOOOR EOOER OONOO0O EOOON EOOOE
- BOOOR EBEOOO0O OEEEE [(EECE (OEEE0 EOOON ORERO
~ 00000 00000 00000 00000 00000 00000 00000

416 Partie Il : Les montages

yrolles.

|] o
| .

)1E

5

20
Ll

right ©

T

Y
DY

Ble]

L

La commande de I’afficheur est paralléle, autrement dit tous les bits
de données sont envoyés en méme temps au contrdleur. Il existe deux
modes différents (4 bits et 8 bits), le mode 4 bits étant le plus utilisé
parce qu’un nombre moindre de lignes de données doit étre reli¢ a
I’afficheur, ce qui fait diminuer le coiit.

Eh 14, pas si vite ! Je ne suis pas idiot au point d’ignorer que si j'utilise
4 bits au lieu de 8, j'aurai un débit de données moindre et je pourrai
transmettre moins d’informations différentes. Comment faire alors ?

C’est juste, Ardus ! Mais ¢a fonctionne sans diminution du volume
d’informations. En mode 4 bits, les 8 bits d’informations a trans-
mettre sont simplement scindés en deux moitiés : 1’'une contenant
les quatre premiers bits, et 1’autre contenant les quatre derniers bits.
Un nombre binaire de 4 bits est appelé nibble (quartet) dans le trai-
tement des données. Les 4 bits d’un nibble sont transmis en paral-
lele, et les deux nibbles d’un octet en série. Surtout, ne vous en
faites pas. Le mode 4 bits est certes plus lent que le mode 8 bits,
mais ¢a n’a ici aucune importance. Venons-en maintenant au
module d’affichage LCD Hitachi HDD44780, a son brochage et aux
branchements nécessaires. Il existe deux variantes différentes : celle
a 16 broches qui posseéde un rétroéclairage, et celle a 14 broches qui
n’en a pas besoin.

4
l Rétroéclairage
D7

Sur les huit lignes de données, seules les quatre lignes supérieures
(D4 a D7) sont nécessaires. Le tableau 13-1 donne I'affectation des
broches et leur signification.

< Figure 13-5
Branchements du module
d'affichage

Montage 13 : Un afficheur alphanumérique

yrolles.

2015

Copyright €

418

Tableau 13-1 p
Occupation des broches LCD
pour la variante a 16 broches

Broche LCD Broche Arduino

GND Masse
2 +5V +5V
3 - Réglage du contraste par un potentiomeétre de 10 k€2 ou 20 k2
4 12 RS (Register Select)
5 GND RW (Read/Write)/connecté a la masse (HIGH : Read/LOW :
Write)
6 n E (Enable)
1l 5 Ligne de données D4
12 4 Ligne de données D5
13 3 Ligne de données D6
14 2 Ligne de données D7
15 - Anode (+)/via résistance série 220 Q!
16 GND (athode (-)

L’objectif du premier sketch LCD est de faire apparaitre a I’écran la
phrase « Un Arduino me commande : -) ».

Code du sketch

Ne vous laissez pas effrayer par la logique de commande relativement
complexe. Nous allons nous servir d’une bibliothéque, qui nous
permettra d’utiliser un afficheur LCD de maniére trés simple.

#include <LiquidCrystal.h>
#define RS 12 //Regis
#idefine E 11
#define Dg 5
#define Dg 4
#define D6 3
#tdefine D7 2
#idefine COLS 16
#tdefine ROWS 2 //Nombre de lignes

LiquidCrystal lcd(RS, E, D4, D5, D6, D7);//Instanciation de 1’objet

> données 6
> données 7

ie colonnes

void setup(){
lcd.begin(COLS, ROWS);
led.print("Un Arduino me™);
lcd.setCursor(o, 1);
lcd.print(“"commande :-)");

}

void loop(){/+ vide =/}

Partie Il : Les montages

Revue de code

La bibliothéque LiquidCrystal doit étre incorporée afin de pouvoir utiliser
la fonctionnalit¢ des commandes de 1’afficheur LCD. Du point de vue
logiciel, la variable suivante est nécessaire a notre montage.

Variable Role | Tablea,u 13-2 .
Variable nécessaire et son réle

lcd L'objet LCD

Les parameétres suivants doivent étre communiqués au constructeur
pour générer un objet LCD :

* broche Register Select (RS) ;
¢ broche Enable (E) ;

¢ broches des lignes de données D4 4 D7.
LiquidCrystal lcd(RS, E, D4, D5, D6, D7); //Instanciation de 1’objet

La classe LiguidCrystal met une série de méthodes a disposition, car on
ne peut envoyer un texte a I’afficheur LCD avec le seul constructeur.
Pour que ce soit possible, il nous faut transmettre a 1’objet afficheur
quelques informations supplémentaires pour poursuivre I’initialisa-
tion. Les afficheurs LCD différent quant au nombre de colonnes ou
de lignes, et ce sont précisément ces informations qu’il lui faut. On
voit bien que le constructeur ne dispose pas de tout pour une initiali-
sation compléte. Une méthode est ici nécessaire.

Méthode LCD : begin

Hom de la méthode ~ Nombre de colonnes Nombre de lignes < Figure 13-6
‘ l ‘ Méthode LCD begin

| N | |
C (Cols, Rows) ;)

La méthode begin communique les nombres de colonnes et de lignes a
I’objet LCD. Tout est alors prét pour envoyer un texte.

Méthode LCD : print

Nom de la méthade Texte 2 afficher <« Figure 13-7
| | Méthode L(D print

| | |
(("Un Arduino me");)

Montage 13 : Un afficheur alphanumérique

419

vrolles.

)

|] o
| .

)1

- 20
=) LA

oyrignt ©

Ble]

L

Figure 13-8 p
Méthode L(D setCursor

Figure 13-9 p
Coordonnées des différentes lignes
accessibles avec setCursor

Figure 13-10 p-
Méthode LCD clear

420

La méthode print indique a I'objet LCD ce qui doit &étre affiché a
I’écran. Elle est comparable a celle du Serial Monitor.

Un moment, s’il vous plait ! L afficheur que vous utilisez a bien deux
lignes. Comment avez-vous fait pour que le texte s’affiche sur la
premiére ?

Quand aucune indication n’est donnée sur la position du texte a affi-
cher, celui-ci se place au début de la premiere ligne. Comme vous
pouvez le voir dans I'exemple, une autre ligne est occupée par du
texte. Venons-en maintenant a la troisieme méthode importante.

Méthode LCD : setCursor

Nom de la méthode Colonne Ligne
| |

La méthode setCursor permet de positionner le curseur a I’endroit ol
le texte suivant doit commencer. Elle est ici aussi — et comment pour-
rait-il en €tre autrement — basée sur zéro, autrement dit la premiere
ligne ou colonne est pourvue de 1’index o. Pour atteindre la deuxiéme
ligne, vous devez —comme c’est le cas ici— utiliser la valeur 1. La
figure 13-9 peut vous aider a positionner 1’affichage.

Avant d’oublier : vous pouvez naturellement tout effacer jusqu’au
dernier caractére avec la méthode clear.

Méthode LCD : clear

hom de la méthode

e
(_ aa ();)

Partie Il : Les montages

Copyright © 2015 Eyrolles.

Elle n’a pas de parametre, efface tous les caracteres de 1"afficheur et
positionne le curseur sur la coordonnée 0,0 dans le coin supérieur
gauche.

Schéma

¢ [Arduino 13
12
pwn |11
PWN .lél.;
(=] ——
< PWH -
= L
¥ é
vCC b ::: 5
— GND = 4
O
2
L4,
Q
Astag N Retroeclairage
LR |
H~n¢m6h44ﬂ:§gggg
B 2003 W o N 00 T
ZHIeN oo coooDo o
(- e
™
Jr_'j—:’ﬂK - _
Contraste
HD44780
v o &
GHED
A Figure 13-11

Attention!

Dans certaines variantes du HD44780, on peut brancher le rétroéclairage sur
+5V sans résistance série; dans d'autres, une résistance dimensionnée en
conséquence est nécessaire. Regardez la fiche technique avant de brancher la
tension d'alimentation. Vous pouvez au pire laisser tomber le rétroéclairage. Si
c'est trop sombre, vous pourrez toujours augmenter le contraste de maniére a
pouvoir lire guand méme I'affichage.

Montage 13 : Un afficheur alphanumérique

Connexions de I'afficheur LCD

4an

es.

015 Eyroll

yright © 2C

!

Cop

Réalisation de la commande du LCD

422

Réalisation du circuit

Figure 13-12 p

avec Fritzing

Figure 13-13 p
Support de circuit intégré a
16 broches

Tawan seeww o

A Résistance série.
E le cas Echéant

Jeu : deviner un nombre

Quoi de mieux que le jeu ot il faut deviner des nombres pour une
réalisation avec I'afficheur LCD ? Si ¢a fonctionne, vous n’aurez plus
besoin d’un ordinateur et gagnerez en indépendance grice a 1'unité
d’affichage LCD. J’ai fixé, pour le besoin de la réalisation, le LCD
sur une carte de circuit imprimé perforée, sur laquelle deux supports
de circuit intégré a 16 broches sont posés 1'un a coté de 1"autre.

Un support comparable — mais avec plus de broches bien slir — se
trouve sur votre carte Arduino et maintient le microcontrdleur en
position. De tels connecteurs sont vraiment utiles car si un circuit
intégré vient a griller pour de bon, plus besoin de le dessouder péni-
blement. I suffit de le remplacer. La carte mesure 10 X 5 cm.

Partie Il : Les montages

Copyright © 2015 Eyrolles.

< Figure 13-14
Carte-support pour |'afficheur LCD

Comme vous pouvez le constater, j’ai également placé dessus le
trimmer pour le réglage du contraste. De ’autre coté de la carte, on
voit comment j’ai relié entre elles les différentes broches des supports
de circuit intégré. Les broches opposées ont toutes été reliées par
plusieurs points de soudure.

Broche 16 Broche 1 < Figure 13-15
Face soudée de la carte-support
pour I'afficheur LCD

Trimmer

Un cdblage volant est parfois suffisant. La figure 13-16 montre 1"affi-
cheur LCD déja fixé sur la carte. Ses broches sont insérées dans les
contacts de la rangée inférieure des deux supports de circuit intégré.
La rangée supérieure servira plus tard pour la connexion au shield.

T <« Figure 13-16

RAARAZAAR AR A ERA)

Afficheur LCD sur sa carte-support

I1 ne manque plus maintenant que les lignes de raccordement a votre
clavier analogique. Les liaisons passent par les barrettes a broches
que vous connaissez bien.

Montage 13 : Un afficheur alphanumérique 423

es,

]
I

Copyright © 2015 Eyrolls

11 vous faut :
s | barrette a 16 broches ;
¢ 2 barrettes a 8 broches ;
*] barrette a 6 broches.

La barrette & 16 broches est raccordée a la carte-support sur laquelle
se trouve I’afficheur LCD. La figure 13-17 illustre les lignes de
raccordement analogique.

Figure 13-17 p
Barrette a 16 broches

Les deux barrettes 2 8 broches et la barrette a4 6 broches sont bran-
chées sur le clavier.

Figure 13-18 Barrette & 8 broches/RS et E Barrette & 8 broches/Lignes de données
Clavier analogique avec ses trois

barrettes broches

Barrette & 6 broches pour +5 V et masse

En utilisant les couleurs et I’affectation des broches indiquée, vous ne
devriez pas avoir de probléme pour construire le petit faisceau de
cébles avec les barrettes a broches. La figure 13-19 montre a nouveau
les trois composants, a savoir la carte-support avec 1’afficheur LCD,
la carte Arduino et le shield du clavier superposé, tous reliés entre
eux.

424 Partie Il : Les montages

Copyright © 2015 Eyrolles,

Attention!

Si vous soudez sur les barrettes & broches des fils d'alimentation ou de masse
qui se trouvent directement ['un a coté de l'autre, vous risquez fort d'avoir un
jour ou l'autre, par déplacement, un court-circuit entre ces contacts ou les fils
avoisinants. Aussi ai-je pris soin de mettre chaque soudure sous gaine thermo-

rétractable pour lisoler.

Voici maintenant le code complet, qui est déja un peu plus consé-

quent.

#include <liquidCrystal.h>
#include "MyAnalogKeyPad.h"

#idefine analogPinKeyPad 0 //Définition de la broche analogique

#idefine MIN 10 //Limite inférieure du nombre aléatoire
#define MAX 1000 //Limite supérieure du nombre aléatoire
#define RS 12 //Broche Register Select du LCD
ftdefine E 11 //Broche Enable du LCD

#idefine Dg 5 //Ligne de données LCD broche 4
#define D5 4 //Ligne de données LCD broche 5
#define D6 3 //Ligne de données LCD broche 6

#define Dy 2 //Ligne de données LCD broche 7
fidefine COLS 16 //Nombre de colonnes LCD

#define ROWS 2 //Nombye de lignes LCD

int arduinoNumber, tries; //Le nombre généré, nombre d’essais

< Figure 13-19
Réalisation du circuit complet pour
le jeu des nombres a deviner

<« Figure 13-20

Barrette a 6 pdles avec deux
morceaux de gaine thermo

rétractable (fleches rouges)

Montage 13 : Un afficheur alphanumérique

425

Copyright © 2015 Eyrolles.

426

char yourNumber[5]; //Nombre a 5 chiffres maxi

byte place;

MyAnalogKeyPad myOwnKeyPad(analogPinKeyPad); //Instanciation clavier
LiquidCrystal lcd(RS, E, D4, Ds, D6, D7); //Instanciation LCD

void setup(){
myOwnKeyPad. setDebounceTime(500); //Réglage temps
//de rebond 500 ms

led.begin(COLS, ROWS); //Nombres de lignes et de colonnes
led.blink(); //Faire clignoter le curseur
startSequence(); //Appel de la séquence de démarrage

}

void loop(){
char myKey = myOwnKeyPad.readKey(); //Lecture de
//1a touche appuyée
if(myKey != KEY_NOT_PRESSED){ //Interrogation si une touche
// quelconque appuyée
yourNumber[place] = myKey;
place++;
led.print(myKey); //Afficher la touche sur le LCD

if(place == int(logl0(MAX))+1){
tries++;
int a = atoi(yourNumber);
if(a == arduinoNumber){
led.clear(); //Effacer écran LCD
led.print("Exact 111"); //Affichage sur LCD
lcd.setCursor(o, 1); //Positionnement curseur
//sur 2e ligne
+ String(tries));

led.print(“Essai

delay (4000); //Attendre 4 secondes
tries = 0; //Remise a zéro du nombre d’essais
startSequence(); // Appel de startSequence
}
else if(a < arduinoNumber){
lcd.setCursor(o, 1); //Positionnement curseur sur
//2e ligne
led.print("Trop petit"); //Affichage sur LCD
led.setCursor(o, 0); //Positionnement curseur sur
//1re ligne
}
else{
led.setCursor (0, 1); //Positionnement curseur sur
//2e ligne
led.print("Trop grand™); //Affichage sur LCD
led.setCursor(o, 0); //Positionnement curseur sur

Partie Il : Les montages

yrolles.

5E

201

opyright ©

C

//1re ligne

led.setCursor(2, 0); //Positionnement curseur sur
//3e emplacement de la 1re ligne
place = 0;

}

int randomNumber(int minimum, int maximum){
randomSeed(analogRead(5));
return random(minimum, maximum + 1);

}
void startSequence(){
arduinoNumber = randomnumber (MIN, MAX); //Générer le nombre
//a devinex
led.clear(); //Effacer écran LCD
lcd.print("Devine un nombre"); //Affiche sur LCD
lcd.setCursor(o, 1); rsitionnement curseur
//sur 2e ligne
led.print("de” + String(MIN) + " - " + String(MAX));
delay(4000); //Attendre 4 secondes
led.clear(); //Effacer écran LCD
led.print(">>"); //Affiche sur LCD

}

Je ne souhaite pas trop m’étendre sur le sketch pour I'instant. J’ai fait en
sorte que 1’affichage ait lieu sur le LCD. J’ai ajouté aussi une méthode
qui affiche un curseur clignotant a I’écran (figure 13-21). La fonction
atoi (ASCII to Integer) convertit une chaine de caractéres en un entier.

Méthode LCD : blink

Nom de la méthode < Figure 13-21

Méthode LCD blink
(();)

blink est appelée une seule fois dans la fonction setup et fait clignoter
un curseur a I’endroit ol on va écrire. Quand on regarde le début du
sketch, on voit qu’il est tout a fait possible d’incorporer plusieurs
bibliothéques dans un projet.

Il n’y a théoriquement aucune limite. La mémoire flash finit quand
méme & un moment par laisser entendre qu’elle est pleine et qu’aucun
code ne peut plus étre ajouté.

Montage 13 : Un afficheur alphanumérique

427

vrolles.

|] o
| .

)18

5

20
Ll

right ©

L

T

! =

Y\

Ble]

Figure 13-22 p-
Shield pour clavier 4 x 4 avec
interface pour afficheur 5110 LCD

428

Il y a une chose que je ne comprends pas et je ne sais plus si vous I’avez
déja expliquée ou pas. On trouve par exemple la ligne :

led.print("de” + String(MIN) + "-" + String(MAX));.

Autrement dit, on affiche des chaines de caractéres et on utilise I’opéra-
teur + Mais comment fait-on pour additionner des chaines de
caractéres ? Ca ne marche qu’avec des nombres, non ?

.y

Bien sir, Ardus! Seules des valeurs mathématiques peuvent étre
additionnées. L’ opérateur + ne peut évidemment rien additionner dans
le cas de chaines de caracteres. Comment le pourrait-il 7 Les diffé-
rentes chaines de caracteres sont simplement réunies en une seule. On
dit aussi qu’elles sont concaténées. Si maintenant, comme dans notre
sketch, des valeurs numériques font partie de la chaine de caracteres a
afficher, elles doivent étre préalablement converties en une string.
C’est la fonction string qui §’en charge, comme dans String(MIN).

Pour aller plus loin
Voici quelques liens intéressants a propos d'Arduino et de LCD :

- http//www.arduino.cc/en/Tutorial/LiquidCrystal

« httpA/www.arduino.cc/en/Reference/LiquidCrystal

« httpA/www sparkfun.com/datasheets/L CD/HD44780.pdf

- http//arduino.cc/fr (en francais)

La figure 13-22 montre encore un shield pour clavier prét a I’emploi,
capable de recevoir un LCD.

AT LT~

Pour du prét a I'emploi somme toute relativement compact, le shield
pour clavier 4 x4 se veut idéal avec un porte-écran approprié.
L’écran monochrome, qui a une résolution de 84 x 48 pixels, est

Partie Il : Les montages

compatible avec 1’afficheur 3310 LCD, pour lequel une bibliotheque
Arduino existe.

Pour aller plus loin
Pour compléter ce chapitre, vous pouvez effectuer une recherche sur Internet
sur les mots-clés :

« Nokia 5110 LCD;
- 3310 LCD.

Problémes courants

Si, aprés avoir raccordé le LCD et chargé le sketch, vous ne voyez
rien a I’écran, vérifiez les points suivants.

¢ Le ciblage est-il correct ?

* Pas de court-circuit ?

e Le trimmer du contraste est-il correctement branché ?
Augmentez le cas échéant le contraste jusqu’a ce que vous puis-
siez voir quelque chose a 1’écran.

Qu'avez-vous appris ?

* Vous avez raccordé pour la premiere fois un élément d’affi-
chage, capable non seulement de clignoter mais aussi d’afficher
des nombres et du texte.

¢ La bibliothéque LiquidCrystal vous a permis de commander faci-
lement un LCD avec un contrdleur HDD44780.

¢ Vous avez ensuite clairement transposé le jeu des nombres i
deviner.

* D’autres types de LCD vous ont été présentés pour vos expé-
riences a venir, de telle sorte que vos créations puissent étre sans
limite.

Exercice complémentaire

Réfléchissez un peu a une serrure a code de sécurité, du type de celles
installées aux entrées des zones sensibles.

Un code a plusieurs chiffres doit étre saisi pour ouvrir la porte. On est
bien entendu informé en cas de saisie erronée que le code chiffré

Montage 13 : Un afficheur alphanumérique

429

2015 Eyrolles.

\

Copyright €

430

composé est trop bas ou trop élevé. Vous pouvez par exemple bran-
cher un servomoteur désengageant un péne du systeme de fermeture
en cas de code correct. Il faut attendre un certain temps, par exemple
trois minutes, aprés avoir tapé trois fois de suite un code erroné.
Créez un contrdle d’acces a votre chambre pour décourager les colo-
cataires ou proches trop curieux.

Partie Il : Les montages

Montage

Le moteur pas-a-pas l 4

Au sommaire :
e comprendre ce qu’est un moteur pas-a-pas et savoir le
commander ;
¢ le sketch complet ;
¢ I’analyse du schéma ;
» la réalisation du circuit ;

¢ un exercice complémentaire.

Encore plus de mouvement

Un servomoteur permet de transformer le courant €lectrique en
mouvement. Cependant, son rayon d’action demeure limité, méme si
des modifications peuvent étre entreprises pour combler ce manque.
Mais il s’avere suffisant pour la plupart des applications.

Le moteur pas-a-pas s’impose en revanche si une plus grande liberté
d’action est nécessaire. Voyez par souci d’économie si vous ne
pouvez pas en récupérer un sur un vieil appareil quelconque :

* imprimante ;
¢ scanner a plat ;
¢ lecteur de CD/DVD ;

* ancien lecteur de disquettes (de 3,5 pouces).

Sur la figure 14-1, vous pouvez voir un lecteur de disquettes de
3,5 pouces, encore parfois utilisé dans les ordinateurs actuels.

431

Copyright © 2015 Eyrolles.

Figure 14-1 p
Lecteur de disquette de 3,5 pouces

Figure 14-2 p-

Moteur pas-a-pas PL155-020
provenant d'un ancien lecteur
de CD-Rom

Figure 14-3 p-
Branchements du moteur pas-a-pas
PL155-020

Ces lecteurs possédent un petit moteur pas-a-pas, de type PL155-020
la plupart du temps, qui entraine un petit chariot sur lequel se trouve
la téte d’écriture/lecture. La figure 14-2 montre une unité de ce genre
provenant d’un ancien lecteur de CD-Rom.

§— Moleur pas-a-pas

Le moteur pas-a-pas dispose de 4 bornes, sur lesquelles nous allons
revenir en détail. Comme vous pouvez le voir sur la figure, j’ai déja
soudé deux fils de couleur pour qu’il soit plus facile de le commander
a la main avec la carte Arduino. Le graphique 14-3 montre les noms
utilisés pour ces bornes.

PL155-020

B1
5 il AN L L N N W O Y
i3 Arbre

432

Partie Il : Les montages

/rolles.

Fyv
Y

L

201

\

Copyright €

Vu qu’il dispose de 4 bornes, il s’agit d’'un moteur pas-a-pas bipo-
laire. Pour le mettre en marche, les bornes en question doivent rece-
voir certaines impulsions dans un ordre chronologique bien
déterminé.

Bornes
4 PAS A1 A2 B1 B3
SE 1 LOW HIGH HIGH LOW
g s 2 LOW HIGH LOW HIGH
3 3 HIGH LOM LOW HIGH
g 4 HIGH LOM HIGH LOW

Quand on écrit un sketch pour traiter successivement les pas 1 a 4 et
envoyer les niveaux LOW ou HIGH correspondant au moteur pas-a-pas,
ce dernier tourne dans le sens horaire. Quand 1’ordre des pas est
inversé, le sens est antihoraire. 11 y a une chose importante que je n’ai
pas encore dite : on ne peut pas se contenter de raccorder le moteur
pas-a-pas aux sorties numériques, car elles seraient alors sollicitées
jusqu’a temps que la carte en patisse. Aussi utilise-t-on ici un circuit
de commande de moteur de type L.293 (voir figure 14-5).

T.2EN L1 UL 293 [16] Ve

"I (T
v [14] 4Y

GND [13] GND
GND [5] [12] GND
ol A
2A [10] 3A
Veer [9]34EN

Les petits triangles sont le symbole de 'interface nécessaire pour
fournir la puissance dont un moteur raccordé a besoin pour fonc-
tionner. Les bornes A du circuit intégré sont les entrées et celles Y
sont les sorties. Chaque paire de drivers a une borne de validation
commune, libellée 1,2EN ou 3,4EN (EN pour enable, ou permettre).
Ce circuit de commande de moteur peut fournir un courant de
600 mA par sortie. Les circuits de commande suivants sont capables
de délivrer un courant plus élevé :

e SN754410 (1 ampere) ;
¢ L.298 (2 ampéres).

< Figure 14-4

Séquences de commande pour

moteur pas-a-pas PL155-020

<« Figure 14-5

Commande de moteur de type

L293DNE

Montage 14 : Le moteur pas-a-pas

433

Copyright © 2015 Eyrolles,

Tension d alimentation eéxtéme

Arduino 13 -_$ Inputt Veet -11—5-—l m:mm':&a'm
112, Input2 1,2EN : R B
11 101 00 $hen o] -
PWM == Inputd 3.%EN
10 s 7] iy e |8 |
pwn (L0 3 Input Vecs -
O pwM _g_.. Cl-t;:,l:] GND ‘—"“"—1
R 7 6 fautput2 GND |2
= |7 — U atput3 GNDJE2
E 6 1“‘ Yot Fide Pl A0 i 13 -
” e PRM | Uutpult¥ GND F=——
cc 52 5 Tok
GND = Rl L293
3 oteur -&-pas bipalain
PWM - | 83 JII'::_TIS? rjr;;s_‘lm bipaiai t—l
L
L 0 |
Analog IN B1
A3 Al
T4 | ' R
J_]. igne de masse commune
Figure14-6 A Vous ne remarquez rien ? Eh bien, & droite du schéma se trouve une
Commande du moteur pas-a-pas source de tension supplémentaire, qui est nécessaire pour alimenter le
par le circuit L293DNE

moteur pas-a-pas sous une tension distincte. En présence de deux
sources de tension ou plus, il est toujours nécessaire d’interconnecter
les lignes de masse pour obtenir un point de référence commun.

Attention!
Le pole + de la carte Arduino ne doit jamais étre raccordé a la source de
tension externe. Sinon, destruction de la carte assurée !

La fiche technique indique que le moteur pas-a-pas a besoin de 5V
pour fonctionner. Si la tension d’alimentation du moteur pas-a-pas est
inférieure, le positionnement ne sera ni précis ni reproductible.
Atteindre une position déterminée avec précision et de maniere répé-
titive tiendra alors plus du jeu de hasard que d’autre chose. Voici
quelques données importantes sur le moteur pas-a-pas PL16S-020 :

* nombre de pas par tour : 20 ;
* type : bipolaire ;
* tension d’alimentation : 5V ;

* résistance de la bobine par phase : 10 ohms.

Je pense que vous avez oublié¢ quelque chose de capital ! Je crois me
souvenir qu'une commande de moteur nécessite une diode de protec-
tion. Ne I’avez-vous pas dit tout au début ?

Partie Il : Les montages

yrolles,

|] o
| .

J15

5

20
Ll

L

right ©

Y
DY

Ble]

Effectivement, Ardus ! N'empéche que je ne 1'ai pas oubliée. La
mention DNE derriere 1293 signifie que les diodes de protection,
appelées également diodes de roue libre, sont déja intégrées dans le
circuit. C’est naturellement trés pratique ! Si vous avez encore un
ancien circuit 1293 (sans mention DNE derriére), il faut absolument
brancher les diodes de protection en externe. Faute de quoi, la carte
Arduino sera endommagée.

Composants nécessaires

1 circuit de commande de moteur L293DNE

1 moteur pas-a-pas bipolaire (par exemple, PL155-
020 provenant d'un ancien lecteur de CD/DVD)

Plusieurs cavaliers flexibles de couleurs et de
longueurs diverses

Qu’est-ce que je fais si je ne trouve pas de lecteur de disquette ou CD/
DVD ? Je ne peux pas faire I’expérimentation alors.

Pas de panique, Ardus ! Vous pouvez en fait prendre pratiquement
n’importe quel moteur pas-a-pas bipolaire. Il vous suffit de trouver la
fiche technique correspondante sur Internet pour en connaitre les
spécifications. Attention cependant au courant consommé par le
moteur pas-a-pas en service ; comparez-le a celui pour le circuit de
commande de moteur utilisé ici. Il ne doit en aucun cas dépasser
600 mA par borne. Faute de quoi, vous devez prendre soit un autre
moteur pas-a-pas, soit un autre circuit de commande.

Quand je regarde le schéma, j'ai comme un léger probleme avec la
source de tension externe qui, d’apres les données du moteur pas-a-pas,
doit étre de 5 V. Ol voulez-vous que je la trouve ?

Vous devez utiliser soit une alimentation de laboratoire réglable,
soit — et ¢’est encore moins cher — un bloc d’alimentation secteur
(voir chapitre 8).

Montage 14 : Le moteur pas-a-pas

2015 Eyrolles.

Copyright ©

436

Code du sketch

#define Stepper_A1 5 //Broche pour connexion Al
#idefine Stepper_A3 4 //Broche pour connexion A3
#define Stepper B1 3 //Broche pour connexion B1
#define Stepper B3 2 //Broche pour connexion B3

byte stepValues[5][4] = {{lLOwW, LOw, LOW, LOW}, //Moteur & 1’arrét
{LOW, HIGH, HIGH, LOW}, //Pas 1
{LOW, HIGH, LOW, HIGH}, //Pas
{HIGH, LOW, LOW, HIGH}, //Pas
{HIGH, LOW, HIGH, LOW}}; //Pas

Bow M

void setup(){

pinMode(Stepper_A1, OUTPUT);

pinMode(Stepper_A3, OUTPUT);

pinMode(Stepper_B1, OUTPUT);

pinMode(Stepper B3, OUTPUT);

for(int i = 0; i < 10; i++){
action(30, 2); //30 pas vers la droite avec pause de 2 ms
action(-30, 10); //30 pas vers la gauche avec pause de 10 ms

}

action(o, 0); //Mise hors courant

}
void loop() {/# vide =/}

void action(int count, byte delayValue){
if(count > 0) //Rotation vers la droite
for(int i = 0; 1 < count; i++)
for(int sequenceStep = 1; sequenceStep <=4; sequenceStep++)
moveStepper (sequenceStep, delayValue);
if(count < 0) //Rotation vers la gauche
for(int i = 0; i < abs(count); i++)
for(int sequenceStep = 4; sequenceStep > 0; sequenceStep--)
moveStepper (sequenceStep, delayValue);
if(count == 0) //Mise hors courant
moveStepper(0, delayValue);

void moveStepper (byte s, byte delayValue){
digitalllrite(Stepper_A1, stepValues[s][0]);
digitalWrite(Stepper_A3, stepValues[s][1]);
digitallWirite(Stepper_B1, stepValues[s][2]);
digitalWrite(Stepper_ B3, stepValues[s][3]);
delay(delayValue); //Pause

Partie Il : Les montages

11 me semble que vous utilisez dans ce sketch une fonction inconnue
appelée abs. Pouvez-vous m’en dire un peu plus ?

Ah oui, c¢’est vrai. Si vous appliquez la fonction abs — qui est 1a forme
abrégée de absolute — a un nombre réel, le signe n’est tout simple-
ment pas pris en compte. Le résultat est toujours positif. Les mathé-
maticiens formulent cet état comme suit :

x| = { x[pour x = 0]
—x pour x <0

Les deux barres verticales de chaque coté du x signifient « valeur
absolue de x ». Le fonctionnement est plus clair grice a cette repré-
sentation graphique que j’ai créée pour la fonction abs (voir figure ci-
apres).

) 17 RS
H3
+2

-1

I T S

Revue de code

D’un point de vue logiciel, les variables suivantes sont nécessaires a
notre expérimentation du moteur pas-a-pas.

Variable Role

stepValues[5][4] Tableau bidimensionnel pour stocker les informations de pas servant a
déplacer le moteur

Le contenu du tableau correspond exactement aux valeurs du tableau
des séquences de commande. Seule une ligne avec des valeurs LOW a
été ajoutée au début, laquelle sert 2 mettre le moteur pas-a-pas hors
courant, une fois la position demandée atteinte.

Si je ne le faisais pas, le moteur s’immobiliserait bien a la fin, mais
nous aurions affaire a un blocage a la derniére position occupée. Un
tel moteur ne peut plus étre bougé a la main, car il est encore sous

< Tableau 14-1
Variable nécessaire et son role

437

Montage 14 : Le moteur pas-a-pas

yrolles.

5E

201

opyright ©

C

tension. Par ailleurs, cela signifie qu’il devient vite trés chaud voire
briilant.

byte stepValues[5][4] = {{LOW, LOow, LOW, LOW},
{LOW, HIGH, HIGH, LOW},
{LOW, HIGH, LOW, HIGH},
{HIGH, LOW, LOW, HIGH}, /
{HIGH, LOW, HIGH, LOW}}; //Pas 4

Voyons tout d’abord la fonction moveStepper qui déplace le moteur
pas-a-pas. Elle comporte deux arguments.

¢ Le premier indique le pas dans la séquence, soit de 1 a 4 pour
une rotation a droite et de 4 & 1 pour une rotation 4 gauche.

* Le second fixe un temps d’attente entre les pas. Vous pouvez
ainsi influer un peu sur la vitesse du moteur pas-a-pas. Cette
valeur ne doit cependant pas étre inférieure 2, car la commande
électrique est alors si rapide que le moteur n’a plus le temps de
réagir mécaniquement. Il se contente de bourdonner et de vibrer.

void moveStepper(byte s, byte delayValue){
digitalWrite(Stepper_A1, stepValues[s][0]);
digitalWrite(Stepper_A3, stepValues[s][1]);
digitallWirite(Stepper_B1, stepValues[s][2]);
digitalWrite(Stepper B3, stepValues[s][3]);
delay(delayValue); //Pause

}

A I'intérieur de la fonction, le pas est transmis comme index pour la
premiere dimension du tableau de séquence stepValues. La deuxiéme
dimension indique les niveaux de tension LOW ou HIGH. Ils sont diiment
appelés au moyen des valeurs d’index de o a 3 et sont transmis aux
sorties numériques qui, a leur tour, contrélent le moteur pas-a-pas via
le circuit de commande. Passons maintenant a la fonction action, qui
appelle la fonction moveStepper :

void action(int count, byte delayValue){
if(count » 0) //Rotation vers la droite
for(int i = 0; 1 < count; i++)
for(int sequenceStep = 1; sequenceStep <=4; sequenceStep++)
moveStepper(sequenceStep, delayValue);
if(count < 0) //Rotation vers la gauche
for(int i = 0; i < abs(count); i++)
for(int sequenceStep = 4; sequenceStep > 0; sequenceStep--)
moveStepper(sequenceStep, delayValue);
if(count == 0) //Mise hors courant
moveStepper(0, delayValue);

Partie Il : Les montages

Le nombre de pas et le temps de pause apreés chaque pas lui sont
communiqués. Le moteur tourne vers la droite si la valeur du pas est
positive, et vers la gauche si elle est négative. Le moteur est mis hors
courant si la valeur est 0. Deux boucles for imbriquées travaillent
toujours main dans la main pour faire tourner le moteur. La boucle
extérieure régit le nombre de pas et la boucle intérieure fixe le sens de
rotation. La boucle intérieure traite les pas de 1 a 4 si la valeur du pas
est positive, et de 4 a 1 si elle est négative. Cette séquence sert
d’index a la fonction moveStepper, index avec lequel le tableau stepva-
lues détermine les valeurs LOW ou HIGH correspondantes. La demande
proprement dite de mouvement du moteur pas-a-pas se fait par
I’appel de la fonction action avec une ligne de code comme suit :

action(30, 2);

Elle dit au moteur pas-a-pas : « Tourne de 30 pas vers la droite et
observe une pause de 2 ms entre chaque pas ! » La ligne :

action(-30, 10);

dit en revanche : « Tourne de 30 pas vers la gauche et observe une
pause de 10 ms entre chaque pas ! »

Le moteur pas-a-pas peut ainsi étre déplacé a 1’endroit souhaité. Cela
dtant, pensez aux limites mécaniques, car plus & gauche que le
minimum ou plus a droite que le maximum n’est tout simplement pas
possible. Dans ces cas-13, rien n’y fera, pas méme une tension plus
élevée.

Bibliothéque pour moteurs pas-a-pas
préte a I'emploi

11 existe une bibliotheque préte a I’emploi, avec laquelle vous pouvez
commander des moteurs pas-a-pas sans avoir a vous préoccuper de la
programmation. Elle a pour nom Stepper et figure dans le pack de
téléchargement Arduino. Vous trouverez toutes les informations
nécessaires sur hitp://www.arduino.cc/en/Reference/stepper.

Shield pour moteur prét a I'emploi

Vous pouvez acheter un shield pour moteur prét a I’emploi, qui utilise
deux circuits de commande de moteur L293DNE dont je vous ai
parlé. La commande passe par le registre a décalage 74HCS595 pour
ne pas utiliser trop de broches numériques. Vous n’avez donc pas a

Montage 14 : Le moteur pas-a-pas

439

vous en faire car toute la logique se trouve dans la bibliotheque mise a
disposition, que vous trouverez sur le site Internet correspondant.

Figure 14-7 p
Shield pour moteur

"

Vous pouvez raccorder des composants moteur les plus variés sur ce
shield :

* 2 servomoteurs de loisir ;

* jusqu’a 4 moteurs a courant continu ;

* jusqu’a 2 moteurs pas-a-pas (unipolaire ou bipolaire).

Vous trouverez d’autres informations sur : http://www.ladyada.net/
make/mshield/.

Problémes courants

Si le moteur pas-a-pas ne bouge pas ou ne fait que bourdonner ou
vibrer, vérifiez :

* que le cablage est correct ;

e qu’il n’y a pas de court-circuit éventuel ;

* que le moteur pas-a-pas ne change pas de position ou qu’il ne
bourdonne pas ou vibre en début de sketch. Si tel est le cas, il y a

de fortes chances que vous ayez interverti les quatre
branchements ;

* que la connexion de masse commune est bien établie entre la
carte Arduino et la source de tension externe ;

* que vous n’avez pas raccordé ensemble les deux poles de tension

o d’alimentation de la carte et de la source de tension externe, qui

i) sont marqués d’un +. Sinon, destruction de la carte Arduino

assurée !

@ Partie Il : Les montages

Qu’avez-vous appris ?

* Vous avez découvert comment commander un moteur pas-a-pas
bipolaire.

¢ La commande a été réalisée au moyen du circuit de commande
de moteur L293DNE.

Exercice complémentaire

La figure 14-8 montre une construction en Lego, sur laquelle j’ai
monté un moteur pas-a-pas provenant d’un vieux scanner 2 plat.

< Figure 14-8
Moteur pas-a-pas
sur une construction en Lego

La courroie dentée et la poulie de renvoi ont également été récupérées
sur le scanner. Le chariot se déplace de gauche a droite et inverse-
ment sur des crémailleres sitdt le moteur entrainé. Avec un peu
d’adresse et de créativité, vous pouvez ainsi vous construire un enre-
gistreur X-Y.

Montage 14 : Le moteur pas-a-pas @

'$9](04A3 §T0Z @ 1ybLAdOD

La tempeérature

Au sommaire :
* une définition de la température ;
* savoir la mesurer ;
¢ le sketch complet ;
* la réalisation du circuit ;
* I’ajout d’un ventilateur au circuit ;

¢ un exercice complémentaire.

Chaud ou froid ?

Nous vivons dans un monde ou plutdt dans un environnement
composé de matieres diverses. Ces dernieéres peuvent en principe
présenter trois états dits d’agrégation en physique. Un tel état d’agré-
gation peut étre solide, liquide ou gazeux et dépend souvent d’une
grandeur physique appelée température. Mais que signifie la tempéra-
ture et comment se fait-elle sentir ou plutét comment peut-on la
mesurer ? Toute matiere est composée d’infimes particules appelées
atomes. Ceux-ci sont composés d’'un nuage d’électrons (charge :
négative) et d’'un noyau formé de protons (charge positive) et de
neutrons (charge : nulle). Ce ne sont pas 1a les plus petites particules,
mais elles suffiront & expliquer au moyen de notre exemple ce qu’est
la température.

Montage

15

@)

Figure 15-1 p

Le mouvement des atomes

Figure 15-2 p-

Capteur de température LM35 en

boitier plastique T0-92,
avec son brochage

i BT
"3
'Y

Ces infimes particules sont en perpétuel mouvement, errant apparem-
ment sans but et dans des directions différentes. La température est
donc un moyen de mesurer cette agitation thermique des atomes ou
des molécules (assemblage de plusieurs atomes) d’une matiere. Plus
ils se déplacent rapidement, plus la probabilité est grande qu’ils
entrent en collision. C’est alors que I’énergie cinétique se transforme
en énergie calorifique. L agitation thermique est donc un moyen de
mesurer la température d’une matiére.

Comment peut-on mesurer
la température ?

On utilise des capteurs, qui convertissent la température mesurée en
diverses valeurs de résistance ou de tension, desquelles on peut
déduire la température ambiante. Vous avez déja entendu parler
d’une PTC et d’une NTC dans le chapitre 4 sur les bases de 1’électro-
nique. La résistance de ces composants varie en fonction de la tempé-
rature. Ils manquent cependant de précision, et leur courbe
caractéristique n’est pas forcément linéaire. Aussi voudrais-je vous
présenter un capteur de température qui fait fort bien les choses. Il a
pour doux nom LM 35 et présente trois pattes de raccordement. Deux
d’entre elles servent a l'alimentation, la troisieme de sortie. Ce
composant ressemble a un transistor au point de les confondre.

MMA
+5V Masse
Sortie

Partie Il : Les montages

Ce capteur convertit la température mesurée en une valeur de tension
analogique qui est proportionnelle a la température. Cela s’appelle un
comportement de tension proportionnel a la température. Le capteur a
une sensibilité de 10 mV/°C et une gamme de température comprise
entre 0 et 100 °C. La formule pour calculer la température en fonction
de la valeur mesurée a I’entrée analogique est la suivante :

5.0 - 100.0 - analogPin
1024.0

Température [°C] =

Les valeurs de la formule se justifient ainsi :

* 5.0 : tension de référence Arduinode 5V ;

¢ 100.0: valeur maximale mesurable par le captewr de
température ;

* 1024 : résolution de I’entrée analogique.

Nous allons maintenant envoyer la : S <« Figure 15-3
valeur mesurée 2 un sketch Proces- — Courbe de température
dans Processing

sing et représenter graphiquement la
courbe de température. Le tout
ressemble a peu prés a la figure 15-3.
La température s affiche sous la
forme d’une valeur de température et
sous celle d’une courbe graphique en
fonction du temps.

Composants nécessaires
-

I
l l\ 1 capteur de température LM35

/\\ Plusieurs cavaliers flexibles de couleurs et de
longueurs diverses

Code du sketch Arduino

#tdefine sensorPin 0 //Connexion a la sortie du LM35
#define DELAY 10

Montage 15 : La température @

d’attente

/rolles.

Fyv
Y

L

201

\

Copyright «

const int cycles = 20; //Nombre de mesures

void setup(){
Serial.begin(9600);
}
void loop(){
float resultTemp = 0.0;
for(int i = 0; 1 < cycles; i++){
int analogValue = analogRead(sensorPin);
float temperature = (5.0 * 100.0 * analogValue) / 1024;

resultTemp += temperature; //Addition des valeurs mesurées
delay(DELAY);
}
resultTemp /= cycles; //Calcul de la moyenne
Serial.println (resultTemp); //Envei & 1’interface série
}

Revue de code Arduino

La valeur déterminée par le capteur de température LM35 est calculée
avec la formule ci-apres :

float temperature = (5.0 # 100.0 * analogValue) / 1024;

et moyennée a 1’aide d’une boucle for. Les valeurs mesurées y sont
additionnées, puis la moyenne est calculée. Cette derniere est enfin
transmise a I’interface série :

Serial.println(resultTemp);

Son traitement par Processing commence immédiatement.

Revue de code Processing

import processing.serial.s;
Serial mySerialPort;

float realTemperature;

int temperature, xPos;
int[] yPos;

PFont font;

void setup(){
size(321, 250); smooth();
println(Serial.list());
mySerialPort = new Serial(this, Serial.list()[0], 9600);
mySerialPort.bufferUntil("\n');
yPos = new int[width];

Partie Il : Les montages

@

yrolles,

5E

201

ght ©

Copyri

for(int 1 = 0; i < width; i++)
yPos[i] = 250;
font = createFont("Courier New", 40, false);
textFont(font, 40); textAlign(RIGHT);
}

void draw(){
background(0, 0, 255, 100);
strokelleight(2); stroke(2s5, 0, 0);
fill(100, 100, 100); rect(10, 100, width - 20, 130);
strokeleight(1); stroke(o, 255, 0);
int yPosPrev = 0, xPosPrev = 0;
//Décaler les valeurs du tableau vers la gauche
for(int x = 1; x < width; x++)
yPos[x-1] = yPos[x];

//Ajout des nouvelles coordonnées de la souris a

/1 extrémité droite du tableau
yPos[width-1] = temperature;
//Affichage du tableau
for(int x = 10; x < width - 10 ; x++)
point(x, yPos[x]);
fill(255);
text(realTemperature + "¢, 250, 30); //Celsius
delay(100);

void serialEvent (Serial mySerialPort){
String portStream = mySerialPort.readString();
float data = float(portStream);
realTemperature = data;
temperature = heigh - (int)map(data, 0, 100, 0, 130) - 25;
println(realTemperature);

Pour aller plus loin

Si vous oubliez de refermer la fenétre d'affichage de Processing que vous avez
ouverte, la communication avec la carte Arduino est impossible. Pourquoi ?
Tout simplement parce que Processing accede a l'interface série, dont votre
carte Arduino a précisément besoin pour communiguer avec l'environnement
de développement !

Ce port est donc blogué par Processing et ne peut étre libéré qu'en fermant la
fenétre d'affichage.

Schéma

Le schéma est, je dois le reconnaitre, vraiment simple, mais nous
allons bientdt lui ajouter quelque chose qui rendra le circuit plus fone-
tionnel.

Montage 15 : La température

@

Figure 15-4 p

(Capteur de température envoyant
ses données a une entrée
analogique

Figure 15-5 p
Commande d'un moteur

Arduino 1

33

-
-

FFFEFFEFRFE]

Digital 1/0

Analog IN el

SEEEEE

Sketch élargi (maintenant
avec tout le reste)

Il est temps maintenant de construire quelque chose de bien avec le
capteur de température. Que diriez-vous d’ajouter directement
plusieurs composants au circuit 7 Je pense qu’un ventilateur pour
améliorer le climat ambiant et un afficheur pour donner les informa-
tions utiles seraient des projets intéressants. Le circuit et le sketch
doivent étre en mesure de mettre en route un moteur de ventilateur
quand une certaine température est atteinte et de 1’arréter quand elle
ne I’est plus. Nous touchons ici a I’art et la maniere de commander un
moteur. Ce dernier ayant assurément besoin de plus de courant et de
tension pour fonctionner que la carte Arduino ne peut en fournir, il
nous faut trouver autre chose. Vous avez appris, dans le chapitre 5 sur
les circuits électroniques simples, comment un relais peut étre
commandé. Si vous remplacez le relais par un moteur, vous obtenez
pratiquement une commande de moteur. Voyez la figure 15-5.

@ j Alimentation externe du moteur

i
S —1-0 +Batt
I 5

.
E!"I"-'l..'_

Commande
—
vers Ardu:nu Ligl"l' de masse E i
commune

d
b |

@)

Partie Il : Les montages

Copyright © 2015 Eyrolles,

Dans ce circuit, j’ai utilisé un transistor plus fort, de type TIP 120. Il
s’agit d’un transistor Darlington de puissance, en boitier TO-220,
capable de commuter un courant de collecteur /-=5A et de
supporter une tension collecteur-émetteur Uqg = 60 V.

< Figure 15-6
Transistor Darlington

il

Y

Cg

La diode de roue libre ne doit pas étre oubliée, bien siir. C’est une
1N4004. Vous souvenez-vous encore pourquoi elle est obligatoire
dans ce circuit ? Reportez-vous au chapitre 4 si vous avez un trou de
mémoire. Vous devez impérativement utiliser cette diode et veiller a
ce que sa polarité soit correcte, faute de quoi votre carte Arduino
risque fort d’en pétir. Nous souhaitons par ailleurs utiliser un affi-
chage LCD pour indiquer la température actuelle. Il s’agit cette fois
d’un affichage qui doit étre commandé via un bus PPC (bus de
données série pouvant étre relié a différents types d’appareils électro-
niques). Il est de type [2C/TWILCD1602.

p—&mlm&'!e <« Figure 15-7
_ - Envers d'un affichage LCD 1602

160 2A
BLWABBA §. OV
Q6 PASSED 110103

La commande de cet affichage va étre présentée au moyen du sketch
utilisé. Venons-en maintenant au schéma complet, qui a 1’air déja
beaucoup plus conséquent.

Montage 15 : La température @

Composants nécessaires

|
I’ l 1 capteur de température LM35

1 transistor de puissance TIP 120

1 résistance d'1 k2

2 résistances de 10 k2

1 diode 1N4004

Module afficheur LCD 12C/TWI LCD1602

Moteur de ventilateur, 12 V par exemple

Plusieurs cavaliers flexibles de couleurs et
de longueurs diverses

450 Partie Il : Les montages

Copyright © 2015 Eyrolles.

Arduino

=g

{13,
112,
pwn AL,
pum P AEL
g Pai & I -
= __Z_ EINPL2D
e T "é; . -
Module 12C/TWI LECD1602 | —1cno s ""i
[STS[S[E [0 e[a[u]k]=Tuls] toal-2-)
L0,

[a]i]2]
alu(s]aiuin]sisulsinulalula)

Analog IN L.«EI

=L L
5

—
1

|-

T

Bon ! Nous avons a gauche le LCD I2C avec les résistances pull-up,
au centre notre Arduino et a droite le capteur de température LM35.
Complétement a droite se trouve la commande du moteur avec le
transistor TIP 120 et la diode de roue libre 1N4004. Voyons mainte-
nant le code du sketch :

#include <Wire.h>
#include <LiquidCrystal I2C.h>

#define sensorPin 0 //Connexion a la sortie du LM35

#idefine DELAY1 10 //Bref temps d’attente lors de la mesure
#define DELAY2 500 //Bref temps d'attente lors de 1’affichage
#define motorPin 9 //Broche commande du ventilateur

#tdefine threshold 25 //Température de commutation du ventilateur

//(25 degrés Celsius)
#define hysteresis 0.5 //Valeur d’hystérésis (0.5 degré Celsius)
const int cycles = 20; //Nembre de mesures
LiquidCrystal I2C lcd(0Ox27, 16, 2); //Adresse I2C : 0x27 pour
//16 caractéres/2 lignes

void setup(){
pinMode(motorPin, OUTPUT);
lcd.init(); //Initialisation du LCD
lcd.backlight(); //Activation du rétroéclairage

void loop(){
float resultTemp = 0.0;
for(int i = 0; 1 < cycles; i++){
int analogValue = analogRead(sensorPin);
float temperature = (5.0 * 100.0 * analogValue) / 1024;
resultTemp += temperature; //Addition des valeurs mesurées

delay(DELAY1);
i
resultTemp /= cycles; //Calcul de la moyenne
lcd.clear(); //Méthode clear pour effacer le contenu du LCD

Montage 15 : La température

4" ”{ Ni '{ g{— = iLigne de massel

E cornmun_r: i

——t-0 +Batt

—1o -Balt

A Figure 15-8

Circuit complet avec capteur,
affichage et moteur ou plutdt
ventilateur

Alimentation externe du moteur

451

yrolles,

015 E

2

right ©

Y
DYy

led.print("Temp:"); //Méthade print pour écrire sur le LCD

led.print(resultTemp);

#if ARDUINO < 100

lcd.print(oxDO + 15, BYTE); //Caractére degré (Arduino 0022)

#else

lcd.write{oxDo + 15); //Caractére degré (Arduino 1.00)

ftendif

led.print("C");

lcd.setCursor(o, 1); ode setCursor pour positionner

//1le curseur du LCD

lcd.print("Moteur: ");

if(resultTemp > (threshold + hysterese))
digitalWrite(motorPin, HIGH);

else if(resultTemp < (threshold - hysterese))
digitalWrite(motorPin, LOW);

lcd.print(digitalRead(motorPin) == HIGH?"en marche":"stop™);

delay(DELAY2);

}

La détermination de la température est effectuée de la méme maniére
et se trouve étre la méme que dans I’exemple précédent.

Soit vous jouez encore les cacholliers, soit vous avez carrément oublié :
dans ce code de sketch se trouve également un élément de programme
dont vous ne nous avez pas parlé. Que signifie la ligne const int
cycles = 20; ? Ce qui me chagrine la-dedans, ¢’est le mot const.

Bien vu, Ardus! Cette fois, j’allais vraiment oublier ! Je dois ici
développer un peu, mais vous allez voir que ¢’est vraiment facile a
comprendre. Nous avons affaire & une autre forme de déclaration de
variable. Vous connaissez par conséquent maintenant trois formes
écrites, que je vous rappelle au moyen d’un exemple :

1. int grandeurs = 47;
2, ftdefine grandeurs 47
3. const int grandeurs = 47;

Les trois variantes initialisent visiblement une variable appelée gran-
deurs avec la valeur 47. Alors ou est la différence ? Il doit bien y en
avoir une, sinon 4 quoi bon des formes écrites différentes.

Variante 1

Bon ! La premiére variante int grandeurs = 47; fait réserver par le
compilateur un emplacement dans la mémoire vive RAM pour y

Co|

L

Partie Il : Les montages

consigner la valeur 47. De la mémoire supplémentaire est donc¢ néces-
saire et occupée.

Variante 2

Cette variante utilise la directive de prétraitement #define, qui affecte
une valeur uniquement a un nom, que le compilateur remplace
partout dans le code de sketch lors de la transformation. Aucune
mémoire supplémentaire n’est ainsi attribuée pour gérer une variable.
Mais vous devez vous demander, pour cette forme écrite, quel type de
donnée est employé, car il n’est pas indiqué comme dans le premier
exemple. Duquel pourrait-il bien s’agir ?

Variante 3

Si le mot-cl€ const est utilisé devant la déclaration de variable, alors la
variable en question n’est plus une variable mais une constante, dont
la valeur ne peut plus étre modifiée pour la durée du sketch. Il s’agit
presque d’une variable en lecture seule. Qu’en pensez-vous mainte-
nant si je vous dis que cette variante n’utilise pas de mémoire ? On est
siir que la variable ne sera pas modifiée, aussi pourquoi en occupe-
rait-elle ? Mais en quoi est-elle différente de la variante tidefine ?
C’est tres simple : on peut indiquer ici un certain type de donnée.

Sur Internet, tout comme dans de nombreux livres, on passe sans
cesse de I"une a I’autre des trois possibilités. De quelle variante faut-il
se servir 7 Si la mémoire est juste et si une indication explicite du
type de donnée est nécessaire, la variante 3 est alors recommandée.
Revenons maintenant a notre circuit. Le mieux est de vous montrer
I"afficheur LCD.

Tenr, & 25.85°C

e, i

Moteur : en marche

Vous pouvez y lire sans probléme la température et 1’état du moteur.

Montage 15 : La température

Figure 15-9 p

En cas de température fluctuant
autour de la valeur de consigne,
I'état du moteur change
constamment.

454

Hola, stop, arrétez ! J’ai bien compris jusqu’ici le fonctionnement du
sketch, mais je n’ai aucune idée de ce qu’est une hystérésis.

Vous ne pouvez rien me reprocher cette fois, car jallais y venir.
Imaginez la situation suivante : le ventilateur doit, tout comme dans
notre exemple, se mettre en marche a 25 °C et apporter un peu d’air
frais & ceux qui transpirent sur leur Arduino. La température ambiante
n’étant cependant pas constante a 100 %, le capteur est lui aussi
soumis a certaines fluctuations. Un état est donc par exemple atteint,
dans lequel la température mesurée varie constamment entre 24,8 et
25,2 °C. Autrement dit, le ventilateur n’arréte pas de s’allumer et de
s’éteindre. Plutot énervant a la longue ! Voyons maintenant la
figure 15-9 de plus pres.

rred
-\ =]
\ %
24 : & A Laredr .'_'-'il. Alaerét ; 1 Alarét |':-'i|. E‘Gf du
rutche marthe mardhe TEE moteur

QO = Fonts e commutiabion

-

C’est 1a que I’ hystérésis (le mot vient du grec et signifie retard) entre
en jeu. On peut expliquer ainsi le comportement d’une régulation
avec hystérésis : la variable de sortie, qui commande ici le moteur, ne
dépend pas seulement de la variable d’entrée délivrée par le capteur.
L’état de la variable de sortie, qui régnait auparavant, joue aussi un
role important. Dans notre exemple, nous avons une valeur-seuil de
25 °C et une hystérésis de 0,5 "C. Voyons maintenant de plus pres la
régulation du ventilateur :

if(resultTemp > (threshold + hysterese))
digitalWrite(motorPin, HICH);

else if(resultTemp < (threshold - hysterese))
digitallrite(motorPin, LOW);

Quand le ventilateur se met-il
en marche ?

Si la condition :

(resultTemp > (threshold + hysterese)) ..

Partie Il : Les montages

es.

2015 Eyrol

yright ©

!

Cop

est remplie, le ventilateur commence a tourner. C’est le cas ici quand
la température mesurée est supérieure a 25 + 0,5 °C.

Quand le ventilateur s'arréte-t-il ?

Si la condition :

resultTemp < (threshold - hysterese)

est remplie, le ventilateur s’arréte de tourner, ici en 1’occurrence
quand la température est inférieure a 25 — 0,5 °C. Pour résumer :

* le ventilateur est en marche si : température > 25,5 °C ;

¢ le ventilateur est a I’arrét si : température < 24,5 °C.
Ted

™ N
5 \e\/ \9_/

41— : ; _ >
n Alareét] Alareét En Etat du
marche Inarche marche
' mateur
|
O = Foinrs de commutarion T i t 5 t

Si vous regardez la courbe entre les points ¢; et ¢, vous verrez que la
température passe constamment au-dessus et en dessous des 25 °C.
Sans commande avec hystérésis, nous aurions sans cesse moteur en
marche et moteur a ['arrét. La réalisation compléte du circuit est
donc celle de la figure 15-11.

LCD
Ventilateur 12V
Capteur de
température LM35
Transistor TIP120
Alimentation
externe

Montage 15 : La température

< Figure 15-10

En cas de fluctuation

de la température autour

de la valeur de consigne,

I'état du moteur ne change pas
constamment.

< Figure 15-11
Réalisation compléte du circuit

455

456

Attention!

Vous devez étre particulierement soigneux du fait que vous travaillez avec une
source de tension externe. Comme je l'ai déja expliqué, vous devez raccorder
ensemble les deux points de masse de la carte Arduino et de la source de
tension externe. Mais surtout pas les potentiels positifs | Vous ne devez en
aucun cas confondre ces deux potentiels et devez veiller a ce qu'aucun court-
circuit ne se produise. Vérifiez le cablage du circuit avant de tout mettre en
marche. Mieux vaut trop que pas assez...

Problémes courants

Si le ventilateur ne se met pas en marche alors que la température-
seuil plus la valeur d hystérésis est atteinte, éteignez tout et vérifiez
ce qui suit.

* Le ciblage est-il correct ?
* Pas de court-circuit éventuel ?

+ La masse commune 2 la carte Arduino et a 1a source de tension
externe est-elle établie ?

* La diode de roue libre est-elle montée dans le bon sens ?

* Si on ne voit rien sur le LCD, le contraste n’est-il pas trop
faible ?

Qu'avez-vous appris ?

* Dans ce montage, vous avez appris comment le capteur de
température fonctionne et convertit des valeurs de température
en valeurs de tension cotrespondantes, qui peuvent étre exploi-
tées a I’entrée analogique de votre carte Arduino.

¢ Vous avez utilisé un affichage 12C/TWI LCD1602, commandé
via le bus I°C, pour indiquer la valeur de température.

¢ Pour que le ventilateur fonctionne correctement, vous avez di
recourir a une alimentation externe, elle-méme connectée au
transistor de puissance TIP 120.

¢ Vous avez appris comment une diode 1N4004 sert, en tant que
diode de roue libre, & protéger votre carte Arduino.

Partie Il : Les montages

Exercice complémentaire

Agrandissez votre circuit de maniére & pouvoir augmenter ou dimi-
nuer la valeur-seuil au moyen par exemple de deux boutons-poussoirs
supplémentaires. Le LCD est censé attirer I’attention en se mettant a
clignoter une fois cette valeur-seuil atteinte. Pour plus d’informations
sur la bibliothéque et sur la gamme d’instructions du LCD, recher-
chez les mots suivants sur Google :

* [2C/TWILCD 1602 :
* Dfrobot.

Pour aller plus loin
I existe bien entendu beaucoup d'autres capteurs de température. En voici
une sélection :

« TMP75 (avec bus IPC) ;
< AD22100 (capteur de température analogique) ;

« DHTI1 (capteur de température et humidité avec microcontroleur 8 hits
intégré) ;

-+ DS1820 (capteur de température numérique 1-Wire),

Montage 15 : La température

457

'$9](04A3 §T0Z @ 1ybLAdOD

Montage

Le son et plus encore 1 6

Au sommaire :
* I’émission de son au moyen d’un élément piézoélectrique ;
¢ le sketch complet ;
* I’analyse du schéma ;
* la réalisation du circuit ;
» la création du jeu de la séquence des couleurs ;

¢ un exercice complémentaire.

Y a pas le son?

A 1la longue, vous en avez peut-étre assez des signaux lumineux et
autres LED clignotantes. Aussi allons-nous voir a présent comment
votre carte Arduino peut émettre des sons au moyen d’un élément
piézoélectrique. Ce composant vous a déja été présenté dans le
chapitre 4 sur les bases de I’électronique.

< Figure 16-1
Disque piézo

Vous ne risquez pas les ondes de choc acoustiques avec un piézo, car
les vibrations émises couvrent un espace des plus réduits. Il est
> cependant parfait pour ce que nous allons faire.

Si on branche, par exemple, 1I’élément sur une sortie numérique et si
~ on passe a intervalles réguliers la sortie en niveau HIGH ou LOW, on
entend un craquement dans 1’élément piézoélectrique. Plus le laps de

459

460

temps entre niveaux HIGH et LOW est court, plus le son audible est aigu ;
plus le laps de temps est long, plus le son est grave. Le phénomeéne est
le méme quand, par exemple, vous passez vos doigts plus ou moins
vite sur une grille a lamelles. Plus vous allez vite, plus le bruit est
aigu ; le piézo fonctionne sur ce principe. Un craquement répété,
tant6t plus lent, tantot plus rapide, influe sur la fréquence du son.
Voici un sketch trés simple pour émettre un son.

#define piezoPin 13 //Elément piézoélectrique sur broche 13
#idefine DELAY 1000

void setup(){
pinMode(piezoPin, OUTPUT);

}

void loop(){
digitalWrite(piezoPin, HIGH); delayMicroseconds(DELAY);
digitalWrite(piezoPin, LOW); delayMicroseconds(DELAY);
}

Ne vous inquiétez pas pour la fonction delayMicroseconds. Son action
est la méme que celle de la fonction delay, & ceci prés que la valeur
transmise n’est pas interprétée en millisecondes mais en
microsecondes ; la microseconde est 1000 fois plus petite (1 ms =
1 000 ps). Cette nouvelle fonction est utilisée, car delay ne permet de
descendre en dessous d’1 ms.

Composants nécessaires

@ 1 élément pigzoélectrique
//'_\\ Plusieurs cavaliers flexibles de couleurs et de
longueurs diverses

Code du sketch

Pour le premier sketch utile qui doit étre capable d’émettre plusieurs
sons a des fréquences différentes, mieux vaut créer un tableau des
sons avec différentes valeurs que nous appellerons I’une aprés 1’autre
pendant le sketch. On utilise pour ce faire la fonction tone (sons) mise
a disposition par Arduino. Vous en saurez bientot plus.

Partie Il : Les montages

virolles

2015 E

(&)

right

!

Copy

#define piezoPin 13 //Elément électrique sur broche 13
ttdefine toneDuration 500 //Dt son
#tidefine tonePause 800 //Longueur de la pause entre les sons
int tones[] = {523, 659, 587, 698, 659, 784, 698, 880};

int elements = sizeof(tones) / sizeof(tones[0]);

void setup(){
noTone(piezoPin); //Rendre le piézo muet
for(int i = 0; 1 < elements; i++){
tone(piezoPin, tones[i], toneDuration); //Exccuter le son
delay(tonePause); //Pause entre les sons
}
}

void loop(){/+ vide =/}

Revue de code

Du point de vue logiciel, les variables suivantes sont nécessaires a
notre expérimentation.

Variable Objet

tones|] Tableau contenant les fréquences des différents sons a exécuter

elements Nombre d'éléments du tableau

Le tableau unidimensionnel tones est du type de donnée int et
contient les fréquences en hertz des sons a exécuter. Les hertz (Hz)
servent & mesurer le nombre de vibrations par seconde. Plus la valeur
est élevée, plus le son est aigu, et vice versa. Le nombre d’éléments
du tableau est affecté a la variable elements ; il servira plus tard dans
la boucle for pour traiter tous les éléments. Le réglage manuel de la
limite supérieure ou de la condition de la boucle for est ainsi évité,
celui-ci étant fait automatiquement au moyen d’un calcul.

Oh la la! J’ai du mal avec le calcul des éléments du tableau. Pouvez-
vous m’expliquer s’il vous plait ?

J’allais y venir. On utilise pour ce faire la fonction sizeof de C++, qui
détermine la taille d’une variable ou d’un objet dans la mémoire.
Voici un court exemple :

byte byteValue = 16; //Variable du type byte
int intValue = 4; //\Nar
long longValue = 3.14; //Variable du type long

int myArray[] = {25, 46, 9}; //Tableau du type int

able du type int

Montage 16 : Le son et plus encore

<« Tableau 16-1
Variables nécessaires et leur objet

ac
o,

/roll

015 Ey

)
£

Copyright €

462

Figure 16-2 p
La fonction noTone
rend le piézo muet.

void setup(){
Serial .begin(9600);
Serial.print("Nombre d’octets pour 'byte’: ");
Serial.println(sizeof(byteValue));
Serial.print("Nombre d’octets pour 'int': ");
Serial.println(sizeof (intValue));
Serial.print("Nombre d’octets pour'long': ");
Serial.println(sizeof(longValue));
Serial.print("Nombre d’octets pour 'myArray':");
Serial.println(sizeof(myArray));

void loop(){/ * vide #/}
L’ affichage est donc le suivant :

Nombre d’octets pour 'byte' : 1
Nombre d’octets pour 'int' : 2
Nombre d’octets pour 'long' : 4
Nombre d’octets pour 'myArray' : 6

Quand on regarde les valeurs pour les types de données byte, int et
long, on s’apercoit qu’elles sont identiques a celles indiquées dans le
chapitre 9, dans lequel il était question de types de données et de
domaines de valeurs.

Passons 2 la derniére ligne de 1’affichage. On y voit que le tableau
occupe 6 octets de mémoire, ce qui est logique puisqu’un seul élément
int nécessite 2 octets de mémoire. Or, nous avons 3 éléments. Le résultat
est donc 2 x 3 = 6 octets. La ligne :

int elements = sizeof(tones) / sizeof(tones[0]);

divise le nombre d’octets du tableau par le nombre d’octets d’un seul
élément. C’est toujours de cette maniére qu’on obtient le nombre
d’éléments d’un tablean. Mais revenons A notre sketch. Tout au
début, la fonction noTone tend le piézo muet au cas ou il devrait
encore pépier du fait d’un sketch précédent. Elle n’a qu’un seul para-

metre, qui indique la broche sur laquelle se trouve le piézo.

Instruction Broche

| |
| || l

((piezoPin) ;)

Partie Il : Les montages

virolles

> e

01:

20

T

ht ©

I":I
gl

Copyri

La fonction tone posséde en revanche deux autres parameétres. L’un
indique la fréquence et 1’autre la durée pendant laquelle le son doit
étre audible.

Instruction Broche Fréquence Durée < Figure 16-3
| | | La fonction tone rend le piézo
| || || | | | bavard.

(ton (piezoPin,400,700))

Pouvez-vous me dire comment vous en étes venu aux différentes
valeurs que vous utilisez dans le tableau des sons ? Vous les avez toutes
essayées pour savoir lesquelles conviennent a peu pres ?

Non, elles sont tirées d’un exemple de sketch qui se trouve dans
I’'IDE Arduino. Recherchez le fichier pitches.h dans le dossier exam-
ples de I'installation Arduino et ouvrez-le avec un éditeur. Vous y
trouverez les fréquences correspondant & de nombreuses notes. Vous
pouvez inclure ce fichier dans votre sketch et utiliser ensuite directe-
ment les constantes symboliques. Essayez | Le code est alors beau-
coup plus parlant et plus clair que lorsque des valeurs numériques
sont utilisées.

Réalisation du circuit

Le circuit n’a vraiment rien d’extraordinaire, pas vrai ?

<« Figure 16-4
L'élément piézoélectrique connecté

Montage 16 : Le son et plus encore @

v
Q

E Y rol

015

2

Copyright ©

Figure 16-5 b

Shield avec |a face avant pour le jeu
de la séquence des couleurs

Figure 16-6 b

Shield ouvert et la face avant

retournée

Sketch élargi :
jeu de la séquence des couleurs

Venons-en maintenant 2 un jeu intéressant dit de la séquence des
couleurs. Nous avons quatre LED de couleurs différentes disposées en
carré. Prés de chacune se trouve un bouton-poussoir. Le microcontrd-
leur imagine un motif pour I’ordre d’allumage des LED ; a vous de le
reproduire correctement. Au début, la séquence ne comporte qu’une
seule LED allumée ; une nouvelle vient s’ajouter aprés chaque bonne
réponse. L’allumage de chacune des quatre LED est accompagné d’un
son qui lui est propre. Le jeu ravit donc non seulement les yeux, mais
aussi les oreilles. I’ai ajouté au circuit un shield avec une face avant de
ma fabrication. Voyez plutét (voir figure 16-5).

Sur la face avant, on voit les quatre grosses LED de 5 mm avec leur
bouton-poussoir respectif. Quand une LED s’allume, on doit appuyer
sur le bouton-poussoir placé a c6té. La partie basse de la face avant
est occupée par trois plus petites LED de 3 mm. Elles servent a affi-
cher I'état, sur lequel je reviendrai plus tard. La figure 16-6 montre
bien le shield et la face avant avec le cablage.

@

Partie Il : Les montages

Les choses sont moins graves qu’elles n’y paraissent, et la construc-
tion devient claire quand on regarde le schéma. Voici les points que je
poserai comme conditions pour le jeu :

une longueur déterminée de la séquence, d’abord constante, est
fixée par le sketch ;

chacune des quatre LED doit avoir sa propre note avec une
fréquence particuliere ;

quand une des quatre LED s’allume, la note correspondante est
émise ;

quand le bouton-poussoir situé a co6té est appuyé, la LED
s’allume et la note correspondante est émise ;

si la séquence a été correctement reproduite, la LED d’état verte
s’allume et une suite de sons crescendo se fait entendre. Le jeu
reprend ensuite au début avec une nouvelle séquence ;

si la séquence reproduite est fausse a un endroit quelconque, la
LED d’état rouge s allume et une suite de sons decrescendo se
fait entendre. Le jeu redémarre ensuite avec une nouvelle
séquence.

Composants nécessaires

4LED
(si possible de couleurs différentes)
PP 7 résistances de 330
- —
-__- e —
-_——————— 3 LED 3 mm (rouge, verte et jaune)
\ || .
A 4 boutons-poussoir

4 entretoises DK 15 mm, en plastique

Montage 16 : Le son et plus encore

)

4 vis M3 30 mm coupées a 23 mm
environ + 4 écrous

Face avamnt

1 shield + 1 face avant

Fils de différentes couleurs

ml”””lH 2 barrettes a 6 broches + 2 barrettes a
8 broches

Voyons maintenant le schéma.

L——Ezp——pi————o o—
= Boltton-poussolr vert

LED d'état verte

1
L >
LED d'état rouge
e > -
Arduino 13 LED d'état jaune Elément piézoélectrique
i2
pun |11 R LED c’uta!\v‘:te
pwm |10 I
Q PWM :
— PR . W
s B P10 O——
;__E Ao 6 R LED d'étar blanche| Bouton-poussolr blan
vEe o R~ W—
GHD 5 PN -2 | I_P_|335 Pt O O
) 4 LED d'éw[%une Bowton-poussolr jaune
pm |3
2
L,
L 0

Analog IN

PR —
——IZF | g™ O O
ml _,1"{”1 “lol LED d'état rouge Bouton-poussoir rouge

Copyright © 2015 Eyrolles.

Figure16-74 Et voici maintenant le code du sketch quelque peu élargi.
Circuit complet du jeu de la
séquence des couleurs

Partie Il : Les montages

2015 Eyrolles.

Copyright ©

#tdefine MAXARRAY 5 //Définir la longueur de la séquence

int ledPin[] = {2, 3, 4, 5}; //Tableau de LED avec numéros de broche

#define piezoPin 13 //Broche piézo

#define buttonPinRed 6 //Broche bouton-poussoir LED rouge
#define buttonPinGreen 7 //Broche bouton-poussoir LED verte
#idefine buttonPinYellow 8 //Broche bouton-poussoir LED jaune
idefine buttonPinWhite 9 //Broche bouton-poussoir LED blanche
#define ledStatePinGreen 10 //LED d’état verte

#define ledStatePinYellow 11 //LED d’état jaune

#define ledStatePinRed 12 //LED d’état rouge

int colorArray[MAXARRAY]; //Contient la suite de chiffres

//pour les couleurs a afficher

{1047, 1175, 1319, 1397}; //Fréquences des sons
//pour les 4 couleurs

0; //Nombres de LED actuellement

//allumées

int tones[]

int counter

boolean fail = false;

void setup(){
Serial .begin(9600);
for(int 1 = 0; i < 4; i++)
pinMode(ledPin[i], OUTPUT); //Programmation des broches
//de LED comme sortie
pinMode (buttonPinRed, INPUT);digitalWrite(buttonPinRed, HIGH);
pinMode (buttonPinGreen,INPUT);digitallirite(buttonPinGreen, HIGH);
pinMode (buttonPinYellow,INPUT) ;digitallirite(buttonPinYellow, HIGH);
pinMode(buttonPinWhite, INPUT) ;digitalWrite(buttonPinWhite, HIGH);
pinMode (ledStatePinGreen, OUTPUT);
pinMode(ledStatePinYellow, OUTPUT);
pinMode(ledStatePinRed, OUTPUT);

}

void loop(){
Serial.println("Départ du jeu”);
generateColors();
int buttonCode;
for(int 1 = 0; i <= counter; i++){ //Boucle extérieure
giveSignalSequence(i);
for(int k = 0; k <= i; k++){ //Boucle intérieure
while(digitalRead(buttonPinRed) && digitalRead(buttonPinGreen)
&8 digitalRead(buttonPinYellow) & digitalRead(buttonPinWhite));
Serial.println ("Bouton poussé !"); //Pour contrdle dans
//Serial Monitor
//Affichage de la couleur appuyée
if(!digitalRead(buttonPinRed))
buttonCode = 0;
if(!digitalRead(buttonPinGreen))
buttonCode = 1;
if(!digitalRead(buttonPinYellow))
buttonCode = 2;

Montage 16 : Le son et plus encore

@

2015 Eyrolles.

Copyright ©

if(!digitalRead(buttonPinWhite))
buttonCode = 3;
giveSignal(buttonCode);
//Vérifier si la bonne couleur a été appuyée
if(colorArray[k] != buttonCode){
fail = true;
break; //Quitter la boucle for interne

}
}
if(!fail)
Serial.println(“correct"); //Pour contréle dans Serial
//Monitor
else{
digitalWrite(ledStatePinRed, HICGH);
for(int i = 3000; i > 500; i-=150){
tone(piezoPin, i, 10); delay(20);
}
Serial.println("faux"); //Pour contréle dans Serial
//Monitor
delay(2000);
digitallirite(ledStatePinRed, LOW);
counter = 0; fail = false;
break; //Quitter la boucle for
}
delay(2000);
if(counter + 1 == MAXARRAY){
digitalWrite(ledStatePinGreen, HIGH);
for(int i = 500; i < 3000; i+=150){
tone(piezoPin, i, 10); delay(20);
}
Serial.println("Fini!"}; //Pour contréle dans Serial
//Monitor
delay(2000);
digitalWrite(ledStatePinGreen, LOW);
counter = 0; fail = false;
break; //Quitter la boucle for extérieure
}
counter++; //Incrémenter le compteur
}

}

void giveSignalSequence(int value){
//Affichage LEDs
for(int i = 0; i <= value; i++){
digitalWrite(2 + colorArray[i], HIGH);
generateTone(colorArray[i]); delay(1000);
digitalWirite(2 + colorArray[i], LOW); delay(1000);

Partie Il

: Les montages

Eyrolles.

015

p)

opyright ©

C

}

void generateTone(int value){
tone(piezoPin, tones[value], 1000);

}

void giveSignal(int value){
//Affichage LED + Tonsignal
digitallirite(2 + value, HICH); generateTone(value); delay(200);
digitalWrite(2 + value, LOW); delay(200);

void generateColors(){
randomSeed(analogRead(0));
for(int i = 0; i < MAXARRAY; i++)

colorArray[i] = random(4); //Générer des chiffres aléatoires
//de 0 a3
/70 ouge, 1 = vert, 2 ne, 3 = blanc
for(lnt i=0;1¢< MAXARRAY, 1++)
Serial.println(colorArray[i]); //Pour controle dans Serial
//Monitor

}

Comment la programmation fonctionne-t-elle en détail ? Le sketch
semble fastidieux au premier abord. Ne le considérez pas dans son
intégralité, mais prenez le temps de décomposer le programme en
sous-ensembles et de procéder étape par étape. Une valeur numérique
est affectée a chaque couleur a afficher : o pour rouge, 1 pour vert, 2
pour jaune et 3 pour blanc. Un tableau peut ainsi étre initialisé avec
des valeurs allant de 0 4 3 ; il pourra ensuite servir A afficher les LED.

Supposons que vous ayez un tableau avec les valeurs o, 2, 2, 1 et 3, les
diodes s’allument donc dans 1’ordre suivant : rouge, jaune, jaune, vert
et blanc. Dans notre sketch, son nom est colorArray et il recoit ses
valeurs via la fonction generateColors. Pour les rendre visibles, la
fonction giveSignal convertit les valeurs en signaux pour commander
les LED.

void giveSignalSequence(int value){
//Affichage LEDs
for(int i = 0; i <= value; i++){
digitalWirite(2 + colorArray[i], HIGH);
generateTone(colorArray[i]; delay(1000);
digitalWrite(2 + colorArray[i], LOW); delay(1000);

}

Montage 16 : Le son et plus encore

@)

yrolles,

5

|] o
| .

J15

20
Ll

right ©

s
—opy

L

470

avons-nous encore besoin d’une variable ? Et que signifie le 2 qui est
utilisé dans la fonction digitalWrite ? C'était quoi déja le truc avec les
magic numbers ?

j Si la fonction doit toujours afficher la séquence des couleurs, pourquoi

Eh bien Ardus, la séquence compléte ne doit pas s’afficher au début
mais seulement au fur et & mesure avec, chaque fois, une couleur en
plus. Le tableau des couleurs colorArray contient bien la séquence
compléte, mais la variable transmise dans value indique a la fonction
combien d’¢éléments du tableau doivent étre interroges et affichés,
Les quatre grandes LED étant cependant raccordées aux sorties
numériques des broches 2 a 5, le chiffre 2 est quasiment un décalage
qui indique la broche de démarrage quand les valeurs o a 3 sont ajou-
tées au tableau des couleurs. Vous avez bien entendu raison quand
vous dites qu’il ne faut pas utiliser de magic numbers. Vous pouvez
naturellement employer une constante symbolique, par exemple avec
le nom FARBPINOFFSET.

Avant de passer i I'explication de la logique dans la fonction loop, je
souhaiterais qu’on revienne sur la fonction setup. Il y a, par exemple,
des broches de bouton-poussoir qui sont, bien siir, programmées
comme entrées. Pourtant, quelque chose est envoyée a ces mémes
entrées par la fonction digitalWrite. Pourquoi cela ?

J'utilise la possibilité d’activer les résistances pull-up présentes et
connectées en interne dans le microcontréleur. Plus besoin ainsi de
connecter des résistances pull-up ou pull-down externes. J'ai déja
expliqué cela dans le montage n° 2. Si vous avez oublié, relisez-le !

Oui, je vais le faire. Quand je vois la fonction loop, je me dis qu’il s’en
passe de belles ! Mais ce que je ne comprends pas trop, ¢’est le fait que
la fonction loop s’exécute continuellement. La premiére boucle for,
que vous avez qualifiée de boucle extérieure, devrait elle aussi
s’exécuter continuellement. C’est pourtant elle qui — d’aprés ce que
comprends — est chargée d’afficher la séquence en fonction de la

variable counter.
\ A

Oui Ardus, bien vu ! La fonction loop, qui est une boucle sans fin,
devrait normalement s’exécuter en permanence. Seulement, j’ai
incorporé un arrét qui la bloque tant qu’un des quatre boutons-pous-
soirs n’est pas appuyé. Voici la partie de code en question :
while(digitalRead(buttonPinRed) 8& digitalRead(buttonPinGreen) &&
digitalRead(buttonPinYellow) 8& digitalRead(buttonPinWhite));

Partie Il : Les montages

Les entrées numériques, auxquelles les boutons-poussoirs sont
raccordés, étant reliées au +5V a travers les résistances pull-up
internes, mon interrogation doit porter sur le niveau LoW. Tant que
toutes les entrées sont sur niveau HIGH, la boucle while exécute
I’instruction qui vient aussitdt apres.

C’est 12 tout mon probleme ! Quelle instruction est exécutée au juste ?
D’apres le code, la ligne suivante :

Serial.println("Bouton poussé !");

devrait étre exécutée. Mais ca n’a pas beaucoup de sens !

Vous avez raison, ¢a n’a pas beaucoup de sens ! Vous avez cependant
oublié une petite chose. L’instruction, qui vient immédiatement apres
la boucle while, est le point-virgule situé tout a la fin. 11 s’agit quasi-
ment d’une instruction vide, qui fait en sorte que la boucle while,
quand aucun des boutons-poussoirs n’est appuyé, devienne elle-
méme une boucle sans fin. C’est une maniere élégante d’interrompre
ici le déroulement du programme. Ce n’est que quand 1’un ou 1’autre
des boutons est appuyé que la condition dans la boucle while n’est
plus remplie et que le programme reprend son cours. Le bouton
appuyé est alors identifié afin de comparer la valeur de la couleur
concernée a I’élément du tableau qui vient d’étre sélectionné dans la
boucle intérieure. Si une concordance a été trouvée, on passe a la
valeur de couleur suivante dans la séquence. En revanche, si une
erreur a été commise, la variable fail recoit la valeur true, et
I’instruction break fait sortir prématurément de la boucle intérieure.
Autrement dit, I’instruction if :

if(1fail)..

reprend le cours du programme en conséquence. La variable counter
est augmentée de la valeur 1, dans la mesure ol aucune erreur n’a été
commise et ol la fin de la séquence n’est pas encore atteinte, si bien
que la prochaine séquence affichée sera plus longue. J'ai laissé les
impressions sur le Serial Monitor dans le code pour une meilleure
compréhension des procédés. Elles vous donnent au début la
séquence qui a été sélectionnée pour que vous puissiez faire, le cas
échéant, un peu d’expérimentation. Toute explication supplémentaire
est ici superflue. Lisez une fois le code de bout en bout et essayez de
le comprendre.

Montage 16 : Le son et plus encore

'$9](04A3 §T0Z @ 1ybLAdOD

Montage
Communication réseau 1 7

Au sommaire :

* savoir ce qu’est un réseau ;
« apprendre a incorporer la carte Arduino dans un réseau ;
* savoir ce qu’est un serveur web ;

* un exercice complémentaire.

Qu’est-ce qu'un réseau ?

Le plus gros réseau que I'Homme utilise quotidiennement est le
World Wide Web ou www sous sa forme abrégée. 11 s’agit de I’inter-
connexion d’une multitude de systemes informatiques en contact I’'un
avec 1’autre dans le monde entier. On parle de réseau des I'instant ol
deux ordinateurs sont associés via un support de transmission appro-
prié¢ (par exemple : cidble Ethernet, fibre optique ou Wlan). Vous
pouvez I'imaginer comme un cerveau contenant plusieurs centaines
de milliards de cellules nerveuses. Chacune d’elles posséde jusqu’a
dix mille synapses. Ce sont des voies de communication qu’elles
utilisent pour transmettre ou échanger des informations. Chaque
cellule nerveuse du cerveau figure un ordinateur en contact avec
d’autres systémes au moyen des synapses —donc de sa carte réseau
(ou de ses cartes le cas échéant).

473

Figure 17-1 p IT1
Petit réseau avec carte Arduino

. Arduino 1

Les différents systémes informatiques, que j’ai appelé IT1 a IT7 dans
la figure 17-1 pour plus de commodité, sont reliés entre eux au moyen
des cartes ou plutdt des cibles de réseau. Cette représentation est bien
stir simplifiée car les composants du réseau sont par exemple reliés
par des switches dans la réalité. Ces répartiteurs ou coupleurs de
réseau transmettent les données de maniére intelligente aux différents
utilisateurs. La figure 17-2 montre un connecteur de type RJ45 d’un
cable de réseau couramment utilisé.

Figure 17-2 p
Connecteur RJ45 d'un cable /

de réseau

Je pense que vous avez déja vu une fiche de cette sorte puisque votre
ordinateur est relié¢ a coup s@r par un cable de réseau au routeur qui
établit une liaison vers votre fournisseur d’acceés, autrement dit vers
Internet.

Je ne vois pas de prise femelle pour cette fiche sur ma carte Arduino.
Comment fait-on pour la connecter au réseau ?

Vous allez ici encore plus vite que la musique, Ardus. Mon introduc-
tion n’est méme pas terminée. La carte Arduino ne dispose évidem-
ment pas d’une connexion réseau. Un composant réseau
supplémentaire est donc nécessaire.

vrolles

5

15

|] o
| .

~

474 Partie Il : Les montages

yrolles,

5

|] o
| .

J15

20
Ll

right ©

s
—opy

L

Shield Ethernet Module Ethernet ENC28J60

La figure 17-3 montre & gauche un shield Ethernet, qui dispose en
plus d’un socle microSD. Vous pouvez y stocker temporairement des
données, mais 12 n’est pas le sujet. A droite se trouve un module
Ethernet ENC28J60. 11 est certes préférable au shield Ethernet, mais
ne permet pas de stocker des données sur une carte SD et ne peut étre
branché directement sur la carte Arduino. Des cordons de raccorde-
ment doivent étre utilisés pour relier le module & votre carte Arduino.

Vous avez déja utilisé plusieurs fois le mot Ethernet. De quoi s agit-il
au juste ? Ca doit avoir quelque chose & voir avec Internet ou le réseau,
n’est-ce pas ?

C’est vrai, Ardus! Et c’est une belle opportunité pour aborder
certains points spécifiques aux réseaux.

Ethernet

Le mot Ethernet qualifie une technologie cablée pour transmettre des
données. Depuis les années 1990, elle est la norme pour toute une
gamme de technologies LAN (Local Area Network). Le transfert des
données est, en principe, assuré par un cidble a paire torsadée
(Twisted-Pair-Cable) selon la norme CAT-5 ou supérieure.

TCP/IP

Ethernet utilise un protocole appelé TCP (Transfer Control Protocol,
protocole de contrdle de transfert en frangais) pour transmettre des
données. Ce protocole permet de transférer des informations au
moyen d’un réseau local ou global et garantit une communication
sans erreurs. Des mécanismes permettent, en cas d’erreur de données
menacante, de corriger ou de retransmettre les paquets de données a

< Figure 17-3
Deux composants Ethernet

Montage 17 : Communication réseau

475

476

Figure 17-4 p
Capture d'écran

transférer. La désignation IP (Internet Protocol) concerne 1’adressage
des paquets de données a transférer qui doivent étre acheminés de
I’émetteur a un destinataire bien défini. Ce protocole assure donc
I’adressage des paquets de données a transmettre. Chaque utilisateur
du réseau possede une adresse précise, comparable au numéro de
maison dans une rue. Pour qu’un colis puisse étre par exemple livré a
coup siir par la Poste, les numéros des maisons ne doivent pas étre en
double, ce qui est le cas normalement. L’IP est toujours indiqué ou
utilisé en rapport avec le TCP.

Adresse IP

L’adresse IP d’un utilisateur doit satisfaire a I’exigence d’univocité
dans un réseau. Elle est affectée a un appareil qui fait partie du réseau,
garantissant ainsi qu’il est adressable et accessible. Les adresses IP de
la notation Ipv4 sont composées de quatre octets (32 bits).

32bits
I : 1

Octet 1 (ctet 2 Octet 3 Octet 4

(192). e). 2][0]

Cette adresse a été attribuée par mon routeur a2 mon ordinateur, afin
que je sois disponible sur le réseau.

Masque de réseau

Une adresse IP comprend toujours une partie réseau et une partie
héte. Le masque de réseau définit quant a lui combien d’appareils
doivent étre atteints dans un réseau et lesquels se trouvent dans
d’autres réseaux.

adresselP (192 (168). 2).[100)

(9]
Masque de réseau [255],[255],[255].[0]

I
Partie réseau Partie héte

Pour parvenir a la partie hote, I’adresse IP est combinée au masque de
réseau par une opération ET. D’apres le masque ci-dessus, il est théori-
quement possible d’avoir 2% = 256 ordinateurs dans le réseau. Je dis
bien théoriquement car 255, par exemple, a une signification particu-
licre. Des détails supplémentaires sortiraient du cadre de ce livre,

Partie Il : Les montages

¢’est pourquoi je vous invite a consulter la littérature spécialisée ou a
regarder sur Internet.

Adresse MAC

L’adresse MAC (Media Access Control) doit étre sans ambiguité a
I’échelle mondiale. Elle a été attribuée a chaque adaptateur de réseau.
Elle se compose de six octets, les trois premiers contenant un code
fabricant OUI (Organizational Unit Identifier). Les trois autres octets
contiennent |'indicatif de I’appareil, assigné par le fabricant en ques-
tion. Voici un exemple d’adresse MAC pour une carte réseau :

1C-6F-65-94-D5-1A

Passerelle

Une passerelle (gareway, en anglais) est un passage vers une zone
particuliére qui, rapporté a notre thématique, peut €tre appelé passe-
relle de réseau. De quel appareil pourrait-il s’agir 7 Le routeur, qui se
trouve a moitié sur Internet, passe pour &étre une passerelle. Mon
routeur a par exemple 192.168.2.1 comme adresse IP et transmet mes
demandes @ mon fournisseur d’acces, c’est-a-dire sur Internet. Si
vous ouvrez une console DOS et que vous écrivez la commande
ipconfig /all, vous obtenez, entre autres, les indications suivantes :

Standardgateway......... :1192.168.2.1
DHCP-Server.............. :192.168.2.1

La figure 17-5 montre le shield Ethernet combiné a vote carte
Arduino.

Cible résean
r—
Cible USB

Shield Ethernet

Carte Arduino

Montage 17 : Communication réseau

4 Figure 17-5
Shield Ethernet et carte Arduino

477

2015 Eyrolles.

yright ©

!

Cop

478

Composants nécessaires

1 shield Ethernet (http://arduino.cc/en/
Guide/ArduinoEthernetShied)

1 cable réseau, suffisamment long pour
aller du routeur au shield Ethemet

1 shield d'entrée analogique

Attention!

Utilisez un cable normal pour relier votre shield Ethernet & votre routeur. Ces
cables sont jaunes, blancs ou méme noirs. Ne vous servez pas d'un cable
réseau rouge entre votre routeur et le shield Ethernet, car il s'agit généralement
d'un cable croisé qui ne doit étre employé que pour relier votre shield directe-
ment a la carte réseau de votre ordinateur. Les lignes de réception et d'émis-
sion sont alors croisées. Vous trouverez des informations plus précises sur
Internet.

Le sketch suivant permet d’utiliser le shield Ethernet comme un
serveur Web. Quand vous passez par un navigateur web (tel Firefox,
Opera ou IE) pour vous connecter a Internet, vous établissez une
liaison avec un serveur web (voir figure 17-6).

Partie Il : Les montages

Eyrolles.

015

{
L

2

yright ©

!

Cop

Client 1

|
Client 2 - .

s o e

[B
(o] .
[r=— Client 4
Client 3

La figure 17-6 montre un serveur (fournisseur) au centre, qui répond
aux requétes de nombreux clients (utilisateurs). Un serveur est un
logiciel qui réagit a une demande de contact venant de I’extérieur et
délivre des informations. Il peut s’agir d'un serveur mail ou FTP ou
encore d’un serveur web. Un client peut étre un client mail, tel que
Thunderbird ou Outlook. S’il s’agit d’un client web, cela peut étre
Firefox, Opera ou IE, tous déja mentionnés dans ce livre. Prenons
maintenant un exemple concret, dans lequel le shield Ethernet, en tant
que serveur web, doit envoyer les valeurs des entrées analogiques de
la carte Arduino. La figure 17-7 offre un apercu de I’affichage dans le
navigateur web.

Valeurs des entrées analogiques

Bhros be anabogpique 0 356

Haoche analogigue 1 71

Broche analopique 2: 565

Broche analogigue 3: 354

Broche snabogigue 4 415

Brocbe amabogiqie 3 349

Vous n’étes pas sérieux ! Dois-je en plus apprendre & programmer un
site Internet ?

Eh oui, Ardus ! On ne peut pas faire autrement, mais soyez rassuré.
Nous n’allons qu’effleurer le sujet car celui-ci pourrait sans peine
remplir toute une bibliotheque. Les sites Internet sont programmeés en
HTML (Hypertext Markup Language). 11 s’agit d’un langage de bali-
sage a base de texte permettant par exemple de représenter du texte,
des images, des vidéos ou des liens sur un site Internet, et de lire et
afficher ceux du navigateur web. Vous trouverez ci-apres la trame de

Montage 17 : Communication réseau

<« Figure 17-6

Shield Ethernet et carte Arduino

< Figure 17-7

Affichage de la page HTML dans le
navigateur web (représentation

numérique et graphique)

479

Eyrolles.

5

201

opyright ©

C

Figure 17-8 p

Trame de base d'un site Internet

480

Figure 17-9 p
La paire de balises title

base d’un site, que nous remplirons par la suite pour présenter nos
informations. La plupart des éléments HTML sont identifiés par des
paires de balises (tags). Il y a toujours une balise de début (ouvrante)
et une balise de fin (fermante). La figure 17-8 montre la trame de base
en question, les paires correspondantes étant indiquées en couleurs.

<html>

! Contenu du site

<html>

Les lignes pointillées en rouge vous permettent de voir les formations
de paires. Les différentes balises ou éléments HTML sont constituées
par les noms des éléments entre chevrons. Voyons maintenant une
paire de balises de plus prés :

Balise de début Balise de fin

I—I—|I—I—|

Cette paire génére le titre du site Internet, le texte se trouvant entre la
balise de début et la balise de fin. La balise de fin présente le méme

nom d’élément que la balise de début, cependant il est précédé d’une
barre oblique (appelée slash).

Code du sketch

#include <SPI.h>
#include <Ethernet.h>

byte MACAddress[] = {0xDE, OxAD, 0xBE, OxEF, OxFE, OxED};
// Adresse MAC

byte IPAddress[] = {192, 168, 2, 110}; // sse IP

int const HTTPPORT = 80; /i HTTP 80 (port standard)

Partie Il : Les montages

es,

]
I

Copyright © 2015 Eyrolls

String barColor[] = {"ffoooo", "ooffoo", "ooffff",
"ffffoo", "ffooff", "sso0055"};
// Couleurs RGB pour barres de couleur
#define HTML_TOP "<htmi>\n<head><title>Arduino Web-Server</title>
</head>\n<body>"
#idefine HTML_BOTTOM “</body>\n</html>"
EthernetServer myServer(HTTPPORT); // Démarrage du serveur web sux

//le port indiqué

void setup(){
Ethernet.begin(MACAddress, IPAddress); //Initialisation Ethernet
myServer.begin(); // Démarrage du serveur

}

void loop(){
EthernetClient myClient = myServer.available();
if(myClient){
myClient.println("HTTP/1.1 200 OK");
myClient.println("Content-Type: text/html");
myClient.println();

myClient.println(HTML_TOP); // HTML début
showValues(myClient); // Contenu HTML
myClient.println(HTML_BOTTOM); // HTML fin

}

delay(1); // Courte pause pour navigateur Web

myClient.stop(); / Fermeture connexion client

}

void showValues(EthernetClient &myClient){
for(int i = 0; 1 < 6; i++){

myClient.print("Analog Pin");

myClient.print(i);

myClient.print(":");

myClient.print(analogRead(i));

myClient.print(“<div style\"height: 15px; background-color: #");
myClient.print(barColor[i]);
myClient.print("; width:");
myClient.print(analogRead(i));
myClient.println("px; border: 2px solid;\"></div>");

}

Pour accéder au serveur web Arduino, écrivez I’adresse IP du code de
sketch dans la ligne d’adresse de votre navigateur web Arduino. Dans
mon cas, 1’adresse est la suivante.

L htpy19z.168.2.110/ » | &

Montage 17 : Communication réseau

)

Tableau 17-1 p
Variables nécessaires et leur objet

482

Si cette adresse vous semble trop énigmatique, vous pouvez bien siir
en choisir une plus parlante comme :

hittp://arduing - | &

I1 vous suffit d’adapter dans Windows le fichier hosts avec des droits
d’administrateur sous C:\Windows\System32\drivers\etc et d’ajouter la
ligne dans laquelle j’ai indiqué le nom Arduino :

localhost name resolution is handled within DNS itself

127.0.0.1 localhost
Tl localhost
192.168.2.110 Arduino

L’appel est alors plus simple et vous n’avez pas besoin de retenir
I’adresse IP.

Revue de code

Du point de vue logiciel, les variables suivantes sont nécessaires a
notre serveur web expérimental.

Variable Objet

MACAddress[] Tableau unidimensionnel pour stocker I'adresse MAC du shield Ethernet

IPAddress[] Tableau unidimensionnel pour stocker I'adresse IP du shield Ethernet

HTTPPORT Variable pour stocker I'adresse du port HTML

BarColor[] Tableau unidimensionnel pour stocker les informations de couleurs des
barres horizontales

HTML_TOP Equivalent du code HTML pour la partie supérieure (en-téte)

HTML BOTTOM Equivalent du code HTML pour la partie inférieure (fin)

Deux bibliothéques doivent étre incorporées pour pouvoir utiliser la
fonctionnalité du shield Ethernet :

* SPI.h: Serial-Peripheral-Interface-Bus est nécessaire pour les
versions Aduino > 0018 ;

* Ethernet.h.

Partie Il : Les montages

vrolles.

|] o
| .

)18

5

20
Ll

right ©

L

T

! =

Y\

Ble]

Je voudrais vous poser une question au sujet de la variable HTTPPORT.
N’est-ce pas une faute de frappe 7 Ne s’agit-il pas de HTMLPORT ? Je
croyais qu’il était question ici de pages HTML.

C’est vrai Ardus qu’on s’y perd un peu au début. HTTP est la forme
abrégée de Hypertext Transfer protocol. Comme vous 'avez peut-
étre remarqué, on a affaire a un grand nombre de protocoles différents
en informatique. Quand il s’agit de pages web, ce protocole est
chargé de la transmission. Quand vous tapez une adresse web dans
votre navigateur, celle-ci commence la plupart du temps par http:// et
non par html://. Passons maintenant a la définition du port. Le port
standard pour des serveurs web qui utilisent le protocole HTTP est le
numéro 80. Imaginez-vous ce numéro comme une sorte de bifurca-
tion sur la route du réseau, ou d’autres protocoles circulent encore.
Voici une courte liste d’applications dont vous avez peut-étre déja
entendu parler.

Port Service Role

21 F1P Transfert de fichier via FTP-Client
25 SMTP Envoi d'e-mails

110 POP3 Accés client a un serveur e-mails

Je voudrais encore vous parler briévement de la structure d’une page
HTML. La seule partie variable de notre page est la partie que j’ai
appelée Contenu de ma page. Tout ce qui est au-dessus ou en dessous
ne change pas. C’est pour cette raison que j’ai créé les raccourcis
pour la partie supérieure :

Titre -

dans la définition HTML_TOP et pour la partie inférieure :

</html=

dans HTML BOTTOM. Vous retrouverez la méme chose dans le sketch,
avec les lignes suivantes :

4 Tableau 17-2
Courte liste avec numéros de port
et services

Montage 17 : Communication réseau

@

vrolles

o

1L

|] o
| .

~

#define HTML_TOP “<html>\n<head><title>Arduino Web-Server
</title></head>\n<body>"
#define HTML_BOTTOM "</body>\n</himl>"

La séquence d’échappement \n provoque un saut de ligne, de telle
sorte que le code HTML soit formaté d’une certaine maniére et que
tout ne soit pas mis sur une seule ligne. Venons-en maintenant au
déroulement du sketch proprement dit. Diverses parties du
programme sont comme toujours initialisées dans la fonction setup.

void setup(){
Ethernet.begin(MACAddress, IPAddress); // Initi
myServer.begin(); // Démarrage

}

alisation Ethernet

au serveur

La premiere étape consiste a doter le shield Ethernet de I’adresse
MAC et d’une adresse IP unique.

Dites-moi s’il vous plait d ot vous sortez 1’adresse IP 192.168.2.110 en
question. Ca reste un mystere pour moi.

Eh bien Ardus, c’est tout simple ! Mon routeur se trouve dans la zone
d’adresse 192.168.2 et I’adresse d hote 1 lui est attribuée, autrement dit
son adresse IP est 192.168.2.1. Je peux donc affecter des adresses
comprises entre 192.168.2.2 et 192.168.2.254 a d’autres utilisateurs du
réseau. Revenons a l’initialisation. La deuxieme étape consiste a
démarrer le serveur web, de sorte qu’il puisse réagir a des demandes
entrantes. Celui-ci épie le réseau et reste sur le qui-vive jusqu’a ce

qu’un client I’aborde et lui demande quelque chose.

Il accomplit ensuite son travail et délivre les données avant de se
remettre a nouveau en position d’attente. Passons maintenant au trai-
tement proprement dit dans la fonction leop. La présence de la
demande d’un client est d’abord vérifiée :

EthernetClient myClient = myServer.available();
if(myClient){

Si T’interrogation if est satisfaite, le serveur peut commencer a
envoyer ses informations au client.

Partie Il : Les montages

@

yrolles,

5

|] o
| .

J15

20
Ll

right ©

s
—opy

L

C’était quoi déja I'interrogation if ? On y lit myClient au lieu d’une
expression & évaluer.

Pas de probléme, Ardus! Ce n’est que la forme abrégée du code
suivant :

if(myClient == true){..}

L’interrogation sur true est facultative du fait que si I’expression est
vraie dans I’instruction if, c’est le bloc subséquent qui est exécuté.
Vous n’avez pas besoin de vérifier a nouveau avec == que I’expres-
sion est vraie. Vous comprenez maintenant ? Dongc, si un client a
effectué une demande auprés du serveur, ce dernier renvoie pour
commencer les lignes suivantes :

myClient.println("HTTP/1.1200 OK");
myClient.println("Content-Type: text/html");
myClient.println();

Dans la premiere ligne, le serveur confirme la demande du client en
transmettant la version 1.1 du protocole HTTP, suivie du code d’état
200 indiquant que la demande a été traitée avec succes et que le
résultat de la demande est transmis dans la réponse. Dans la deuxiéme
ligne, le type MIME, text/html dans notre cas, est communiqué. Celui-
ci décrit le genre des données envoyées par le serveur. S’agit-il
d’informations purement textuelles ou une image est-elle éventuelle-
ment délivrée au client 7 Les données transmises doivent alors étre
bien siir interprétées en conséquence et non pas affichées en texte
clair. Passons maintenant au code, qui envoie les données lues de
votre carte Arduino :

myClient.println(HTML_TOP); // HTML début
showValues(myClient); // Contenu HTML
myClient.println(HTML_BOTTOM); // HTML fin

Les taches de HTML_TOP et HTML_BOTTOM vous sont connues. L appel des
données de la carte est exécuté par la fonction showvalues que je vous
redonne ici :

void showValues(EthernetClient &myClient){
for(int i = 0; 1 < 6; i++){
myClient.print("Analog Pin");
myClient.print(i);
myClient.print(":");
myClient.print(analogRead(i));
myClient.print("<div style\"height: 15px; background-color: #");

Montage 17 : Communication réseau

0

> Evrolles.

|] o
| .

)18

20
Ll

T

=
)

486

-

2

myClient.print(barColor[i]);

myClient.print("; width: ");
myClient.print(analogRead(i));
myClient.println("px; border: zpx solid;\"></div>");

Ayant par chance une loupe sur moi, je vois dans I’en-téte de fonction
un ET commercial (&) devant le paramétre myClient. Vous connaissant,
il ne s’agit pas d’une faute de frappe, n’est-ce pas ?

Non Ardus, ce n’est pas une erreur. Ce signe distinctif est en fait une
référence. Quand on passe une variable comme parameétre d’une
fonction, celle-ci travaille avec une copie de cette variable, ce qui n’a
aucune influence sur la variable d’origine. La fonction peut par
exemple doubler la valeur du parametre. L’originale demeure
inchangée. Mais pour pouvoir utiliser 1’objet Client original dans la
fonction, I’adresse mémoire de I’ original est communiquée au moyen
de I’opérateur de référence 8. Dans la fonction, je travaille quasiment
avec I'original. La fonction affiche d’une part les valeurs des entrées
analogiques et de 'autre des barres horizontales. J'utilise pour ce
faire la balise div, qui peut servir de contenant pour d’autres éléments
HTML. Je m’en sers ici pour colorer une certaine zone. Il est possible
de donner des informations de hauteur ou de largeur au moyen d’une
indication style. Une ligne HTML peut alors ressembler a cela :

Analog Pin 0: 168<div style="height: 25px; background-color:
#ffoooo; width: 168px; border: 2px solid;"></div>

La zone div a ici une hauteur de 25 pixels et une largeur de
168 pixels. Vous trouverez des informations détaillées dans la littéra-
ture spéciale ou sur Internet.

Pour aller plus loin
Pour compléter ce chapitre, vous pouvez effectuer une recherche sur Internet
sur les mots-clés :

« selfhtml;
- cascading stylesheets ;

- div-tag.

Partie Il : Les montages

Il y a quelque chose que je n’ai pas trouvé commode lors de ma
réalisation : les valeurs des entrées analogiques s affichent un point
¢’est tout. Si je tourne I'un des potentiométres, rien ne bouge sur la page
Internet. J’aurais pourtant bien voulu.

C’est inutile, Ardus. Le navigateur web appelle une page aupres du
serveur web et en assure la présentation (ce procédé est également
appelé rendu). Si le navigateur n’émet aucune autre demande, le
contenu de la page demeure bien entendu inchangé. Vous pouvez
toujours appuyer assez souvent sur la touche Actualiser (F5) mais je
doute que cela vous donne satisfaction. Modifiez plutot dans votre
sketch la ligne de code out HTML_TOP a été défini et vous verrez que le
comportement de votre navigateur changera.

#define HTML_TOP "<l

\n<E

Le passage suivant est décisif :

\"refresh\" content=\"1\">

La balise meta en question demande au navigateur d’exécuter automa-
tiquement une actualisation (refresh) toutes les secondes. Le back-
slash (barre oblique inverse) \ a la fin de la premiere ligne définissant
HTML_TOP permet que cette ligne se poursuive sur la suivante. Faute de
quoi une erreur de compilateur se produirait.

Problémes courants
Vérifiez ce qui suit si la page du serveur web ne s’affiche pas.
* Avez-vous saisi la bonne adresse IP dans la ligne d’adresse de
votre navigateur ? Elle doit correspondre a celle de votre sketch.
* Pouvez-vous atteindre le serveur web en tapant une commande
ping dans la ligne de commande ? Sinon, vérifiez votre cible
réseau ou éventuellement les réglages du pare-feu. Une exécu-
tion réussie de la commande ping donne le résultat suivant.

e données :

C:sUserssOlivier>

Montage 17 : Communication réseau

@

¢ Le shield Ethernet posséde certaines LED qui donnent des infor-
mations sur 1’état (voir figure suivante).

TX (Resp. RX) clignote quand des données sont envoyees
(Resp. regues)

& Clignote quand une collision Ethernet a été constatée

&——— Réseau en Full-Duplex

«—— Connexion réseau a 100 Mbits/s détectée
& Lien réseau établi. Clignote en cas de transfert

&————— Shield Ethernet sous tension

e Vérifiez I’affichage des LED. Les LED PWR et LINK doivent
étre allumées. La LED 100M ne s’allume que dans le cas d’un
réseau 100 Mbits/s. Elle reste éteinte pour 10 Mbits/s. Si des
données sont envoyées toutes les secondes comme dans le
dernier exemple, Les LED TX et RX clignotent au méme
rythme.

Qu’'avez-vous appris ?

&

* Vous avez appris a réaliser un serveur web avec le shield
Ethernet.

* Vous avez interrogé les entrées analogiques et vu comment
s’affichent les valeurs a peu de choses prés en temps réel.

¢ Latrame de base d’une page HTML devrait maintenant vous étre
plus familiére.

Exercice complémentaire

Ecrire un nouveau sketch montrant, en plus des entrées analogiques,
I’état des entrées numériques sur votre page web Arduino.

488 Partie Il : Les montages

Numérique appelle
analogique

Au sommaire :
* la fabrication d’un shield générateur de signaux analogiques ;
* comprendre ce qu’est un convertisseur numérique-analogique ;
¢ savoir ce qu’est un réseau de résistances R2R ;
* savoir ce qu’est un registre de port ;
¢ le sketch complet ;
¢ I’analyse du schéma ;
* la réalisation du circuit ;

* un exercice complémentaire.

Comment convertir
des signaux numériques
en signaux analogiques ?

L’exploitation de signaux analogiques est relativement simple par les
entrées analogiques avec votre carte Arduino. Le sens inverse — donc
produire et distribuer une tension analogique a 1’aide du
microcontréleur — n’est faisable qu’en utilisant les sorties numériques
capables de MLI. Quand vous aurez vu la forme de la courbe des
signaux MLI, vous saurez combien elle difféere de celle d'un signal
analogique. La plupart des microcontrdleurs courants ne convertis-
sent pas un signal numérique en signal analogique. Il leur faudrait
pour ce faire intégrer un convertisseur N/A.

Notre montage consiste a fabriquer un tel convertisseur, appelé aussi
CNA (Digital-Analog-Converter en anglais ou DAC), avec des
moyens simples. Tout tourne ici autour du réseau R2R. Cette appella-

Montage

18

489

Figure 18-1 p
Réseau de résistance R2R
avec une entrée de 6 bits

tion est due au fait que le convertisseur est composé de plusieurs
résistances, disposées en cascade et qui doivent se trouver entre elles
dans un rapport déterminé. La disposition des éléments fait penser a
une échelle, c’est pourquoi ce type de circuit est également nommé
réseau en échelle de résistances dans la littérature spécialisée. Rete-
nons seulement que le réseau de résistances sert a répartir une tension
de référence qui, dans notre cas, est de +5 V. La figure 18-1 montre
un réseau de résistances R2R avec une entrée de 6 bits.

MSB €3 o}

sottie

£2

B o—{]~

LSB E0 o—L 3~

Vous vous demandez peut-étre d’olt vient ce nom R2R. Si vous
regardez le schéma de plus pres, vous verrez que les résistances n’ont
pas une valeur fixée, et que seuls les rapports de résistance sont indi-
qués. Les valeurs des résistances (horizontales), qui sont reliées aux
connexions Ej a Es des sorties numériques, sont le double de celles
des résistances (verticales), qui relient les résistances précédentes et
menent au point de sortie U,,,,;,. La résistance du bas, qui est relice a
la masse, a la méme résistance 2R que les résistances horizontales. La
formule suivante peut étre utilisée pour déterminer la tension de
sortie :

490

Partie Il : Les montages

&‘5 + Ue4 Uej’ U(_’Z Ue.-‘ " U{'O
2 4 8 16 32 64

U.\‘nrtie =

Pour cet exemple avec cing entrées, la résolution suivante peut étre
obtenue :

i

résolution =

O‘\LC:
|3

U,er est ici la tension avec laquelle les différentes entrées sont
commandées. Pour une tension U, de 5V, le résultat serait donc le
suivant :

=y

U, —ref =3V _7813mV
64

résolution =
64

Cette valeur représente le plus petit pas de progression obtenu chaque
fois que la valeur binaire de I’entrée a 6 bits est incrémentée de 1. Le
tableau 18-1 fournit les quatre premiéres valeurs ainsi que la derniére.

Valeur binaire Tension de sortie

000000 ov
000001 78,13 mV
000010 156,26 mV
000011 234,39 mV
111111 5V

Nous avons donc, pour le shield de conversion N/A prévu, une défini-
tion de 6 bits (2° = 64),

Pour aller plus loin
Pour compléter ce chapitre, vous pouvez effectuer une recherche sur Internet
sur les mots-clés :

- réseau R2R;
- réseau de résistances en échelle.

Vous avez peut-étre remarqué que je n‘ai donné jusqu'ici aucune valeur de
résistance. Ce n'est pas utile tant que le rapport des résistances est exactement
de 2:1. En outre, la tolérance des différentes résistances doit étre aussi faible
gue possible pour obtenir des résultats relativement précis. Nous n'en tien-
drons cependant pas compte dans ce montage.

Montage 18 : Numérique appelle analogique

< Tableau 18-1
Combinaisons binaires et tensions
de sortie arrondies

49

es.

015 Eyroll

yright © 2C

!

Cop

492

Composants nécessaires

—) — 17 résistances de 47 kQ2
|I||”H ”Hlm ,l”” |||”| 1jeu de connecteurs femelles empila-
bles (2x8+2x6)

1 carte de shield

Fils, si possible de différentes couleurs

Réflexions préliminaires

Le réseau R2R avec rapports de résistance 2:1 peut s’avérer difficile a
réaliser car vous devez trouver des valeurs de résistance qui sont dans ce
rapport entre elles. La solution n’est certes pas simple. J’ai choisi une résis-
tance de 47 k€2 pour que les courants en circulation ne soient pas trop
élevés.

Vous vous demandez peut-étre si une résistance de 23,5 kQ existe.
Non seulement je ne crois pas, mais cette valeur est en plus trés facile
a obtenir. Quand on branche deux résistances de méme valeur en
parallele, le résultat obtenu est 1’exacte moitié de la résistance en
question. Donc si R; = R,, on obtient I'équation suivante.

Partie Il : Les montages

/rolles.

Fyv
Y

L

201

Copyright €

] = L + L = l + l = g
Rtora!e R] R2 R R R
R
donc me!'e = 5

C’est élémentaire, n’est-ce pas ?

Code du sketch

int pinArray[] = {8, 9, 10, 11, 12, 13};
byte R2RPattern;
void setup(){
for(int i = 0; i < 6; i++)
pinMode(pinArray[i], OUTPUT);
R2RPattern = Booooo1; //Configuration binaire pour commander

//les sorties numérigues

}

void loop(){
for(int i = 0; 1 < 6; 1++){
digitalWrite(pinArray[i], bitRead(R2RPattern,i) == 1?HIGH:LOW);

¥
}

Ce sketch, vraiment trés court, commande les sorties numériques sur
lesquelles se trouve le réseau R2R. Elles sont commandées via la
variable R2RPattern, qui délivre une tension correspondante a la sortie
du réseau.

Revue de code

Du point de vue logiciel, les variables indiquées dans le tableau
suivant sont nécessaires a notre montage.

Variable Objet

pinArray Tableau unidimensionnel pour stocker les broches connectées a I'afficheur

R2Rpattern Contient la combinaison de bits utilisée pour commander le réseau R2R

La figure 18-2 illustre le circuit que j’ai créé sur une plaque d’essais
avant de le reporter sur le shield R2R.

< Tableau 18-2
Variables nécessaires et leur objet

493

Montage 18 : Numérique appelle analogique

Copyright © 2015 Eyrolles.

Figure 18-2 p

Réseau R2R sur une plague
d'essais (tension de sortie pour une
combinaison binaire de 000001)

494

Le réseau est commandé avec la combinaison de bits ooooo1 tirée du
sketch et le multimétre affiche une tension de 0,080 V, soit 80 mV.
Dans le tableau 18-1, la valeur est de 78,13 mV pour la combinaison
de bits. La valeur de sortie de 80 mV ne correspond donc pas tout a
fait a la valeur calculée du tableau, mais c’est tout de méme correct
quand on sait que le résultat se trouve par exemple légerement faussé
par les tolérances matérielles des résistances utilisées ou par des
erreurs d’affichage du multimétre. Il m’est arrivé de construire un
réseau R2R ot les valeurs coincidaient presque toutes jusqu’a deux
chiffres apres la virgule, mais ce n’était que pur hasard.

Schéma

Comme vous pouvez le voir dans la figure suivante, le circuit est
uniquement composé de résistances reliées d’une maniere particuliere
pour constituer un réseau R2R.

Partie Il : Les montages

es.

015 Eyroll

yright © 2C

!

Cop

Arduino
12
pum A "
PN 110 _FJ,. -
o i.—
} Pwm a
E 15 R R Hf R R
o 6
o o PN = 1
— g"""%‘ R
s — O~ L1 g WY g BV liﬂ-—-l I }—+—{Broche>
;] J |]
i L B ii—| [¥iT i'—i Wi i—l FYid],2..‘-—{ iy S]-%—4 Ulehe
2 -] []] " (]
Analag IN T

T

Les résistances R ont naturellement une valeur de 47 kQ. Les paires
de résistances R/2 ont comme valeur résultante 23,5 kQ.

Réalisation du shield

La figure montre bien le réseau de résistances, la broche en haut du
shield étant la sortie sur laquelle vous pouvez brancher votre multi-
metre pour mesurer la tension de sortie.

Commande du registre de port

Je ne vous apprendrai rien en vous disant que la carte Arduino ne
communique que par les entrées et les sorties. Ceci vaut également
pour commander des LED, des moteurs, des servomoteurs et pour
lire, entre autres, les valeurs d’un capteur de température ou d’une
résistance réglable ou photosensible.

Montage 18 : Numérique appelle analogique

A Figure 18-3
Commande du réseau R2R
par 6 sorties numériques

<« Figure 18-4
Réalisation du réseau R2R
sur un shield dédié

495

496

Figure 18-5 p
Registres de port
de la carte Arduino

Figure 18-6 p>
Registre de port B

Votre microcontroleur ATmega328 travaille en interne avec ce qu’on
appelle des registres, raccordés aux entrées et sorties (broches). Dans
le domaine informatique, ce sont des zones de mémoire a I’intérieur
d’un processeur, qui sont relies directement a 1’unité centrale de
calcul. Ainsi I’acces a ces zones est trés rapide puisque le détour par
des circuits mémoire externes est évité. Les différentes broches de
votre carte Arduino sont reliées en interne a des registres de port,
encartouchés en couleurs (vert, rouge ou jaune) et nommés pott B, C
ou D dans la figure 18-5.

PortB PortD

Regardons par exemple le port B de plus pres (figure 18-6).

Port B

Broche 13121110 9 8

On reconnait immédiatement les entrées et sorties numériques
(broches 9 & 13). Les deux broches de gauche sont pour nous sans
intérét, car elles sont reliées a Aref (entrée pour la tension de réfé-
rence du convertisseur analogique-numérique) et a la masse et ne
peuvent étre manipulées. Six bits en tout sont donc disponibles dans
le registre de port B. Ils vont nous servir a faire des choses diverses.
Comme par hasard, notre réseau de résistances est lui aussi
commandé avec 6 bits. Je ne vous en dis pas plus pour I'instant.
Chacun des trois ports est sollicité dans un sketch au moyen des iden-
tifiants suivants :

* PORTB ;

* PORTC

* PORTD.

Partie Il : Les montages

Nous savons déja comment les différents ports sont sollicités mais
nous nous en tiendrons, comme je 1’ai dit plus haut, au port B dans
notre exemple.

J'ai d’emblée une question & poser. Quand on programme des broches
numériques, on doit définir dans la fonction setup si elles vont servir
d’entrée ou de sortie. Dans le cas d’un registre de port, comment dois-je
lui dire de servir d’entrée ou de sortie ?

Et bien Ardus, vous m’offrez 1a une transition révée pour passer au
point suivant. Mais je dois vous dire quelque chose avant: vous
pouvez bien sir attribuer & chaque bit du registre de port un sens de
circulation des données particulier. Le registre complet ne fonctionne
pas de telle sorte que toutes les broches servent d’entrées ou de
sorties. Chaque broche peut étre configurée séparément. D’autres
registres sont en effet spécialement prévus pour influer sur le sens de
circulation des données de chaque broche. Ils ont pour nom DDRx, x
indiquant le port a solliciter. Le registre DDRB est par conséquent
celui de notre PORTB — DDR, pour Data Direction Register, signifie a
peu de choses prés registre de direction de données. Voyons comment
tout cela fonctionne dans le détail. Avant d’utiliser un port, je dois
donc définir le sens de circulation des données par le DDR correspon-
dant. Dans la figure 18-7, les fléeches indiquent les sens de circulation
des données que nous voulons obtenir avec notre programmation.

Port B

Broche 13121110 9 8

La configuration est donc la suivante :

» entrées : broches 8, 9 et 10 ;

¢ sorties : broches 11, 12 et 13.

s

Pour affecter un sens de circulation des données a une broche, la
valeur suivante doit étre entrée dans le DDR.

< Figure 18-7

Registre de port B avec divers sens
de circulation des données

selon les broches

497

Montage 18 : Numérique appelle analogique

498

Tableau 18-3 p
Valeurs pour le DDR

Figure 18-8 p
Initialisation du DDR

pour les différents sens

de circulation des données

Valeur Mode de fonctionnement

0 Broche servant d'entrée, comparable a pinMode(pin, INPUT);
1 Broche servant de sortie, comparable a pinMode (pin, OUTPUT);

Cela nous donne pour le DDR la programmation de la figure 18-8.

Broche: x x 13121110 9 8

Nous pouvons maintenant mettre par exemple les sorties numériques
des broches 11, 12 et 13 au niveau HIGH par I’instruction PORTB. Voici
un extrait correspondant tiré¢ d’un sketch :

void setup(){
DDRB = 0b11111000; //Broches 8, 9, 10 = INPUT. Broches 11,
.f'..f'fi?, 13 = QUTPUT

ITrL

11, 12, 13 au niveau HIGH

PORTB = 0b00111000;

}

void loop(){/ * vide = /}

Les deux bits les plus significatifs pour les broches non utilisées ont
simplement été pourvus d’un 1 dans le DDR. Cela n’a aucune impor-
tance dans notre cas. Si vous regardez la mise des sorties au niveau
HIGH, que constatez-vous de différent par rapport a la manipulation des
broches habituelle ? Je vous donne les deux variantes pour
comparaison :

digitalWrite(11, HIGH); PORTB = 0b00111000;
digitalWrite(12, HIGH);
digitalWrite(13, HIGH);

Aucune idée ? Bon. La maniére traditionnelle de gauche met les
différentes broches 1’une apres 1’autre au niveau HIGH. Celle de droite
met par contre toutes les broches en méme temps au niveau HIGH avec
une seule instruction, la configuration binaire étant alors appliquée
simultanément a toutes les broches.

Mieux vaut donc choisir la nouvelle variante de manipulation des
ports pour aller plus vite. Le sketch suivant génere une tension en
dents de scie a 1a sortie du réseau de résistances :

Partie Il : Les montages

void setup(){
DDRB = 0b11111111;

void loop({
for(int 1 = 0; 1 <= 63; i++)
PORTB = i;

<« Figure 18-9
Oscillogramme avec une courbe
en dents de scie

D’aprés vous, comment adapter le sketch pour obtenir la courbe
suivante ?

< Figure 18-10
Oscillogramme avec une courbe
en triangles

Bien joué si vous avez trouvé la solution.

void loop({
for(int 1 = 0; 1 <= 63; i++)

Montage 18 : Numérique appelle analogique 499

Figure 18-11 p»
Oscillogramme avec une courbe
sinusoidale

500

PORTB = i; '/Commande du registre de port B

for(int 1 = 63; 1 >= 0; i--)
PORTB = i; " Comm:

}

Quelles sont les autres courbes? Qu’en est-il d’une courbe
sinusoidale ? La fonction sinus ayant besoin d’un certain temps pour
calculer les valeurs, on a eu I'idée de créer des tables de correspon-
dance ou Lookup-Tables (LUT). Les résultats d’un calcul y sont déja
enregistrés. On peut ainsi reproduire la courbe d’une fonction sinus
en s’aidant des points qui se trouvent sur la courbe, par exemple.

LR R T T T T T T O T

Le sketch pour générer la courbe sinusoidale est vraiment laborieux a
taper du fait que la LUT est trés longue.

byte LUT[] =
{31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 38, 38, 39, 39, 40, 40,
41, 41, 42, 42, 43, 43, 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, 49, 49,
5@, 50,50, 51, 51, 52, 52,/53, 53, B3, 54, B4, 54, 55, 55, 55, 56, Sk,
56, 57, 57, 57, 58, 58, 58, 59, 59, 59, 59, 60, 60, 60, 60, 60, 61, 61,
61, BL;.61; B1; 62; 62; 62,62, 62; 62,62, 62, 62; 62; 62;62; 62,62;
62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 61, 61, 61,
61, 61, 61, 60, 60, 60, 60, 60, 59, 59, 59, 59, 58, 58, 58, 57, 57, 57,
56, 56, 56, 55, 55, 55, 54, 54, 54, 53, 53, 52, 52, 52, 51, 51, 50, 50,
50, 49, 49, 48, 48, 47, 47, 46, 46, 45, 45, 44, 44, 43, 43, 42, 42, 41,
41, 40, 40, 39, 39, 38, 38, 37, 36, 36, 35, 35, 34, 34, 33, 33, 32, 32,
31, 30, 30, 29, 29, 28, 28, 27, 27, 26, 26, 25, 24, 24, 23, 23, 22, 22,
21, 21, 20, 20, 19, 19, 18, 18, 17, 17, 16, 16, 15, 15, 14, 14, 13, 13,
12, 12, 12, 11, 11, 10, 10, 10, 9, 9, 8, 8, 8, 7, 7, 7, 6, 6, 6, 5, 5,
s, 4, 4,4,3,3,3,3,2,2,2,2,2,1,1,1,1,1, 1, 0,0, 0, 0, 0,

Partie Il : Les montages

0,000 000,0,0000,0,0,0,00,0,0,0,0,0,0, 0,
1’ 1) 1) 1.‘ 1) 1} 2) 2} 2) 21 2! 3) 3! 3) 3} 4) 4) 4) 5) 5’ SJ 61 6’ 6)
7, 7,7, 8, 8, 8, 9, 9, 10, 10, 10, 11, 11, 12, 12, 12, 13, 13, 14, 14,

15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
24, 24, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31};

void setup(){
DDBR = Ob11111111;

25 programmees

void loop(){
for(int 1 = 0; i <=360; i++)
PORTB = LUT[i]; //Commande du registre de port B

Attention!

Vous courez le risque non négligeable de programmer votre microcontroleur
de telle sorte qu'il ne réagisse plus par la suite. Si vous regardez le port D, vous
verrez que les signaux de contrdle RX et TX se trouvent respectivement sur les
broches 0 et 1. RX sert a recevoir et TX a envoyer les données. Le sens de circu-
lation des données est donc le suivant : RX = INPUT et TX = OUTPUT. Si vous
modifiez par inadvertance la programmation de ces valeurs via DDRD, vous ne
pourrez a coup sur plus transmettre aucun sketch sur votre carte Arduino. Vous
devez par conséquent étre sUr de ce que vous faites. Mieux vaut vérifier trols
fois votre sketch avant de I'envoyer au microcontréleur.

Vous trouverez des informations plus précises sur :

http//www.arduino.cc/en/Reference/PortManipulation

Problémes courants

Si la tension de sortie du réseau R2R ne correspond pas aux valeurs
souhaitées pour la combinaison binaire, vérifiez les points suivants.

* Toutes les résistances utilisées pour le réseau R2R ont-elles la
méme valeur ?

¢ Aucune connexion au réseau n’a été oubliée ? (Je sais de quoi je
parle car j’avais oublié un point de jonction, et j’ai passé prés de
dix minutes a trouver ’erreur !)

Montage 18 : Numérique appelle analogique

501

502

' -
Qu'avez-vous appris ?
* Ce montage vous a présenté un réseau de résistances R2R.

¢ Avec ce réseau, vous avez pu réaliser un convertisseur numeé-
rique/analogique simple.

* Vous avez découvert les registres de port de votre carte Arduino
et manipul€ les sorties numériques au moyen du port B.

Exercice complémentaire

Essayez, en ajustant le tableau LUT, de créer des courbes de formes
différentes. Vérifiez dans tous les cas que seuls 6 bits sont & votre
disposition pour représenter une courbe. Le domaine de valeurs va de
0 a 63. Si vous étes au-dessus, ni le circuit ni votre microcontrdleur
n’en souffrira, mais la courbe ne ressemblera a coup siir pas a ce que
vous auriez souhaité.

Partie Il : Les montages

Montage
Interactions 1 9
entre Arduino
et Raspberry Pi

Tous les mois ou presque, une nouvelle carte & microcontrdleur ou un
nouveau descendant de la famille Raspberry Pi voit le jour. En intro-
duction a cet ouvrage, j’ai mentionné que certains percevaient le
Raspberry Pi comme une menace pour 1’ Arduino. Mais tout le monde
ne partage pas cet avis. En effet, qu’est-ce qui empéche de bétir un
duo solide a partir des deux cartes ? Cela me parait étre une si bonne
idée que j’ai décidé de consacrer un montage a ce sujet.

Au sommaire :
¢ le Raspberry Pi ;
* I’environnement de développement du Raspberry Pi et d’ Arduino ;

¢ la communication au moyen de Python et de pyFirmata via le
port USB ;

¢ la communication au moyen de Python et de pyFirmata via une
liaison série TTL.

Réveillons 'Arduino sommeillant
dans tout Raspberry Pi

Certes, le sujet de ce livre n’est pas le Raspberry Pi, mais il me parait
opportun d’étudier la carte d’un peu plus prés afin d’en souligner les
points forts. Il s’agit d’un ordinateur monocarte de la taille d’une
carte bancaire qui a été développé par la fondation britannique Rasp-
berry Pi. 1l coiite environ 35 €, ce qui est donc trés abordable. Mais ce
n’est pas pour cette raison que les gens manifestent de I’intérét pour
ce nano-ordinateur. Cet ordinateur — puisqu’il s’agit bien d’un ordina-
teur & part entiére — réunit tout ce qui est nécessaire pour s’aventurer
dans I'univers de I’informatique et de la programmation. Il possede

503

504

Figure 19-1 p
Le Raspberry Pi

un processeur Broadcom BCM2835 de type ARMI1 cadencé a 70
MHz, une mémoire vive de 256 Mo ou 512 Mo, un port Ethernet
(modele B) pour le raccordement & un réseau, ainsi que deux ports
USB. Comme support d’amorcage, le nano-ordinateur utilise une
carte SD sur laquelle peuvent aussi étre installés différents systemes
d’exploitation (Linux ou Android) compatibles avec I’architecture
ARM.

Si 'on veut raccorder un clavier ou une souris, il est préférable
d’utiliser des modeles sans fil avec dongle USB afin que les deux
périphériques n’occupent qu’un seul port USB. Comme la majorité
des écrans TFT ou des écrans plats disposent aujourd’hui d’une
connexion HDMI, vous pouvez donc facilement les raccorder au port
HDMI de type A (full size) du Raspberry Pi. Si votre écran est un
modele plus ancien, sachez qu’il existe aussi des adaptateurs HDMI-
DVI pour convertir le signal envoyé sur un port DVI.

Voyons maintenant les préparatifs nécessaires en vue du raccorde-
ment d’une carte Arduino Uno a un Raspberry Pi afin que les deux
systémes puissent échanger des informations.

Partie Il : Les montages

Installation de I'IDE Arduino
sur le Raspberry Pi

Vous pouvez évidemment continuer a programmer votre carte
Arduino Uno dans votre environnement de développement habituel
depuis votre ordinateur sous Windows, Mac ou Linux. Mais, comme
tot ou tard, nous allons raccorder les deux cartes, je vais vous montrer
ici comment le faire directement depuis le Raspberry Pi. En effet,
qu’est-ce qui vous empéche d’utiliser 'IDE Arduino sur le Raspberry
Pi 7! Ouvrez une fenétre de terminal sur le Raspberry Pi et saisissez
les deux lignes suivantes :

sudo apt-get update
sudo apt-get install arduino

Pour I'installation, nous utiliserons le gestionnaire de paquets APT
(Advanced Packaging Tool). La premiére ligne actualise les listes de
paquets et la deuxieme installe I'IDE Arduino. Une fois I’installation
réussie, une nouvelle commande apparait dans le menu
Développement : il s’agit de I'IDE d’Arduino. Notez que la version
actuelle 1.0.1 ne prend pas en charge la carte Arduino Yun.

» Accessoires » g
= Autre 12

&l Education » onifig
2l Electronique »

Graphisme

© Internet

e (ot
Préférences » B
% Scratch
Exécuter) Eofic Bl
Déconnexion @ squesak

A b a WICEE

Lorsque vous démarrez I'IDE a I’aide de cette commande, la fenétre
bien connue s’ouvre au bout de quelques instants. Vous devez encore
choisir le port série correct. Sous Linux, il s’agit de /dev/ityACMO
pour la carte Uno. Les modeles plus anciens utilisent /dev/ityUSBO.

< Figure 192
L'IDE Arduino dans le menu
Développement

Montage 19 : Interactions entre Arduino et Raspberry Pi

505

Figure19-3 p = Blink | Arduino 1.0.1

i i i 2 ey = B .
Version 1.0.1 de 'environnement Fichier Edition Croquis Outils Aide

de développement

Blink

e -

gnnected onom juine boards
/ the setup routine rtns once when you press reset:
void setup() {
/ tislize the digital pan a5 ah od

Llnr:'-.m}e:-(.led, OL[TPLF:: ¥

{4 the loop routine runs over and oveér again forever
void loop(} {

grtatiwrite (led, HIGH):

L3y (1608]); &4
talwrite(led, LOW):

Lay (1000) ;

Taille binaire du cr

1 Arduing Lo on

Vous pouvez vérifier que tout a bien fonctionné en lancant le sketch
Blink que j’ai également chargé. Revenons-en a la communication
entre 1’ Arduino et le Raspberry Pi. Nous allons utiliser ici Firmata, un
protocole de communication entre ordinateurs ou programmes.
Voyons maintenant comment établir une liaison entre 1’ Arduino et le
Raspberry Pi afin que les deux cartes puissent échanger des données.

Firmata

Co6té Arduino, nous disposons déja de tout le nécessaire. Firmata fait
partie de 1’environnement de développement Arduino et il suffit de le
charger en tant que firmware sous la forme d’un sketch. C6té Rasp-
berry Pi, ce n’est pas tout a fait la méme chose. Le langage habituel
du Raspberry Pi, Python, fait déja partie de la distribution Linux
Debian Wheezy que je recommande aux débutants. Il nous faut donc

I

20

=)

506 Partie Il : Les montages

uniquement installer Firmata. Le paquet Python correspondant se
nomme pyFirmata.

Arduino Raspberry P| < Figure 19-4

Firmata sur I'Arduino

et le Raspberry Pi
Comme Firmata fait déja partie de I’environnement de développe-
ment Arduino, il suffit de s’assurer de son bon fonctionnement en
ajoutant le fichier d’en-téte Firmata.h. C6té Raspberry Pi, nous avons
quelques bricoles 2 installer. Je vais vous présenter deux méthodes
employant deux gestionnaires de paquets différents.

Méthode 1 : avec Mercurial

Exécutez les commandes suivantes dans le terminal afin d’installer
pySerial, pour la communication série sous Python, et Mercurial, qui
est un outil de gestion de versions :

sudo apt-get install python-serial mercurial

Vous pouvez maintenant télécharger pySerial et D'installer sous
Python en saisissant les lignes suivantes dans le terminal :

hg clone https://bitbucket.org/tino/pyfirmata
cd pyfirmata
sudo python setup.py install

La premiere ligne de commande charge les sources requises depuis
I’adresse saisie sur le Raspberry Pi. Aprés le téléchargement, elles se
trouvent dans le dossier pyfirmata. La commande cd de la deuxieme
ligne permet d’accéder au dossier et la troisieme ligne démarre
I’installation de pyFirmata sous Python. Lorsque I'installation est
terminée, il n’est pas nécessaire de conserver les sources et vous
pouvez donc les supprimer 4 1'aide des lignes suivantes :

#cd ..

sudo xm -r pyfirmata

° Méthode 2 : avec GitHub
i) Avant toute chose, si ce n’est pas encore fait, vous devez installer Git
k. (autre logiciel de gestion de versions décentralisé) pour pouvoir télé-

s Montage 19 : Interactions entre Arduino et Raspberry Pi

508

charger les sources de GitHub sur le Raspberry Pi. Pour ce faire,
saisissez la commande suivante :

sudo apt-get install git

Ensuite, vous pouvez installer pyFirmata a 1’aide des lignes
suivantes :
git clone https://github.com/tino/pyFirmata.git

cd pyFirmata
sudo python setup.py install

Comme avec la premiére méthode, vous pouvez ici aussi supprimer
les sources dans le dossier pyFirmata.

Tout est maintenant prét pour procéder au premier essai. Nous allons
dire bonjour a Arduino et nous ferons clignoter sa LED 13. Comment
allons-nous faire ?

Préparation de I'Arduino

Vous devez évidemment munir I’ Arduino du firmware de Firmata en
chargeant le sketch correspondant et en le téléversant sur la carte.
Activez la commande Fichiers>Exemples>Firmata>StandardFirmata
pour ouvrir le sketch dans 1I’environnement de développement, puis
téléversez-le sur la carte Arduino. Vous n’avez rien de plus a faire
pour I'instant.

Préparations du Raspberry Pi

Comme nous travaillerons avec le langage de programmation Python
sur le Raspberry Pi, il est conseillé d’installer un environnement de
développement Python. Actuellement, jutilise SPE (Stani’s Python
Editor) que vous pouvez installer a I’aide des lignes suivantes :

sudo apt-get update

sudo apt-get install spe

Toutefois, cet environnement de développement ralentit le Raspberry
Pi, comme vous pourrez le constater si vous jetez un ceil a I’indicateur
de performances du processeur dans la barre des tiches. Au lieu de
SPE, vous pouvez aussi utiliser le simple éditeur de texte Nano qui
s’installe 4 I’aide de la ligne de commande suivante :

sudo apt-get install nano

Partie Il : Les montages

es,

Copyright © 2015 Eyrolls

Pour ouvrir I’éditeur, il suffit ensuite de saisir la commande suivante
dans le terminal :

nano

Nous allons néanmoins continuer avec SPE. Aprés son installation,
vous le trouverez dans le dossier Développement du menu Démarrer

de Linux.

4 Accessoires » > < Figure 195

g it | QOuverture de Stani's Python Editor
1l Education » onifig

$l] Electronique » @ Arduino IDE

¥ Graphisme P |l

@ Internet AP

o Outils systéme D F Kiki

+ Prograrmmation & Scratch

% Son et vidéo

) Sonic Pi

Préférences - “SPE (St__arﬁ"s Rython Editor)
Exécuter @ Squeak
| ® Winpdb
Déconnexion 0 wolfram
5] wxGlade

Vous pouvez saisir le code suivant dans I’éditeur pour faire clignoter
la LED 13. Ne vous inquiétez pas, nous n’en resterons pas la ! Nous
ferons aussi des choses un peu plus compliquées. Cet exercice nous
permet simplement de nous mettre en jambe :

3 #! /usr/bin/python

3 from time import slesp # importation de la fonction slesp
from pyfirmata import Arduinc, util 4 importation de la fonction Arduine, util

communication avec la carte Arduino via le port Bérie
arduinoboard = Arduino{'/dev/¢cyRCHD)

5 # programmation de la broche Arduine
10 pinl3 = arduincboard.get pin('d:13:a7)
1 ~while True:
pinl3.write(i) # LED allumée

W
IO U

sleep(l) # pause 1 seconde
4 pinl3.write(D) # LED éteinte
15 L sleep(l) ¢4 pause 1 seconde
Montage 19 : Interactions entre Arduino et Raspberry Pi @

510

Examinons la signification des différentes lignes du code :
Ligne 1

Afin que le script Python soit correctement détecté par Iinterpréteur,
la premiere ligne commence sur les systemes Linux par la séquence
de caractéres #! suivie du chemin d’accés absolu 4 I’incontournable
interpréteur.

#!/usr/bin/python

Cette ligne se nomme le shebang. L’emplacement de 1'interpréteur
Python varie selon les systémes Linux. Par conséquent, la ligne telle
qu’elle est présentée ici n’est pas universellement valable. Il existe
une meilleure méthode qui utilise le programme env.

#!/usr/bin/env python

Le code env charge les variables d’environnement standard de la
configuration du systeme d’exploitation qui prend aussi en charge la
variable d’environnement PATH. Sur mon ordinateur, I'interpréteur
Python se trouve sous /usr/bin/python.

Ligne 3

Comme nous avons besoin de la fonction sleep pour insérer une
pause, celle-ci est importée a la ligne 3 par I'instruction from/import.

Ligne 4

Pour nous permettre d’utiliser la multitude de fonctions de pyFirmata
apres son installation, le paquet est inséré dans le code a la ligne 4 par
I’instruction from/import.

Ligne 7

Comme nous voulons communiquer et contrdler la carte Arduino via
le port série, nous devons nous y connecter. Il s’agit du méme device
(appareil) /dev/ttyACMO que celui déja utilisé pour programmer la
carte Arduino. Pour que Python puisse avoir acceés au port série, nous
avions précédemment installé le paquet python-serial pendant la
phase préparatoire.

arduinoboard =Arduino('/dev/ttyACMO")

Par cette ligne, pyFirmata crée une instance de pyfirmata que nous
avons nommée arduinoboard. Comme argument, nous transmettons
précisément le nom d’appareil que je viens d’indiquer.

Partie Il : Les montages

Ligne 10

Les différentes broches de la carte peuvent étre contrdlées ou confi-
gurées par la méthode get_pin. La configuration s’effectue par le biais
d’une séquence de caractéres au format suivant :

(a|d:<PinNr>:ilo|p]s)

Les trois informations nécessaires sont énumérées en étant séparées
par des deux-points. En voici la signification :
¢ L’instruction est-elle destinée a une broche analogique (a) ou
numérique (d) ?
* De quelle broche s’agit-il (PinNr) ?
* Quel mode faut-il utiliser (i: entrée, o: sortie, p: MLI,
s :servo) ?

C’est donc ce que nous faisons a la ligne 10.
pini3 = arduinoboard.get pin('d:13:0")

Une variable intitulée pini3 est initialisée a 1’aide de la méthode
get_pin afin de nous permettre de manipuler cette broche (numérique,
13, sortie) conformément aux instructions transmises aux lignes 11 2 15.

Lignes 11 a 15

Une boucle while permet d’exécuter en continu les instructions énon-
cées dans le corps de la boucle :
while True:

pin13.write(1) # LED allumée

sleep(1) # pause 1 seconde

pini3.write(0) # LED éteinte
sleep(1) # pause 1 seconde

Pour associer différents niveaux a la LED qui est connectée a la
broche 13, nous utilisons la méthode write avec I’argument 1 pour le
niveau HIGH ou O pour le niveau LOW. Entre les deux, nous plagons
la fonction sleep qui interrompt 1’exécution du programme pendant
une durée d’une seconde. La boucle while est exécutée tant que
I’instruction suivante est vraie (True). Nous n’avons pas employé de
variable comme instruction, mais la constante True, ce qui signifie que
la boucle est exécutée a I’infini ou jusqu’a ce que I’utilisateur inter-
rompe manuellement 1’exécution du script 4 I’aide du raccourci
Ctrl + C. Si vous avez démarré le script depuis le Raspberry Pi,
observez la LED RX de la carte Arduino. Elle s’allume et s’éteint
avec un intervalle d’une seconde. On peut donc en conclure que des

Montage 19 : Interactions entre Arduino et Raspberry Pi

51

512

informations sont transmises depuis le Raspberry Pi a 1’Arduino via
le port série avec le méme intervalle pour contrdler la LED.

Commande par MLI

Nous allons maintenant voir comment commander une LED
raccordée a I’une des broches MLI a I’aide d’un signal MLI (voir la
section « Que signifie MLI ? » du chapitre 10). Je voudrais ouvrir une
interface graphique sur le Raspberry Pi afin d’envoyer le signal MLI
a la carte Arduino a I’aide d’un potentiometre linéaire comme celui
illustré ci-apres.

PWMalue

24
-

Le potentiométre linéaire permet de choisir des valeurs comprises
entre 0 et 100 qui correspondent aux pourcentages de MLI. Attention
toutefois, car la fonction write de pyFirmata, qui s’occupe de générer
le signal MLI, accepte des valeurs comprises entre 0,0 et 1,0. J’ai
donc intentionnellement employé des valeurs a virgule flottante, car
la fonction attend des valeurs de type float.

Examinons le script Python de plus prés. Python ne peut afficher de
but en blanc des éléments graphiques, comme des boutons, des
étiquettes, des potentiometres linéaires ou autres. Pour ce faire, nous
utilisons une bibliothéque nommée Tkinter. Qu’est-ce donc ? Il s’agit
de la premiére boite a outils d’interface graphique pour Python. Elle
permet de créer sous Python des programmes ayant une interface
graphique. La boite a outils Tk a initialement été développée pour le
langage Tcl (Tool Command Language), mais entre-temps, elle a pris
place dans la bibliothéque standard de Python. Le module Tkinter
(Tk-Interface) permet a 1'utilisateur de programmer trés facilement
des applications Tk sans devoir installer au préalable des logiciels ou
des bibliothéques supplémentaires. Examinons le script Python que
j’ai divisé en blocs pour une meilleure lisibilité.

Initialisation

Pendant la phase d’initialisation, nous importerons aussi bien
pyfirmata que Tkinter. Nous utilisons encore arduinoboard, comme
dans I'exemple précédent. La broche 3, sur laquelle la diode est

Partie Il : Les montages

raccordée, doit étre initialisée en tant que sortie MLI, ce que nous
faisons a 1’aide du mode p.

#!/usr/bin/env python
import pyfirmata
from Tkinter import *

arduinoboard = pyfirmata.Arduino('/de CyRCHMO YY)

pin8 = arduincboard.get pin('d:3:p') # sortie MLI sur la broche 3

Fonctions requises

Les fonctions cleanup et setPliM sont utilisées lors de 1’exécution du
script — on s’en serait douté. La fonction cleanup est exécutée au
moment ol vous fermez I’interface graphique par un clic sur la croix
dans le coin supérieur droit. Elle fait en sorte que la LED soit éteinte
au moyen de la fonction write. La fonction setPiM commande la LED
et elle est exécutée tant que vous modifiez la position du curseur du
potentiometre.

Hadef eleanup():
13| § LED 3 éteinte
13 | pin3.write (D)
12 arduinoboard.exict ()

4 [Hdef setPWM(pwm):
commande par MLI de la LED 3
16 | § accepte des valeurs comprises entre (0 et 1

L pin3.write (float (pwm) /100.0

La fonction write de la commande par MLI attend des valeurs
comprises entre O et 1, ce qui signifie que I’argument doit étre de type
float. Comme le potentiometre transmettra par la suite, en réponse au
déplacement du curseur, une valeur du parametre pwm comprise entre 0
et 100, cette valeur doit donc étre divisée par 100.

Préparation de l'interface graphique
GUI et du potentiométre linéraire

L’interface graphique est initialisée a la ligne 20, qui prépare plus
précisément 1’instance master de la boite de dialogue wm_protocol,
ferme la fenétre en effacant son contenu, opération qui s’acheve par
I’exécution de la fonction cleanup qui éteint la diode. A la ligne 22,
wn_title permet de nommer I’application, nom qui sera affiché dans la
barre de titre. Le potentiometre est initialisé avec les valeurs corres-
pondantes et son exécution démarre a la ligne 24. from_ et to définis-
sent la plage de valeurs transmises par le potentiométre. Quand le

Montage 19 : Interactions entre Arduino et Raspberry Pi

513

514

curseur est actionné, il faut afficher immédiatement le résultat, ce qui
est assuré par l'instruction command suivie de la fonction exécutée.
L’orientation est définie par orient ; ici, elle est horizontale. Ensuite,
nous précisons encore la longueur (length) et nous affichons le nom
du potentiometre au moyen d’une étiquette (label).

¥ GUI
master = Tk{()
master.wm protocol ("W

22 maStEI.WﬂLElElE['?;:..ZLL:._)

W, cleanup)

24 # initialisation du potentiométre
[Hscale = Scale (master,
& from =0,
£h =200,
3 command = setPWM,
24 orient = HORIZONTAL,
3 length = 400,
label = 'FWM-Talu="')

Démarrage du programme

Le gestionnaire d’interface se sert de pack pour centrer le potentio-
metre a I'intérieur de la boite de dialogue. L’activation de mainloop
affiche la boite de dialogue et maintient le programme dans une
boucle sans fin, en attendant que se produisent des événements inté-
ressants comme le déplacement du curseur qui déclenche 1’action
programmeée.

scale.pack{anchor = CENIER) # centré
master.mainloop() $ démarrage de TK Event-Loop

Il n’y a pas grand-chose d’autre a ajouter sur ce script assez simple.
Tkinter est bien plus performant que ce que j'ai pu montrer dans ces
quelques pages et je ne peux que vous conseiller la lecture d’ouvrages
spécialisés ou la consultation de ressources sur Internet.

Comme vous vous étes maintenant familiarisé avec le fonctionne-
ment d’une broche MLI, vous allez pouvoir commander un servomo-
teur au moyen d’un potentiometre.

Attention!
Si vous utilisez la version 3 de Python, vérifiez que vous écrivez bien tkinter

(avec un t minuscule) lors de son importation. La bibliothéque a été
renommeée.,

Partie Il : Les montages

Commande d'un servomoteur

Nous avons vu précédemment comment commander un servomoteur.
Ici, vous apprendrez a régler précisément 1’angle du servomoteur a
I’aide d’un potentiométre.

Pour en savoir davantage sur le brochage d’un servomoteur, je vous
invite a relire le montage n° 14 « Le moteur pas-a-pas ». J'aimerais
commander le moteur au moyen de la broche MLI 3, mais il est aussi
possible d’utiliser une broche qui ne soit pas dotée de cette fonction-
nalité de modulation, comme la broche 7. Examinons le code Python
qui est trés proche de celui de I'exemple précédent. Comme vous
pourrez le constater, une fois que 1’on a compris le principe de base, il
suffit souvent de modifier un détail pour accéder a d’autres fonction-
nalités.

#!/usz/bin/env python

2 import pyfirmata
3 from Tkinter import #

arduinoboard = pyfirmata.Arduino{'/dev/TtyACMO")

it = pyfirmata.util.Iterator(arduinckoazrd)
jit.atartc()

pin3 = arduincboard.get pin{'d:3:52') # servo sur la broche 3

La seule différence dans ce segment de code réside dans le change-
ment de mode qui passe & s pour la commande d’un servomoteur. Les
deux fonctions suivantes sont quasiment inchangées.

def cleanup{):

13 # désactivation de la broche 3
1 pin3.write (0)
arduinoboard.exit ()
—jdef moveServo(a):
‘ # commande du servo par la broche 3
15 - pin3.write (a)

La valeur du potentiométre est ici aussi transmise au paramétre de la
fonction moveServo pour commander le moteur a 1’aide de la méthode
write. L'interface du programme est créée de la méme fagon que
précédemment et je me suis contenté d’en changer le nom.

¥ GUI
22 master = Tk{)
Z23 mas:er.wm_pratocol{'J; DELETE WINDCOW", clsanup)

master.wm title('S=rvo-Contral')

Montage 19 : Interactions entre Arduino et Raspberry Pi

515

516

Nous en arrivons a I'initialisation du potentiometre qui doit trans-
mettre des valeurs comprises entre () et 179 a la fonction moveServo.
Ensuite, le script démarre avec mainloop.

26 # initialisation du potentiométre
=scale = Scale(master,
=28 !ram_ =0
Z5 to = 179,
command = moveServo,
| orient = HORIZONTAL,
L length = 400,
label = 'Angle')

35 scale.pack(anchor = CENTER) # centré
mainloop () # démarrage de TE Event-Loop

Interrogation
d'un bouton-poussoir

Jusqu’ici, nous avons toujours transmis des informations a la carte
Arduino. Nous allons maintenant faire I’inverse en interrogeant un
bouton-poussoir qui est raccordé a la broche 8. Comme procéde-t-on
avec pyFirmata ? Le code est assez évident :

1 #!/usr/bin/env pythor
import pyfirmata

2 arduincboard = pyfirmata.Arduino('/dev/cTyACHO')
pin8 = arduinchoard.get pin{'d:2:1') # .entrée sur broche 8
it = pyfirmata.util.Iterator (arduinoboard)
it.startc ()

ping.enable reporting()

12 [Hwhile True:
13 ping state = ping.read() # lecture de 1'état

=] if ping_state — True:
15 F print 'bouton enfonce'
18 H if pin8 atate — False:
1 print 'bouten non enfoncé!

arduincboard.pass time(0.5) # Pause

Ligne 6

Pour pouvoir interroger 1’état d’un bouton-poussoir connecté sur une
broche, nous devons évidemment la programmer en tant qu’entrée, ce
que nous faisons de ce pas avec d:8:1 (i correspond a entrée).

Partie Il : Les montages

20

Evy

015

Lignes 8 et 9

Pour lire une broche d’entrée sous pyFirmata, vous ne pouvez pas
tout simplement activer une fonction read, comme nous le ferons i la
ligne 13. 1l faut implémenter un Iterator Thread qui veille a ce que les
broches de la carte Arduino communiquent la valeur courante lors de
leur interrogation. Cela évite aussi que ne se produise un déborde-
ment de buffer qui bloquerait toute la communication sur le port série.

Ligne 10

Par enable reporting, vous indiquez a pyFirmata que vous voulez
surveiller la broche.

Lignes 12 et 13

La boucle while interroge 1’état de la broche 8 en continu en utilisant
la méthode read.

Lignes 14 2 17

Les instructions if interrogent I’état True qui correspond au bouton
enfoncé et 1’état False qui correspond au bouton non enfoncé, et affi-
chent le résultat par I'instruction print.

Ligne 18

La méthode pass_time prévoit une pause d’une demi-seconde apres
chaque affichage.

J'ai un petit probléme : au démarrage du script, rien n’indique que le
bouton n’est pas enfoncé. Pourquoi le message correspondant ne
s’ affiche-t-il pas ?

Vous faites bien d’en parler, Ardus. Quand le bouton n’a pas encore
été enfoncé, I'état correspond a None. Libre a vous de compléter le
code afin que cet état soit aussi interrogé et qu’un message s’ affiche.

Interrogation d'un port
analogique

Pour finir, nous allons voir comment interroger une entrée analogique
et les aspects a prendre en considération. La encore, le script est assez
évident (voir page suivante).

Montage 19 : Interactions entre Arduino et Raspberry Pi

517

es.

2015 Eyrol

yright ©

!

Cop

518

#! /fusxr/bin/envy python
import pyfirmata
from time import sleep

arduinoboard = pyfirmata.Arduino('/dev/coyACMOT)

pind = arduincboard.get_pin{'a:0:1') # entrée analogigue sur broche
=] it = pyfirmata.util.Iterator(arduincboard)

10 it.start{)

11 pin0. enable_reporting ()

Hwhile True:

14 value = pin0.read{) # lecture de la valeur amalogique

15 print walue 4 affichage
16 L sleep(l) # pause 1 seconde

Ligne 7

La broche analogique 0 est désignée par un a (pour analogique) et elle
est programmeée en tant qu’entrée par le biais du mode i.

Lignes 13 a 16

La valeur analogique est lue sur la broche 0 a I’intérieur de la boucle
while au moyen de la méthode read. Le résultat est compris entre 0,0 et
1,0. Ensuite, le programme marque une courte pause d’1 seconde.

fais lentement tourner le potentiometre de la gauche vers la droite.

{ Eh 12, il y a un probleme ! Voila les valeurs qui sont affichées lorsque je

L~ fhome /pi/pyfirmata_analog00l.py

o
=R}
]

7019

825

L8563

914

.0

o

Script stopped by ussr (ok).

=00 0002

Ah oui, Ardus ! Je crois avoir compris ot tu voulais en venir. Au tout
début de I'affichage, on peut lire None, ce qui signifie qu’aucune
valeur valide n’a pu étre lue. Cela se produit de temps en temps au
début de I'interrogation. Voici comment 1’éviter :

Flwhile True:
4 value = pinO.read() # lecture de la valeur analogique
15 H if value != Hone:
£ [print 'Vale : %" & value # affichage
. sleep(l) # pause 1 seconde

A la ligne 15, j’ai placé une instruction if qui intercepte la valeur
None, le cas échéant. Pour améliorer la présentation, vous pouvez aussi

Partie Il : Les montages

précéder I’affichage d’un texte ou de la mention du type de données,
comme 2 la ligne 16. Vous obtenez alors le code suivant :

L~ /homa/pi/pyfirmata_analog002.py

Value : 0.000000
Valus : 0.012700

Value : 0.326500
Valu=s: 0,7703200
Value : 0.849500
Valus : 1.000000

Goript stopped by ussr (ok).

Liaison série entre
le Raspberry Pi et 'Arduino

Jusqu’ici, les informations échangées entre le Raspberry Pi et
1’ Arduino ont transité par la liaison USB qui a servi a I’acheminement
des données série. Mais il est aussi possible d’établir directement une
liaison TTL série a condition de respecter la précaution suivante : le
Raspberry Pi fonctionne avec une tension d’alimentation maximale
sur ses entrées et sorties GPIO de 3,3 V, tandis que I’ Arduino utilise
une tension de 5 V. Si vous raccordez les deux cartes I’une a I’autre
sans prendre de précautions, c¢’est la loi du plus fort qui prévaut et
I’un des protagonistes restera sur le carreau. Le Raspberry Pi recevra
une tension trop élevée. Et comme ses broches GPIO sont directe-
ment reliées au processeur, sans protection, celui-ci grillera et la carte
sera bonne a jeter. Ce n’est donc pas une bonne idée ! Comment
I’éviter 7 Nous pourrions utiliser un diviseur de tension afin de nous
assurer que le Raspberry Pi recoive bien une tension de 3,3 V. J’ai
préféré employer un composant meilleur marché qui s appelle un

convertisseur logique ou levelshifier, comme le modeéle proposé par
Adafruit.

Montage 19 : Interactions entre Arduino et Raspberry Pi

< Figure 19-6
Convertisseur logique Adafruit

519

virolles

> e

01:

20

(&)

right

!

Copy

Ce composant permet non seulement de convertir la tension pour les
liaisons RX/TX, mais aussi pour les bus I*C et SPI. Sur le c6té gauche
se trouvent les broches de raccordement en basse tension (LV ou
LOW Voltage), et sur le c¢6té droit, il y a les broches haute tension
(HV ou HIGH Voltage). Voyons maintenant comment raccorder
correctement le Raspberry Pi et I’Arduino pour que les deux cartes
réussissent & communiquer via les ports série.

Raspbeny Pi Arduino

L_Rt%
-

=5

|

=

>

a

3
;8
o,

Figure 19-74 1 va sans dire que les lignes émettrices et réceptrices des deux cartes
Le convertisseur logique sert Jojvent étre croisées, car si vous voulez que la liaison TX verte, par
dintermédiaire entre le Raspberry 1, qye]le le Raspberry Pi transmet des données, réussisse 2 se faire
Piet FArduino. entendre par 1’ Arduino, cette derniere doit étre connectée 2 sa liaison
réceptrice RX bleue, et inversement. Le montage suivant permet de
faire clignoter une LED connectée a la broche 8 par le biais des deux

liaisons RX/TX.

520 Partie Il : Les montages

Vous pouvez constater qu'il n’y a pas de connexion USB entre les deux
cartes et que la communication passe exclusivement par 1’interface
UART. L’alimentation électrique de 1’Arduino s’effectue au moyen
d’une pile de 9 V. Quelles conditions doivent étre remplies pour que cette
forme de communication fonctionne ? Tout d’abord, je dois vous en dire
davantage sur le port série du Raspberry Pi. Par défaut, le Raspberry Pi
utilise ce port en tant qu’interface de console par I'intermédiaire duquel
vous pouvez accéder au systeme depuis ’extérieur, méme si vous n’y
avez pas raccordé de moniteur, de souris ou de clavier — quasi headless.
Mais ce moyen d’acces dont nous n’avons pas absolument besoin pour le
moment bloque les broches RX/TX et nous empéche de poursuivre notre
expérience. Nous devons donc couper ce lien. La solution réside dans le
fichier /etc/inittab que vous pouvez ouvrir dans I'éditeur de texte Nano
avec la ligne suivante :

sudo nano /etc/inittab

Faites défiler le texte vers le bas jusqu’a I’entrée.

TO:23:respawn:/sbin/getty -L ttyAMAO 115200 vt100

Cette ligne doit étre commentée de fagon a ne plus pouvoir bloquer
I’interface série a la prochaine réinitialisation. Pour ce faire, il vous
suffit d’insérer un dicse en début de ligne :

TO:23:respawn:/sbin/getty -L ttyAMAO 115200 vt100

Ensuite, fermez 1'éditeur a [’aide des raccourcis Ctrl + X et
J + Retour et redémarrez le systeme. Il ne vous reste plus qu’a
apporter quelques modifications au fameux script Blink.

< Figure 19-8
Le Raspberry Pi commande
I"Arduino via les liaisons RX/TX.

Montage 19 : Interactions entre Arduino et Raspberry Pi

521

es.

2015 Eyrol

yright ©

!

Cop

522

1 $#! fusr/bin/pychon

from time import sleep # importation de la fonction sleep
from pyfirmata import Arduino, util # importation de la fomction Arduinc, util

communlcation avec la carte Arduino via le port série
arduoincboard = Arduino{'/dev/toyRMALT)

o # programmation de la broche Arduino
piné = arduincboard.get pin{'d:8:0'})
Slwhile True:
ping.write(l) # LED allumée
i3 =lesp(l) # pause 1 seconde
34 ping.wrice(0) 4 LED éteinte
L sleap (1) ¥ pausa 1 seconde

A premiére vue, le code ne semble pas avoir changé. Pourtant, il y a
une différence majeure. Regardez attentivement la ligne 7 a laquelle
le port série est initialisé.

Avant :
arduinoboard = Arduino('/dev/ttyACMo")
Apreés :
arduinoboard = Arduino('/dev/ttyAMAQ")

Le device que nous avions utilisé précédemment se rapportait a I’inter-
face USB. Apreés la correction, le device accede a 'interface UART.

Partie Il : Les montages

Montage

Temboo et la carte Yun 20
— API Twitter

Nous en arrivons i un sujet passionnant — encore un —, qui est 1’acces,
par le biais d’une carte Yin, aux innombrables services web comme
Twitter, Facebook, Google+ ou Dropbox, sans avoir i écrire des kilo-
metres de code. Les services que je viens d’énumérer sont trés popu-
laires et leurs noms sont aujourd’hui dans toutes les bouches. Nous
allons nous y intéresser de plus prés dans ce chapitre. Le projet
Temboo (https://temboo.com/) s’est notamment donné pour vocation
de permettre 4 nous autres, utilisateurs d’Arduino, d’accéder facile-
ment 2 tous ces services Internet. 11 a développé plus d’une centaine
d’API (Application Programming Interface) qui exécutent des tiches
ou offrent des services divers et variés. Je vous présenterai ici I’API
Twitter.

Au sommaire :

* la structure sous-jacente 4 Temboo ;

* la création d’un compte Temboo ;

¢ la récupération d’informations, telles que des tokens, auprés de
Twitter pour envoyer un tweet via Temboo ;

¢ I’exécution d’un premier test dans le navigateur ;

* le transfert du code du sketch depuis le navigateur sur la Yin
pour envoyer un tweet depuis la carte ;

¢ la programmation d’un sketch pour mesurer ’humidité et la
température au moyen d’un capteur DHT11, puis twitter les
valeurs mesurées.

523

524

Composants nécessaires

I capteur d’humidité-température DHT11

/—\ Plusieurs cavaliers flexibles de couleurs et de lon-
~ S gueurs diverses

Temboo

Pour commencer, regardons ce qui se cache derriere le projet
Temboo. Nous allons en décortiquer la structure afin de mieux
comprendre son échange de données avec votre carte Yiin. Je ne peux
malheureusement pas entrer dans tous les détails, car 1’affaire est
beaucoup trop complexe. Mais je pense que mes explications vous
permettront de vous initier a ce systéme. Si je n’ai pas répondu a
toutes les questions que vous pourriez vous poser, jé vous recom-
mande de parcourir la rubrique Get Started du site Internet de
Temboo qui propose notamment une FAQ et quantité d’informations
complémentaires.

La structure

La figure 20-1 est une représentation schématisée de la communica-
tion entre une carte Yun et Temboo.

Partie Il : Les montages

Arduino-Yun
Arduino Linux

Temboo.h
Header-File

Bridge :
Temboo-Client

Arduino-Sketch

£

https

Temboo-APls Temboo-Server

v s <= D

En haut & gauche sur le schéma, vous pouvez voir la carte Yin a
laquelle est liée la bibliotheque requise a I’aide d’un fichier d’en-téte
Temboo.h et dont le code proprement dit se trouve dans le fichier
temboo.cpp. Le sketch Arduino se connecte via une passerelle (bridge)
a Linino qui déclenche un processus initial pour exécuter le fichier
Temboo. Ce fichier, qui se trouve dans le dossier /usr/bin, contient un
script Python qui charge le client Temboo. Ce client transmet une
requéte HTTPS au serveur Temboo qui exécute des prestations de
services de type cloud. C’est par le biais de ce serveur que 1’on peut
accéder aux multiples API pour profiter de leurs extraordinaires fonc-
tionnalités. Jetez un ceil au site web de Temboo et vous verrez a quel
point I'offre est étendue. Cliquez sur LIBRARY dans la partie supé-
rieure gauche de la fenétre. Une arborescence apparait alors sur le
coté gauche. Elle énumeére toutes les API disponibles. I’ai cliqué sur
le petit triangle afin de développer la bibliotheque Twitter qui nous
intéresse ici.

< Figure 20-1

Communication entre la carte Ytin

et le serveur Temboo

Montage 20 : Temboo et la carte Yan — APl Twitter

525

es.

2015 Eyrol

yright ©

!

Cop

526

Figure 20-2 p
API Twitter de Temboo

Figure 20-3 p
Choereos des Tweets

Twitter

» DirectMessages
» Favorites

» FriendsAndFollowers
» Help

» Lists

» OAuth

» PlacesAndGen
» Search

» Suggestedlsers
> Timelines

» Trends

» Tweets

» Users

L’arborescence présente la liste des tiches (tasks) disponibles pour
Twitter. Chacune d’elles contient une ou plusieurs choreos, abrévia-
tion de choreographies (chorégraphies), qui sont similaires aux
méthodes utilisées dans la programmation orientée objet. Ici, nous
voulons poster un message sur Twitter. Donc nous choisissons
I’entrée Tweets dans 'arborescence d’API. Comme vous le savez
certainement, dans le jargon de Twitter, on ne dit pas « diffuser un
message », mais twitter. Cette API génére un tweet qui diffuse un
message sur Twitter. Vous me suivez ?! Voyons maintenant les
choreos proposées sous la rubrique Tweets :

GetRewweerers
GetRewweers
StatusesDestroy
StatusesShow

Statuseslpdate

L’entrée intitulée StatusesUpdate parait prometteuse ; nous I'utilise-
rons plus tard pour twitter. Passons maintenant a la pratique, car la
théorie est ennuyeuse a la longue. Voici les étapes requises pour
pouvoir twitter avec la carte Yiin.

Partie Il : Les montages

yrolles.

L

01:

TS

right ©

=
| .

D

! =

_opy

Création d'un compte Temboo

Il va de soi qu'un compte est nécessaire pour pouvoir utiliser
Temboo. Les fonctions de base sont gratuites. Vous pouvez exécuter
250 choreos par mois et transférer jusqu’a 1024 Mo de données. Pour
plus de détails, consultez la FAQ. Cliquez sur le bouton SIGN-UP sur
la page d’accueil de Temboo, puis saisissez votre adresse €lectro-
nique dans la fenétre qui apparait.

Get Ready to Temboo

Experience a way of writing software that lets you
focus on what makes your app unigue.

arduino@erik-bartmann.de

Quelques instants plus tard, vous devriez recevoir un courrier de
confirmation intitulé Create Your Temboo-Account. Si votre boite de
réception reste vide, vérifiez vos spams. Vous devez cliquer sur le
lien qui figure dans le message afin de terminer la création de votre
compte en saisissant un identifiant et un mot de passe.

Now Let's Finish
Creating Your Account

ACCOUNT NAME

Your Account Name will be used in your code to ¢all Choreos.

EriksTembooAccount

Checking availability

EriksTembooAccount is available!

PASSWORD

Musz contain at least eight characters, one number, and one letter,

SesBORBREES

¥l | agree to the Temboo Terms of Service,

<« Figure 20-4
Inscription a Temboo

< Figure 20-5
Création du compte Temboo

Montage 20 : Temboo et la carte Y(n — API Twitter

527

Cliquez sur le bouton GO pour valider la création de votre compte.
Vous pouvez commencer sans plus attendre, mais je vous recom-
mande de prendre le temps de visionner les vidéos proposées sur le
site. Ces tutoriels sont en effet un bon moyen de se familiariser avec
Temboo, car ils fournissent de précieux conseils. Nous allons mainte-
nant nous intéresser a Twitter.

Votre compte Twitter

Il vous paraitra sans doute déplacé que je vous demande si vous avez
bien un compte Twitter. En effet, il vous en faut un, sinon vous aurez
du mal a twitter. Pour créer un compte, rendez-vous sur le site web
hitps:/ftwitter.com/signup. Maintenant que ce point est éclairci, nous
pouvons procéder a quelques réglages sur le site de Twitter.

Pour pouvoir accéder a Twitter depuis 1’extérieur, vous devez préala-
blement créer et enregistrer une application. Ouvrez la page web
https:/idev.twitter.com/apps/mew. Nommez votre application sans
utiliser la séquence de caracteres Twitter.

Application Details

Name:*
EriksFirstApp

our 8pf athon name. ik S usad 10 atinibule Ihe Source 8 Iweel and ser-tacing aut ZATION SCIEans. 32 ¢

Description: *

EriksFirstApp

our appecation d

il be shown in user-facing suthorization scre

Website: *

http:/fwww.erik-bartmann_de

tinn's publicly &

Callback URL:

Figure20-64 [orsque vous aurez accepté les conditions générales d’utilisation,
Détails de 'application Twitter gaisi une description, puis cliqué sur le bouton Create Your Twitter
Application, vous verrez s’afficher une page sur laquelle vous

pourrez gérer votre appli dans ses moindres détails.

528 Partie Il : Les montages

EriksFirstApp

EriksFirstApp

Quand vous voudrez poster un message sur Twitter, vous devrez vous
identifier par le biais d’OAuth qui s’assure que personne n’essaye de
se faire passer pour vous. Vous trouverez plus d’informations a ce
sujet a I’adresse https://dev.twitter.com/docs/auth/oauth.

Avant de commencer, j’aimerais vous rappeler quelques principes de
précaution élémentaires : sur Internet, on peut croiser le chemin de
personnes ou d’organismes qui n’accordent pas une grande impor-
tance au respect de la vie privée. La NSA (National Security Agency)
représente un exemple inquiétant ou les droits des internautes sont
foulés aux pieds. La sécurité est une question cruciale aujourd hui et
elle mérite que 1'on y accorde la plus haute attention. Le simple fait
de diffuser nos données de connexion sur Internet nous expose au
risque potentiel de les voir récupérées par des tiers qui s’en serviront
pour envoyer des courriers malveillants. Mais les risques ne s’arrétent
pas la. On pourrait aussi évoquer I’espionnage industriel qui fait
perdre des millions, voire des milliards, aux entreprises qui en sont
victimes. Mais si vous renoncez 4 communiquer vos identifiants sur
Internet, vous ne pouvez pas non plus utiliser les nombreux services
web. Comment résoudre ce dilemme ?

C’est 1a qu”OAuth entre en sceéne : il s’agit d’un protocole libre. Une
application contacte un prestataire en €changeant des informations
sous la forme de clés (keys) et de jetons (tokens). Mais ces données ne
correspondent pas aux données de connexion de I’utilisateur. Quand
nous créons une application, il s’agit dans le jargon spécialisé d’un
client ou consumer qui souhaite établir une connexion avec le service
web du prestataire, par exemple. Au moment de son inscription, le
client recoit une authentification en deux parties : la clé (key) et le
secret qui sont des séquences de caractéres générées de facon aléa-
toire. Lorsque des informations doivent étre échangées entre 1’appli-
cation — ¢’est-a-dire le client — et le prestataire, le client envoie la clé
au prestataire qui lui transmet a son tour un token provisoire. Pour un
acces définitif et pour tous les autres accés, le client doit générer un
jeton d’acces a partir du jeton provisoire. Ce token protége 1’acces au

< Figure 20-7
Gestion de |'application Twitter

Montage 20 : Temboo et la carte Yiin — APl Twitter

529

vrolles.

{ s
| .

)1E

o

Ll

20

(&)

right

!

_opy

L

prestataire qui effectue une vérification en utilisant un algorithme de
hachage sécurisé.

Pour que vous n’ayez pas & manipuler ces codes assez complexes, les
choreos Twitter de Temboo s’occupent du processus de signature
d’OAuth a votre place. Vous devez simplement disposer de 1’authen-
tification OAuth.

w

J'ai un peu de mal a suivre. Comment obtient-on toutes ces
informations ?

Vous avez raison, Ardus. Ce n’est pas simple, mais ces procédures
sont indispensables pour garantir une sécurité maximale. Je vais tout
vous expliquer en détail et tout se passera bien. De nombreuses
données sont nécessaires pour la création d’une authentification qui,
par ailleurs, est gérée par Temboo. Les informations suivantes sont
demandées :

* AccessToken
* AccessTokenSecret
* ConsumerKey

¢ ConsumerSecret

Comme les obtient-on ? Ces informations sont accessibles dans les
données du compte Twitter. Jetez un ceil & la page de gestion de
I’application qui apparait dés que vous cliquez sur le bouton Create
Your Twitter Application. Cliquez sur le lien Manage keys and access
tokens sous la rubrique Application Settings de 1’onglet Details afin
d’accéder a deux des clés requises.
Figure 20-8 p- Detals Sefings Keysand Access Tokens | Permissians
(lés OAuth accessibles

ns les parametres de I'applicati —— ;
= paretes e X canon Application Settings

Consumer Key (AP Key) ZgiQBFe

Consumer Secrel (AP| Secret) JTUSHGREOGHPIV

Access Level Read-onty (modify app pemissions)
Owener odeceile
Chener 1D 2921

Application Actions

Regenerate Consumer Hey and Secret Change App Permissions

530 Partie Il : Les montages

Vous pouvez noter la présence des clés Consumer Key et Consumer
Secret. 11 vous manque donc encore les jetons AccessToken et Access-
TokenSecret. Lorsque vous faites défiler la page vers le bas, vous
pouvez voir le bouton suivant :

Creafe my acc

Cela parait trés prometteur. Allez-y ! Cliquez dessus pour voir ce
qu’il se produit. Un message s’affiche en haut de la fenétre pour vous
informer que les clés ont été créées. Mais ou sont-elles ? Pour les
voir, il suffit de faire défiler la fenétre vers le bas :

Application Settings

Consumar Key (AP Key) gkl

Consumar Sechst (AR Sachar) JTUSEME
Arcess L rheadd-tniy ety
Owner odecels

w10 2

Application Actions

Regenarate Consymer Key ang Secret Change App Permissnng
o]
Your Access Token
Arcess Token v R
MARCKS DRl
Access Foked Sacret 30UNCS 1R

AfcEys Level Huad-galy

Oy odpcede

L’onglet Keys and Access Tokens réunit tout ce dont vous avez besoin
pour I’authentification Temboo. Copiez les clés afin de pouvoir les
saisir par la suite dans Temboo ou laissez simplement cette page
ouverte. Il nous faut encore régler un petit détail afin de disposer d’un
acces en écriture a Twitter. Cliquez sur I'onglet Permissions pour
définir le type d’accés dont vous avez besoin.

< Figure 20-9
Jetons d'accés

Montage 20 : Temboo et la carte Ytin — API Twitter

531

Troisieme ik

Oefaiis SEftings Keys and Access Tokens Permissions

Access

What type of access does your application need?
e g o i pEication Perssion Mode!
 Read only

= Read and Write

" Read, Write and Access direct messages

Update Seftings

Figure20-104 Choisissez 1'option Read and Write, puis revenez sous 1’onglet
Options disponibles sous F'onglet Sertings pour cocher I'option Allow this application to be used to Sign
Permissions des paramétresde ;) \ieh Typirter. Vous devez cliquer sur le bouton suivant afin d”appli-
I'application
quer les modifications effectuées sous chaque onglet :

Update this Twitter application’s setfings

Patientez quelques secondes, le temps que les modifications soient
appliquées. Et voila ! Tout est maintenant prét du co6té de Twitter.
Nous pouvons donc revenir & Temboo.

De retour dans Temboo

Comme je I’ai déja expliqué, nous devons saisir notre authentification
afin de montrer patte blanche aupres de Temboo. Sélectionnez I’ API
Twitter dans la bibliothéque, puis cliquez sur la méthode Statuses-
Update sous Library>Twitter>Tweets. Les champs de saisie suivants
apparaissent au centre de la fenétre du navigateur (voir figure 20-11).

532 Partie Il : Les montages

“ < Figure 20-11
StatusesUpdate

= =T . Twitter
Abow you to updte your Toitter $e8bus (s Tweetl

INPUT <
St Hrofis v
Accessloken

The Azcess Teken provated by Twamer or rewrieved Surng Me Diush precess,

AccensTokenSecrer
The dgeess Toamn Secret provides by Twites of retreved dusing the Qdush process

Commumerkey

Tie APl ey (or Comsormer Kay) provised by Twines
ConsumerSecres

Tha AP Secret (or Congurmer Secret] pravided by Twmer
Statuntipdate

Tho 1ew fov yOUY FaeUs Lpsas. 1 0-gharpmer b

= OPTIONAL INPUT
Run
¥ OUTPUT

Rasponse

The resroemse froem Tovisger

Pour vous éviter d’avoir a saisir a plusieurs reprises les quatre clés
que vous venez de générer, Temboo vous propose de les enregistrer.

Saisissez les clés dans les champs correspondants, puis cliquez sur

Save Profile.

Eyrolles.

< Figure 20-12

3 i = | =1
StatusesUpdate Profil enregistré

Allges you 1o update your Twines suanus (sha Twped

INPUT
ErilaTeiiar
Arcewloken
The Access Token provided by Twmer or rewneved dunng the O process

2921708 292 1 THAG 3 1 -V,

AccessTokenSecres
Thie Access Toker Secret provided by Twitter or rewieved danng tee Ofuab process.

APV wani T i VP Ml T K e

Consumerkey

The AP Key jer Consumar Key) provided by Tuer

G VP e VP iyt ADE
Carmumeries

The AM Sacrer (s Consamer Serrer] pravidad by Twiener

12uziMomW2Sn 1Zuri Mo W2 Sm]
Sraruslipdare

The st far youe statut updace |4G-charscier e

» OPTIONAL INFUT et (D

{Rund)

Nommez ['accréditation dans le champ qui apparait en haut de la
colonne de droite, puis cliquez sur le bouton Save. Une entrée portant
le nom que vous venez de saisir apparait dans le menu déroulant
Select Profile.

)

201

!

yright ©

Montage 20 : Temboo et la carte Yun - API Twitter

Cop

Saisie de l'accréditation pour I'API

Q

E Y rol

015

2

right ©

Copy

534

Figure 20-13 p
Entrée du menu Select Profile

Figure 20-14 p
Reprise de 'accréditation
pour I'API Twitter

Select Profite v

EriksTwitter

11 est maintenant temps de reprendre 1’accréditation dans la fenétre de
la méthode StatusesUpdate, 1’ objectif étant évidemment de s’identi-
fier auprés de Twitter. Cliquez sur le menu Select Profile qui se
trouve en haut a droite de la fenétre. La liste des entrées disponibles
apparait. Pour 'instant, il n’y en a qu’une, portant le nom que vous
venez de saisir pour votre profil. Lorsque vous cliquez dessus, toutes
les clés sont reprises dans les champs correspondants.

StatusesUpdate

Alferves you 1o update your Tesmer status (ks Treet)

INPUT

AccessToken

The Access Token provided by Twitter or recrieved during the Qiduth process.

ErikcsTwitter

Accesslohendecret
The Access Tohen Secret provided by Twiter or revieved during diw OAuh proacess.

ConsumerKey
The AP Key (or Consusmer Key) provided by Temrer.

Lomsumersbedren
The 21 Secret for Congumer Secreil provided by Twitter,

Srarustipsare

The eeae dor your watus updaee. 140 character ke,

<(Un champ n’est pas renseigné. 11 s agit du champ intitulé StanusUpdate. J

C’est justement dans ce champ que vous devrez saisir le message qui
sera affiché dans Twitter. Saisissez-y un texte de 140 caracteres au
maximum. Ensuite, vous pouvez vérifier directement dans votre navi-
gateur que l'accés a Twitter a bien été établi. Voici comment
procéder.

Partie Il : Les montages

ConsumerSecret
The API Secret (or Consumer Secret) provided by Twitter,

T2uziMemW2SmELwljWi3c
StatusUpdate
The text for your status updace, 140-character limiz,

: Hello, this is @ message from Erik ! |

» OPTIONAL INPUT

(Run "‘\i]

¥ QUTPUT

Response
The response from Twitter.

¥ OUTPUT Successful run at 08:20 ET

Response
The response from Twitter.

< [

J’ai saisi un message pour le nouveau tweet dans le champ de texte,
puis j’ai cliqué sur Run. Quelques secondes plus tard, la réponse est
apparue en utilisant le format JSON en caractéres verts sous la
rubrique QUTPUT. Ouvrez Twitter. Votre message devrait y appa-
raitre tot ou tard. Si vous effectuez une série de tests avec Temboo
alors que vous ne possédez pas de compte Twitter dédié aux tests, je
vous recommande d’effacer les messages immédiatement apres leur
diffusion. Si vous rencontrez des problémes lors de 1’authentification
aupres de Twitter, générez de nouvelles clés et de nouveaux jetons
via les boutons Regenerate sous I'onglet Keys and Access Tokens des
parametres de votre application Twitter. Cette méthode m’a souvent
permis de me tirer d’affaire. Dans le cas d’un probléme, le message
d’erreur a ’apparence suivante :

¥ OUTPUT Error at 0B: 45 ET

A HTTP Error has occurred: The ramote server responded with a status code of 401, Typically this

indicates that an autharization arror occurr £ attempting to access the remote resource. The

data returned from the remote server was: { error message™:"Could not authenticate

you","code":32}]}. The error occurved in the HTTPSend (Twitter - update status) step.

< Figure 20-15
Message envoyé sur Twitter
etsa réponse

< Figure 20-16
Probleme d'authentification
de I'API Twitter

Montage 20 : Temboo et la carte Yiin — APl Twitter

535

Figure 20-17 p
Exemple de code de I'API Twitter

Figure 20-18 p-
Les trois fichiers requis caté Arduino

536

Au tour de la Yun

Il est maintenant temps de tout faire fonctionner avec la carte Yun. Le
code correspondant est fourni sur le site web de Temboo. Faites
défiler la page vers le bas jusqu’a la rubrique Code.

¥ CODE Download 1

int numRuns = 17 /f Execution count, so
int maxRuns = 10;

void setup() {

J’ai déja choisi la plateforme de destination appropriée, ¢’est-a-dire la
carte Arduino Yin, dans la liste déroulante qui apparait au milieu en
haut lorsque I’on active 1'JoT Mode. Temboo peut aussi générer un
code adapté a d’autres plateformes, comme Java, Python ou
Processing : il se montre donc d'une grande souplesse. Au début de
ce montage, j avais présenté une illustration ot I’on pouvait voir que
deux fichiers étaient nécessaires du coté Arduino. Ce n’est pas tout a
fait vrai, car nous avons aussi besoin d'un fichier d’en-téte ayant pour
role de fournir les informations du compte Temboo.

Arduino

Fichier d'en-téte
TembooAccount.h

Fichier d'en-téte
Temboo.h

Sketch Arduino

Il s’agit d’une partie du sketch proprement dit et du fichier d’en-téte
Temboo.h qui permet au fichier Temboo.cpp d’assurer la communication
avec la partie Linux.

Partie Il : Les montages

Copyright © 2015 Eyrolles.

D’autre part, vous avez aussi besoin du fichier d’en-téte contenant les
données du compte : il s’agit du fichier TembooAccount.h dont I’initiali-
sation s’effectue comme illustré ci-aprés. Ce fichier est également
disponible sur Internet.

¥ HEADER FILE

fi

IMPORTANT NOTE about TembooAccount.h

TembogAccount.hy contains your Temboo account information and must be included

To do 5o, make a new tab in Arduino, call it TembooAccount.h

content into It,

#define TEMBOO_ACCOUNT “erikbartmann” // Your Temboo account name
#define TEMBOO_APP_KEY NAME "myFirstApp" // Your Temboo app key name
#define TEMBOO_APP_KEY "2 . - === f{ Your Temboo app key

ccount.h file se
information in

£ worrying that you forgor to delete your creden

Toutes les conditions préalables sont maintenant remplies et nous
allons donc pouvoir créer notre sketch Arduino et I'exécuter. Le
nouveau sketch se nomme EriksTwitterUpdate. I’ ai ajouté le code du
fichier d’en-téte TembooAccount.h dans I'environnement de développe-
ment Arduino apres avoir cliqué sur I'icone Nouveau pour créer un
nouvel onglet.

EriksTwitterUndate

#include <Bridge.h>
finclude <Temboo.h>
#include "TembosAccount.h™ // contains Temboo account information, as

1
3
4

5 int numPams = 1;
int maxPuns = 10;

ition coumt, so this
mm mumher of times

void setup()
G Serial.begin(9600);

ial conisole i8 connscted.

11 /i For debugg wait utitil the
i delay (4000} ;
13 while ('Serial);
14 Bridge.beging)
15 ¥

Apres le téléversement via le port COM, I’exécution du sketch est
interrompue, car la ligne

while(!Serial);

< Figure 20-19
Fichier TembooAccount.h

<« Figure 20-20
Sketch Arduino EriksTwitterUpdate
(extrait)

537

Montage 20 : Temboo et la carte Yun — API Twitter

Copyright © 2015 Eyrolles,

Figure 20-21 p
Affichage dans le moniteur série

Figure 20-22 p
Le tweet a bien été publié,

prévoit qu’il ne se passe rien tant que le moniteur série n’est pas
ouvert. Voici ce qui apparait dans la fenétre aprés son ouverture :

- | -
& comz EE!

P
|

Running StatusesUpdate - Eun #1
Besponsze
{"Created_at:": "Tha Feb 06 14:23:03 +0000 2014, "id":a SoSce=—sanmToaps *id
HITE ‘CODE
200 |
Waiting... |

m

1

V| Autoscroll _ Retour ligne » 9600Baud

Que signifie la mention HTTP CODE 200 qui est affichée dans le
moniteur ? Est-ce que cela correspond a une erreur ?

Non, Ardus. C’est I'un des codes d’état HTTP qui est transmis par un
serveur en réponse a une requéte HTTP. La valeur 200 indique que la
requéte a regu une réponse en bonne et due forme. Vous trouverez
plus d’informations sur les codes HTTP a la page http://fr.wikipedia.
org/wiki/Liste_des_codes_HTTP, par exemple.

Comme vous pouvez le constater, le tweet est bien arrivé sur ma page
Twitter :

Tweets

Erik Bartmann CrkBartmann 51 Sel
Hello, this is a message from Erik! - again 11!

& Antworteri @ Loschien % Favorisie

Attention!

Lorsque vous programmez un sketch qui renvoie toujours le méme tweet a
brefs intervalles, une alarme retentit chez Twitter et le tweet suivant est blogué.
Si vous voulez tout de méme afficher réguliérement un message a brefs inter-
valles — au risque d'irriter vos followers -, ajoutez un horodatage a votre tweet,
par exemple.

538

Partie Il : Les montages

yrolles.

5

|] o
| .

)1E

20
Ll

T

right ©

s
—opy

L

Vous avez dit que ce code n’est pas trés important, mais le fonctionne-
ment de ce sketch m’intéresse tout de méme. Peut-&tre aurai-je besoin
de le modifier, qui sait ? Comment faire ?

Vous avez parfaitement raison, Ardus ! Examinons le sketch de plus
pres.

Déclaration globale

#include <Bridge.h>
#include <Temboo.h>
#include "TembooAccount.h”

int numRuns = 1;
10;

int maxRuns

Au début figurent les trois fichiers d’en-téte mentionnés précédem-
ment. La variable nunRuns compte le nombre d’émissions et maxRuns
détermine le nombre maximum de tweets. C’est une mesure de
précaution, car qui aimerait trouver des milliers de tweets sur sa page
du jour au lendemain ?

Initialisation

void setup() {

Serial.begin(9600);

delay(4000);

while(!Serial);

Bridge begin();
}
La fonction setup initialise aussi bien I’interface série que la passe-
relle (bridge). L’exécution du sketch reprend apres 1'ouverture du
moniteur série. Vous devez commencer a comprendre comment cela
fonctionne.

Envoi des tweets

Au début de la fonction loop, le systéme vérifie d’abord, d’apres la
variable numRuns, si le nombre maximum d’envois de tweets n’est pas
atteint.
void loop() {
if (numRuns <= maxRuns) {
Serial.println("Running StatusesUpdate - Run #” + String(numRuns++));
TembooChoreo StatusesUpdateChoreo;

StatusesUpdateChoreo.begin();

Montage 20 : Temboo et la carte Yun — API Twitter

539

vrolles

|] o
| .

o

1L

~

540

Le nombre d’exécutions est indiqué par la méthode println au moni-
teur série. Pour pouvoir utiliser les fonctionnalités de Temboo, il faut
d’abord créer 1’objet correspondant. On utilise a cette fin une instance
de la catégorie TembooChoreo. A votre avis, oll trouve-t-on cette défini-
tion de catégorie 7 Essayez de la trouver. La méthode begin initialise
I’objet en établissant une liaison avec Linino et en y activant le fichier
Python temboo. Les trois lignes ou méthodes suivantes permettent de
communiquer 1’authentification du compte Temboo que nous avons
insérée dans le fichier TembooAccount.h :

StatusesUpdateChoreo. setAccountName (TEMBOO ACCOUNT);
StatusesUpdateChoreo.setAppKeyName(TEMBOO_APP_KEY_NAME);
StatusesUpdateChoreo.setAppKey (TEMBOO_APP _KEY);

Mais au fait, ot sont utilisées les informations relatives aux clés géné-
rées par Twitter 7 Ne faut-il pas aussi les insérer ici dans le code du
sketch ?

Votre question tombe a pic ! Les clés sont bien communiquées, mais
pas depuis le sketch. Seul le service web de Temboo connait ces clés
que nous venons d’enregistrer depuis la page Internet. En revanche,
pour notre part, nous connaissons le nom sous lequel nous avons
enregistré les quatre clés dans Temboo. Dans notre exemple, il s’agit
d’EriksTwitter. Vous pouvez ensuite communiquer ce nom a la
méthode setCredential qui récupére 1’authentification sur le serveur de
Temboo :

StatusesUpdateChoreo.setCredential ("FriksTwitter");

Nous pouvons maintenant insérer le tweet a diffuser via la méthode
addInput dans 1’objet StatusesUpdateChoreo, mais cela ne veut pas dire
que le tweet est bel et bien publié.

StatusesUpdateChoreo.addInput("StatusUpdate”, "Hello, this is Erik!");

Ensuite, la choreo est identifiée dans la hiérarchie des API par la
saisie de son chemin d’accés complet :

StatusesUpdateChoreo.setChoreo("/Library/Twitter/Tweets/StatusesUpdate");

Le chemin d’acces se termine par le nom de la choreo qui s’occupe de
la diffusion. Enfin, le tweet est envoyé avec la méthode run :

StatusesUpdateChoreo.run();

Partie Il : Les montages

La choreo répond a 1'aide de la méthode available et la réponse est
transmise par une boucle while au moniteur série.

while(StatusesUpdateChoreo.available()) {
char ¢ = StatusesUpdateChoreo.read();
Serial.print(c);

}

La liaison est ensuite interrompue et les ressources sont remises a
disposition des autres processus a 1’aide de la méthode close :

StatusesUpdateChoreo.close();

}

Le moniteur série affiche alors un message d’attente avant que la
fonction loop ne déclenche le prochain envoi — sauf si le nombre
maximum d’exécutions a été atteint :

Serial.println("Waiting...");

delay(30000);

}

C’est ainsi que se termine le sketch. Vous pouvez maintenant laisser
libre cours a votre créativité. On pourrait imaginer la diffusion d’un
tweet suite a I’interrogation d’un capteur pour signaler un événement
particulier (la lumiére est allumée, la cave est inondée, la porte du
frigo est ouverte depuis plus d’une heure...). Ainsi, tous vos abonnés
sauront ce qu’il se passe chez vous.

Donc, si je veux programmer mon propre sketch pour diffuser régulié-
rement la température qu’il fait dans mon local de travail, c’est
possible ?

En effet, Ardus. Ca ne pose aucun probléme. Je vous recommande
d’employer un capteur spécial qui, en plus de la température, mesure
aussi le taux d”humidité ambiante. Il s’ agit du capteur DHT1 1.

< Figure 20-23
Capteur de température
et d'humidité DHT11

vrolles

o

1L

|] o
| .

~

Montage 20 : Temboo et la carte Yun — API Twitter 541

Pour la lecture des valeurs de 1’environnement, on peut faire appel a
une bibliotheque qui est accessible a I’adresse suivante :

http:/iplayground.arduino.cc/Main/DHTLib

Le capteur possede trois pattes de raccordement : deux pour I’alimen-
tation €lectrique et la troisieme désignée par la lettre S pour le trans-
fert de données. Les pattes du modéle illustré ici n’ont que deux
désignations : S (a gauche) et - (2 droite). On peut donc en conclure
que le + est au centre. Par conséquent, nous raccordons le capteur de
la fagon suivante a la carte Yin :

Figure 20-24 p
Raccordement du capteur

de température et d’humidité
DHT11

DHT11

Certes, le schéma de montage montre une carte Arduino Uno et non
une Ytin, mais le capteur se connecte exactement de la méme facon
aux broches de cette dernieére. Le montage est extrémement simple et
ne demande pas de constructions compliquées.

yrolles,

|] o
| .

o

i

20
Ll

right ©

Y
DY

542 Partie Il : Les montages

Co|

L

Eyrolles.

)

201

yright ©

!

Cop

< Figure 20-25
Construction du circuit avec la carte
Yin et le capteur de température

et d'humidité DHT11
Un tweet doit afficher I"humidité et la température du local i inter-
valles réguliers en précisant la date et I"heure de la mesure.
Erik Bartmann ©riBadmann 37 Sal L | Figure 20-26
Sun Feb 909:59:44 CET 2014 Le tweet reu présente les données
- DHT11-Status: Sensor OK. - Humidity: 50 00% - Temperature: 24.00 Grad mesurées,
Celsius
Examinons le code requis (je me concentrerai sur les ajouts au sketch
précédent) :
Déclaration globale
#include <Bridge.h>
#include <Temboo.h>
#include "TembooAccount.h”
#include <dht.h>
#tdefine DHT11_PIN 8
dht DHT;
int numRuns = 1;
int maxRuns = 30;
Nous devons commencer par insérer dans le code la bibliotheque
DHTI11 précédemment importée et indiquer le numéro de la broche
de données sur laquelle le capteur est raccordé. J'ai indiqué que le
capteur devait étre interrogé 30 fois, mais libre a vous de choisir un
autre nombre de requétes. Comme le tweet est horodaté, il ne risque
pas d’étre bloqué par Twitter. Je n’ai pas modifié I’initialisation.
Montage 20 : Temboo et la carte Yun — API Twitter 543

yrolles.

5E

201

opyright «

C

Initialisation

void setup() {
Serial.begin(9600);
delay(4000);
while(!Serial);
Bridge.begin();

}

Détermination de la date et de I’heure
Le code suivant vous paraitra familier.

String getDateTime() {
Process time;
time.runShellCommand("date");
String timeStamp = "°;
while (time.available()) {
char ¢ = time.read();
timeStamp += ¢;

}

return timeStamp;

}

Envoi des tweets

Nous en arrivons aux lignes de code qui permettent I’envoi du tweet.

void loop() {
if (numRuns <= maxRuns) {
String timestamp = getDateTime();

String tweet = "";

String msgDHT11 = "*;

La variable timestamp enregistre aussi bien la date que 1’heure. Ainsi, 4

la lecture du tweet, on sait exactement quand le message a été envoyé.
Le tweet est composé des quatre informations suivantes :

* horodatage (timestamp)

¢ ¢tat du capteur

¢ humidité (humidity)

¢ température (temperature)
J’ai donc déclaré la variable tweet avec le type de donnée String afin
de pouvoir y enregistrer toutes les informations. Au moment de son
initialisation, le capteur DHTI1 transmet un message qui rend
compte de I’état du processus et qui est enregistré au moyen de la

variable msgbHT11. Examinons le processus d’initialisation de plus
pres.

Partie Il : Les montages

Eyrolles.

015

p)

opyright ©

C

int responseDHT11 = DHT.read11(DHT11_PIN);
switch (responseDHT11) {
case DHTLIB OK:

msgDHT11 = "Sensor OK. °;
break;
case DHTLIB_ERROR_CHECKSUM:
msgDHT11 = "Sensor FATL. Checksum Error! ";
break;
case DHTLIB_ERROR_TIMEOUT:
msgDHT11 = "Sensor FAIL. Timeout! ";
break;
default:
msgDHT11 = "Sensor FAIL. Unknown Erxror! ";
break;

}

La variable responseDHT11 enregistre la réponse a Iinitialisation afin de
I’exploiter dans une instruction switch. Pour traduire le code de la
réponse dans une forme lisible, la variable msgDHT11 est transmise dans
I’instruction case d’un message qui fera ensuite partie du tweet. Pour
calculer I"humidité et la température ambiante, nous utilisons les
deux méthodes de la catégorie dht11.

float humidity = DHT.humidity;
float temperature = DHT.temperature;

Les valeurs mesurées sont enregistrées dans les variables humidity et
temperature qui feront ensuite aussi partie du tweet. Les lignes
suivantes ne nécessitent pas de longs discours, car vous commencez a
en connaitre la fonction.

Serial.printIn("Running StatusesUpdate - Run #" + String(numRuns++));
TembooChoreo StatusesUpdateChoreo;

StatusesUpdateChoreo.begin();

StatusesUpdateChoreo.setAccountName (TEMBOO_ACCOUNT);
StatusesUpdateChoreo.setAppKeyName (TEMBOO_APP_KEY NAME);
StatusesUpdateChoreo.setAppKey (TEMBOO_APP_KEY);

StatusesUpdateChoreo.setCredential ("FriksTwitter");

Le tweet est maintenant composé a partir des bribes d’informations
disponibles et il est présenté sous forme de message :

tweet = timestamp + " - " +
"DHT11-Status: " + msgDHT11 + " - " +
“Humidity: " + humidity +
"% - Temperature: " + temperature + " degrés Celsius”;

Montage 20 : Temboo et la carte Yan — APl Twitter

545

/rolles.

2015 Ey

\

Copyright €

546

Puis il est ajouté a ’objet Twitter au moyen de la méthode addInput :

StatusesUpdateChoreo.addInput("StatusUpdate”, tweet);

Vous connaissez aussi le code suivant, donc il ne mérite pas que I’on
s’y attarde. Le sketch se termine ainsi :

StatusesUpdateChoreo.setChoreo("/Library/Twitter/Tweets/StatusesUpdate™);

StatusesUpdateChoreo.run();

while (StatusesUpdateChoreo.available()) {
char ¢ = StatusesUpdateChoreo.read();
Serial.print(c);

}
StatusesUpdateChoreo.close();

}
Serial.println("Waiting...");
delay(30000);

}

Dans cet exemple, 30 tweets sont publiés a intervalles de
30 secondes. Ouvrez, d’une part, votre moniteur série pour y suivre
les réponses de Temboo et, d’autre part, le compte Twitter sur lequel
les tweets sont publiés. Adaptez le code a vos besoins afin de générer,
par exemple, une succession infinie de tweets qui publient les valeurs
ambiantes toutes les heures. N hésitez pas a essayer les différents
réglages. Les tweets vous permettent évidemment de communiquer
toutes sortes d’informations mesurées par des capteurs (souvenez-
vous néanmoins que vous ne disposez que de 140 caractéres). Vous
pourriez utiliser les capteurs suivants :

¢ capteur de luminosité

» détecteur de chocs

¢ capteur a effet Hall
Si vous ne voulez pas qu'un tweet soit généré a intervalles réguliers,
vous pouvez tres facilement modifier le code du sketch afin que
certains événements seulement — c’est-a-dire le dépassement de

certaines valeurs seuils prédéfinies — déclenchent la publication d’un
tweet.

Partie Il : Les montages

Qu’'avez-vous appris ?

* Vous savez maintenant a quoi sert Temboo.

* Vous avez créé un compte Temboo afin d’avoir acces a ses fonc-
tionnalités.

* Pour avoir acceés a Twitter par le biais de Temboo, vous avez
généré des tokens et des keys qui sont nécessaires pour 1’authen-
tification.

* Pour twitter des valeurs d’humidité et de température, vous avez
raccordé un capteur DHT11 & votre carte Yin et vous avez
chargé la bibliotheque DHT requise pour la lecture de ces
valeurs.

Exercice complémentaire

Créez un sketch Arduino afin qu'un tweet ne soit diffusé que
lorsqu’un seuil prédéfini d’humidité ou de température est atteint.

Montage 20 : Temboo et la carte Yaun — APl Twitter

547

'$9](04A3 §T0Z @ 1ybLAdOD

Montage

Temboo et la carte Yun 2 l
— Tableur Google

Une présentation sous forme de tableau est trés pratique pour recenser
un grand nombre de valeurs mesurées. Tout le monde connait
d’ailleurs les principaux tableurs que sont Calc de la suite OpenOffice
ou Excel de la suite Microsoft Office. Ces feuilles de calcul nous
permettent de gérer un nombre variable de lignes ou de colonnes dans
lesquelles sont reportées diverses informations qui sont ensuite analy-
sées. En anglais, une feuille de calcul se nomme spreadsheet.

Au sommaire :
¢ qu’est-ce que Google Docs ?
* la création d’une feuille de calcul ;

¢ la programmation d’un sketch qui communique des données a la
feuille de calcul.

549

Composants nécessaires

6 potentiometres de 10K (ou une carte Arduino
SimpleBoard)

Plusieurs cavaliers flexibles de couleurs et de lon-
; //\\ gueurs diverses.

Google Docs

Lorsque vous installez sur votre ordinateur la suite gratuite
LibreOffice qui réunit des logiciels de traitement de texte, de tableur,
de présentation, de dessin et de base de données, ces logiciels se trou-
vent sur votre disque dur d’ou vous pouvez les lancer. Mais il existe
un autre mode d’acces a ce type de logiciels. Microsoft donne ainsi
acces aux programmes qui composent la suite bureautique Office 365
par le biais d’un service en ligne. C’est aussi le cas de Google Docs.
Ici, nous allons voir comment transmettre facilement des valeurs
mesurées a une feuille de calcul Google Docs avec la carte Arduino
Yin. La feuille de calcul illustrée ci-aprés contient quelques valeurs
qui y ont été déja insérées par la Yin.

Figurez1-1 > H EriksArduinoData =

Feuille de calcul GOGQ'E Docs Fichies Edeon Afichoge Wsodion Foimal Domodes Oulds Modules complémentierss Asde
& e P € % o 0. Ana - W@ - B & A W
A (1 c [
1 Time Sensor
Tue Feb 18 18,08:11 CET 2014 280
Tue Feb 18 18:.09:1] CET 2014 171
Tua Feb 10 16:30.11 CET 2014]?_2_
[R— |

e I O

= Vous pouvez suivre la progression de la mesure et de la transmission
des valeurs sur le moniteur série pendant I'exécution du sketch. Si la

550 Partie Il : Les montages

fenétre de Google Docs est ouverte en arriere-plan, vous pouvez y
suivre 1’affichage des valeurs quasiment en temps réel, sans méme
avoir a cliquer sur un quelconque bouton d’actualisation. Toute modi-
fication apportée a cette feuille de calcul s’affiche presque instantané-
ment. Rien ne vous empéche évidemment de créer un graphique plus
parlant a partir de ces valeurs afin de mieux suivre leur évolution.

VALEUR ANALOGIQUE A0

300

230 \ Tue Feb 18 18:11:11 CET 2014

1168

20

S A, o g A bt

R R RS Foa N TN
B aBt AR AR AR AR BT AB T AR AR AR
o T T T
&] -] 2 & & © & &] &
08 4R gu® quB (0B g U 0B (0 P
Time

A

A chaque valeur mesurée représentée sur la courbe correspond une
infobulle indiquant la date et I’heure de la mesure. Ces informations
apparaissent lorsque le pointeur de la souris survole le point. Cette
forme d’exploitation des données collectées ou enregistrées présente
un avantage majeur : vous pouvez placer votre carte Yiin olt bon vous
semble et lui demander d’échantillonner des valeurs qui seront
ensuite transmises via Internet — si une connexion Internet existe bien
siir. Ainsi, vous pouvez accéder a ces données depuis le monde entier
afin de suivre ce qu’il se passe chez vous. N’est-ce pas formidable ?
Pour I’expérience suivante, nous allons surveiller les entrées analogi-
ques AQ, Al et A2 et les transmettre a la feuille de calcul.

Procédure pas a pas

Nous allons examiner successivement les différentes étapes néces-
saires a la réalisation de cette expérience.

Préparations de Google

Configuration du compte Google

Avant de pouvoir utiliser le service Google Docs, vous devez avoir
un compte Google. Si vous n’en avez pas encore, vous pouvez en

< Figure 21-2
Feuille de calcul Google Docs
(courbe)

Montage 21 : Temboo et la carte Yin - Tableur Google

Figure 21-3 p
Fichiers Google Drive

créer un sur la page hitps://accounts.google.com/. Ensuite, vous
disposez d’un identifiant et d’'un mot de passe Google dont vous
aurez besoin pour le sketch. Gardez ces informations sous la main.

Acces a Google Docs

Une fois identifié dans Google, vous avez acces 4 Google Docs. Sur
la figure 21-3, vous pouvez remarquer que deux fichiers se trouvent
déja dans Google Drive (Google Drive est un espace de stockage
réseau qui est mis a votre disposition par Google).

Google
Drive

Mon Drive
cu] 4

| * Mon Drive I

TITRE

g e s Bl All-Appnventor-Projects Partacés

Suivis EriksArduinoData
Récents
Corbeille

Plus =

La feuille de calcul nommée EriksArduinoData contient déja quel-
ques valeurs mesurées. Nous allons voir comment cela fonctionne.
Pour avoir accés a une feuille de calcul Google Docs depuis
I’ Arduino Yun, vous devez connaitre le nom du fichier.

Création d'une feuille de calcul dans Google Docs

Difficile de passer a coté du gros bouton rouge nommé Créer.
Lorsque vous cliquez dessus, le menu déroulant de la figure 21-4
apparait.

Partie Il : Les montages

es.

2015 Eyrol

yright ©

!

Cop

Mon Drive
CREER
l . Dossier n IMap
% Document texte
Présentation
Feuille de calcul
Formulaire

Dessin

PP

Connecter plus d'applications

Pour créer une nouvelle feuille de calcul, vous devez cliquer sur
I’entrée Feuille de calcul, qui est encadrée en rouge sur la figure. Une
feuille de calcul vide et sans titre apparatt.

= Feuille de calcul sans titre
- Fichier Edition’ Affichage Insetion Format Données Outils Mod

& T € % o 09 123- Aanal > 9 ~ H
fx
P B o D E
1 1
L 3

Pour pouvoir y accéder a partir d’un sketch, vous devez la nommer.
Sélectionnez la commande Fichier>Renommer.

Feuiile de calcul sans titre
Fichier Edition Affichage Insertion Format Données Outils Modules con

Partager... Ww ~| B F 3
MNouveau -

[Owvrir... Ctr+0
Renommer.

Créer une copie

Importer

N @ th B oW

Vous pouvez maintenant renommer votre feuille de calcul.

< Figure 21-4
Menu Créer de Google Docs

4 Figure21-5
Nouvelle feuille de calcul sans titre

4 Figure 21-6
Commande Fichier>Renommer

Montage 21 : Temboo et la carte Yin - Tableur Google

553

Figure 21-7 p

Renommage de la feuille de calcul
Renommer la feuilie de calcul

Saisissez le nouveau nom de |a feuille de calcul

| MaFeuilleDeCalculArduino

“ i

La feuille de calcul est renommée lorsque vous cliquez sur OK. Un
message s affiche également sur la droite de la barre de menu pour
vous informer que toutes les modifications seront enregistrées dans
Google Drive :

MaFauilleDeCaltularduing L

Fhier Edidion Alchage Insetion Foemal Donsees Oubds Modules complimentases Aude [

Afin que les données qui seront transmises par le sketch Arduino
soient correctement identifiées et clairement organisées, vous devez
aussi saisir un titre pour chaque colonne dans la premiére ligne.

A B C D
1 Time Sensor Al Sensor Al Sensor A2

Si vous oubliez de nommer les colonnes, un message d’erreur
s’affiche dans le moniteur série pour vous signaler votre oubli :

A Step Error has occurred: "A Step Error has occurred: "The Choreo
encountered an error detecting the column names of the target
spreadsheet.

Make sure that column names exist before appending new rows."...

Notez qu’apres avoir nommé les colonnes, il n’est pas nécessaire de
confirmer ou d’enregistrer les modifications. Ne perdez pas votre
temps a rechercher un bouton Enregistrer. Toutes les modifications
sont immédiatement transmises a Google Drive lorsque vous passez
d’une cellule a la suivante.

Tout est prét maintenant du ¢6té de Google Docs pour que le sketch
transmette les valeurs mesurées a la feuille de calcul.

Informations Temboo

Vous avez ici aussi besoin d’un compte Temboo pour le sketch
Arduino. Comme je vous ai déja expliqué la procédure de création

I

20

=)

554 Partie Il : Les montages

es.

2015 Eyrol

ght ©

Copyri

d’un compte Temboo dans le montage précédent, je n’y reviendrai
pas ici.

Sketch Arduino

Intéressons-nous maintenant a Arduino, puisque c’est la que tout se
passe. Lorsque vous créez un nouveau sketch, n’oubliez pas 1'indis-
pensable fichier d’en-téte TembooAccount :

4 Figure 21-8

TembooAccounth § i)
Fichier d'en-téte TembooAccount

#define TEMBOO ACCOUNT "srikbartmann”
Z #define TEMBOO APP _KEY NAME " P
i #define TEMBUO_APP_KEY ™I = b

Passons maintenant au sketch.

Déclaration globale

#include <Bridge.h>
#include <Temboo.h>
#include "TembooAccount.h"

nail,com";

const String GOOGLE_USERNAME = "votre usernames
const String GOOGLE_PASSWORD = "votre rd";
const String SPREADSHEET TITLE = "MaFeuilleDeCalculArduine";

const unsigned long RUN_INTERVAL MILLIS = 2000; .

unsigned long lastRun = (unsigned long) - RUN_INTERVAL MILLIS;

Vous devez saisir votre nom d’utilisateur et votre mot de passe
Google.
Initialisation
void setup() {
Serial .begin(9600);
delay(4000);
while (!Serial);
Serial.print("Initialisation de la passerelle...");
Bridge.begin();
Serial.println("Terminés");

}

L’initialisation s’effectue de la méme fagon qu’au montage précédent
consacré a Twitter et ne nécessite donc pas plus d’explications.

Montage 21 : Temboo et la carte Yin - Tableur Google 555

yrolles.

5E

201

opyright ©

C

556

Détermination de la date et de I’heure
Le code suivant vous paraitra familier :

String getDateTime() {

Process time;

time.runShellCommand("date");

String timeStamp = "°;

while (time.available()) {
char ¢ = time.read();
timeStamp += ¢;

}

return timeStamp;

}

Envoi des valeurs mesurées a la feuille de calcul

Les valeurs mesurées peuvent maintenant étre transmises a la feuille
de calcul. Commengons par la premiére partie de la fonction loop :

void loop() {

unsigned long now = millis();

if (now - lastRun >= RUN_INTERVAL MILLIS) {
lastRun = now;
Serial.println("Mesure de la valeur par le capteur..."};
int analogValue0 = analogRead(A0);
int analogValuel = analogRead(A1);
int analogValue2 = analogRead(A2);

Serial.println("Inscription de la valeur dans la feuille de calcul...");
TembooChoreo AppendRowChoreo; // Création de 1’cbjet Choreo
AppendRowChoreo.begin(); // Activation de 1’objet Choreo

Pour commencer, la fonction millis consigne la durée d’exécution du
sketch en millisecondes dans la variable now. En outre, I’instruction if
a la ligne suivante contrdle 1’intervalle auquel les données calculées
doivent €tre transmises. Avant de commencer a échantillonner les
données analogiques, nous allons afficher un message sur le moniteur
série, instancier un objet Choreo intitulé AppendRowChoreo et I’activer au
moyen de la méthode begin.

AppendRowChoreo. setAccountName (TEMBOO ACCOUNT);
AppendRowChoreo. setAppKeyName (TEMBOO_APP_KEY_NAME);
AppendRowChoreo. setAppKey(TEMBOO_APP_KEY);

Le code précédent transmet les autorisations requises a2 Temboo. La
méthode setChoreo permet d’identifier la méthode AppendRow dans
I’arborescence de la bibliothéque.

Partie Il : Les montages

yrolles.

D

-

201

opyright «

C

// to run (Google > Spreadsheets > AppendRow)
AppendRowChoreo.setChoreo("/Library/Google/Spreadsheets/AppendRow);

L’authentification Google doit maintenant avoir lieu :

AppendRowChoreo.addInput ("Username”, GOOGLE_USERNAME);

AppendRowChoreo.addInput(“Passworc”, GOOGLE_PASSHWORD);

Pour s’assurer que les données sont transmises a la feuille de calcul
voulue dans Google Docs, son titre est précisé a I’aide de la ligne :

AppendRowChoreo.addInput("TitreDelaFeuilleDeCalcul”, SPREADSHEET TITLE);

Afin que les données, c’est-a-dire la date et ’heure, ainsi que les
données analogiques mesurées, soient correctement placées dans la
feuille de calcul, elles doivent étre séparées par des virgules. Nous
utilisons donc la variable du type String et nous insérons successive-
ment les différentes informations :

String rowData(getDateTime());

rowData += ",";
rowData += analogValueO;

rowData += ",";
rowData += analogValuei;

rowData += ",";
rowData += analogValue2;

Une information rowData a 1’apparence suivante :

Date et heure, A0, Al, AZ

Lorsque les informations ont été correctement assemblées, elles
peuvent étre insérées au moyen de la méthode addInput & 1’élément qui
sera transféré :

AppendRowChoreo.addInput ("RowData”, rowData);

Pour finir, la méthode run est activée pour transmettre les données.

unsigned int returnCode = AppendRowChorec.run();

La méthode run renvoie une valeur d’état qui vous donne des infor-
mations sur la transmission réalisée. Si la valeur o est renvoyée, cela

Montage 21 : Temboo et la carte Yin - Tableur Google

virolles

015 E

20

(&)

right

!

Copy

signifie que la transmission des données s’est déroulée sans incident.
Dans le cas contraire, 1’objet AppendRowChoreo permet de consulter les
données d’erreur au moyen de la méthode available en les affichant
dans le moniteur série. Voici donc la fin du code du sketch :

if (returnCode == 0) {
Serial.println("Success! Appended " + rowData);
Serial.println("");

} else {

while (AppendRowChoreo.available()) {
char ¢ = AppendRowChoreo.read();
Serial.print(c);

}

}
AppendRowChoreo.close();

}
}

Pour conclure ce montage, jetons un coup d’eeil aux données qui ont
été transférées dans la feuille de calcul, ainsi qu’au graphique qui a
été créé a partir de ces données :

Figure 21-9 p- A 8 c D
Valeurs analogiques AO, AT et A2 1 Time Sensor AD Sensor A1 Sensor A2

i Thu Feb 20

dans la feuille de calcul B |igrd o Cer o 2 . 3
. ThuFeb20

© 18:57:09 CET 2014 88 236 715
3 Thu Feb 20

18:57:17 CET 2014 409 280 773
. ThuFeb20

© 18:57:24 CET 2014 409 N 781
o ThuFeb20

18:57:32 CET 2014 125 297 799
= Thu Feb 20

18:57:39 CET 2014 0 468 774
4 Thu Feb 20

18:57:47 CET 2014 178 468 725
= Thu Feb 20

18:57:55 CET 2014 178 536 63
i Thu Feb 20

18:58:03 CET 2014 1 695 527

Sélectionnez toutes les cellules a I'aide de la souris afin de les mettre
en surbrillance. Puis choisissez la commande Insertion>Graphique
afin de présenter les valeurs sous la forme d’un joli graphique.

558 Partie Il : Les montages

Enregistrement des variables analogiques A0, A1, A2

aEEmE

a00

400

400
0\ o ,\1 ,.& ,51_ et s 5‘3 o _:\\ = < T bﬂ‘
RPNt L R i
6T 6P 6P 0P 2P 0P 0P 6P 2P P 6P 6P »T 6P
R s R A A A R Pt
Time

Les courbes bleu, rouge et orange correspondent aux valeurs mesu-
rées sur les entrées analogiques AQ, Al et A2. Lorsque le pointeur de
la souris survole les courbes, les données correspondant aux diffé-

rents points sont affichées dans une infobulle.

Qu’'avez-vous appris ?

* Vous avez maintenant un apercu de ce que vous pouvez faire
avec Google Docs.

* Vous avez collecté des données et vous les avez transférées en
temps réel dans un tableau ou une feuille de calcul.

* Vous avez créé un graphique a partir des données disponibles de
facon a ce que les valeurs analogiques mesurées soient immédia-
tement présentées sur un axe chronologique.

Exercice complémentaire

Collectez des données a partir de plusieurs capteurs sur une longue
période et a différents endroits de votre logement.

< Figure 21-10
Valeurs analogiques A0, A1 et A2
dans un graphique

Montage 21 : Temboo et la carte Yin - Tableur Google

559

'$9](04A3 §T0Z @ 1ybLAdOD

Réalisation d'un shield

Ce montage est consacré 4 la réalisation et a ’assemblage d’un shield
de prototypage. Vous pouvez bien siir vous procurer de tels shields
universels préts a ’emploi ou a souder aupres de diverses boutiques
en ligne si vous n’étes pas comme moi attiré par le bricolage. Il m’est
évidemment arrivé d’en acheter un, mais j’ai pensé que je pouvais
essayer de le fabriquer tout seul. I’espere ainsi vous donner envie de
créer des choses par vous-méme, de les souder et enfin de les assem-
bler. La figure suivante montre un shield de prototypage prét a
I’emploi de la société Sparkfun. Celui-ci possede deux LED et deux
boutons-poussoirs. Au centre une petite plaque d’essais peut
accueillir des circuits plus petits. Elle s’avére parfaite pour réaliser
des circuits sur un espace réduit.

Vous pouvez bien entendu souder également des circuits 2 demeure
sur un shield sans plaque d’essais pour les brancher si besoin est sur
la carte mere, de maniere a disposer d’un composant prét a I’emploi.
Je me suis construit des shields les plus divers non seulement parce
qu’ils me servent en cas de besoin et sont treés utiles pour les démons-

Montage

22

< Figure 22-1
Shield de prototypage de la société
Sparkfun

561

Copyright © 2015 Eyrolles.

562

Figure 22-2 p-
Shield de prototypage prét
al'emploi

trations, mais aussi parce que j’ai plaisir a présenter quelque chose de
fini sans passer trop de temps sur les composants et cavaliers flexi-
bles. A la fin de cette instruction de montage, je vous montrerai
comment construire un dé électronique sur un shield.

Shield de prototypage
fait maison

Avec un peu d’adresse, vous devriez pouvoir construire vous-méme
le shield suivant. Ce n’est pas trés compliqué et je suis siir que vous y
parviendrez. La figure 22-2 illustre le produit fini.

Hormis les connecteurs femelles empilables, il n’y a aucun compo-
sant sur la carte. C’est 4 vous de jouer et de faire en sorte que les
circuits que vous avez imaginés y trouvent leur place.

De quoi avons-nous besoin ?
Outils

Une station de soudage est naturellement idéale, mais un fer a souder
peut également convenir si vous n’étes pas trés riche. Une petite
pince a becs coudés et du fil de soudure sont par ailleurs nécessaires.

Partie Il : Les montages

Copyright © 2015 Eyrolles.

<« Figure 22-3

un shield de prototypage
Matériel
Passons maintenant au matériel nécessaire a la réalisation du shield. Il
s’agit d’une carte de circuit imprimé perforée et d’un jeu de connec-
teurs femelles empilables, que vous pouvez vous procurer auprés de
la société Watterott.
<« Figure 224

Matériel nécessaire

Les connecteurs femelles empilables sont livrables en jeu de quatre
pieces (2 x 6 broches + 2 x 8 broches).

Montage 22 : Réalisation d'un shield

Qutils nécessaires pour construire

563

Copyright © 2015 Eyrolles.

Figure 22-5 p
Carte de circuit imprimé perforée

Figure 22-6 p
Vue partielle grossie d'une carte
de circuit imprimé perforée

Bon sang, rien ne va !

Commencons par la carte de circuit imprimé perforée, en vente sous
différents formats sur le marché. Ma carte mesure 100 x 100 mm et
ressemble a celle de la figure 22-5.

La carte se compose d’un support isolant, par exemple en bakélite ou
en résine époxy, et d’une couche de cuivre conductrice. Comme son
nom l'indique, la carte de circuit imprimé perforée présente une
multitude de trous régulierement espacés, bordés d’une couche de
cuivre circulaire. Le fil de raccordement d’un composant est enfilé du
recto vers le verso de la carte et fixé par soudure a la couche de
cuivre.

Cette vue grossie montre la distance entre les trous, qui est en régle
générale de 2,54 mm. Et c’est la que les choses commencent a se
compliquer. Si tout va bien cOté carte de circuit imprimé perforée,
cette norme n’est en revanche pas respectée du tout cdté carte
Arduino, et je ne sais pas pourquoi les développeurs I’ont voulue
différente.

J’ai développé ici le shield de prototypage avec le logiciel de CAO
spécifique a 1'électronique Target 3001! et j’y ai reporté les distances
entre les trous.

Partie Il : Les montages

yrolles,

015 E

2

ght ©

Copyri

< Figure 22-7

99099 EEREER Vue de haut du shield
[Analog in ‘ I Power de prototypage créée avec
Target 3001!

3., EJ_E\M
T -

! Digital I/O Digital /O
1 EECEEEER FREEREED

Les dimensions de la carte de circuit imprimé perforée sont alors les
suivantes :

» largeur: 64 mm ;

¢ hauteur : 53 mm.

Maintenant un peu de calcul pour comprendre les éloignements des
différents trous les uns des autres : les deux rangées du haut pour
Analog In et Power, de 6 trous chacune, ne posent aucun probléme
car elles sont séparées par un trou libre, autrement dit I’écart est de
2 x 2,54 mm = 5,08 mm. Cela ne pose pas de probleme pour la carte
de circuit imprimé perforée. Passons aux rangées du bas pour Digital
I/0O. Pour une raison que jignore, I'écart entre ces deux rangées,
3,81 mm environ, n’est méme pas un multiple de 2,54 mm mais est
inférieur a deux fois 2,54 mm (soit 5,08 mm). Il n’est donc pas
possible en I’état d’utiliser les connecteurs femelles et leurs broches
sous cette forme. On voit cependant sur le shield fini que je les ai
quand méme soudés dans les trous de la carte de circuit imprimé.

Pouvez-vous me dire comment vous [laites pour adapter le shield
fabriqué aux connecteurs de la carte Arduino ? Il faut tordre fortement
les broches !

Exact, et c’est ¢a la solution du probléme. Il faut déformer un peu les
broches du connecteur femelle de droite. On voit, sur la figure 22-8,
ces broches tordues vers la gauche.

Montage 22 : Réalisation d’un shield 565

Figure 22-8 p
Broches des connecteurs femelles
numeérigues

Figure 22-9 p

Avec cet écart

de 2 2,54 mm=5,08 mm
entre les broches, le shield

ne va pas sur la carte Arduino.

Figure 22-10 p

Les broches ayant été tordues

en conséquence, le shield

va désormais sur la carte Arduino.

566

Les deux figures « Avant » (22-9) et « Apres » (22-10) permettent de
mieux comprendre ce qu’il faut faire.

Digital 1/0

i |
T TR

2 54 mm 5,08 mm

Digital 1/0

Digital /O Digital I/O

11} WM

_.‘__.|

——

234mm 3,81 mm

Les broches sont tordues vers la gauche au moyen de la petite pince
dont jai parlé au début. Procédez avec soin et ne tordez pas les
broches dans tous les sens car elles peuvent finir pas casser. Ne crai-
gnez rien ! Je I’ai fait moi-méme et ce n’est pas sorcier. La déforma-
tion des broches se fait en deux étapes. On tord d’abord la broche vers
la gauche, puis on descend 1égérement la pince et on tord 4 nouveau
la broche vers la droite. On obtient ainsi une orientation verticale qui
est juste un peu décalée vers la gauche. La broche doit alors se
trouver au-dessus d’un trou du connecteur femelle. Procédez de
préférence de gauche en droite en commencant par celle du bout.

Premier exemple d'application

Vous vous demandez peut-&tre a quoi bon tout ¢a, aussi vais-je vous
donner comme promis un premier exemple d’application intéres-

-

sante. Le montage n° 8 a consisté a créer un dé électronique. Un

Partie Il : Les montages

v
Q

E Y rol

015

2

Copyright ©

premier projet valorisant consisterait donc a monter ce dé sur un
shield pour qu’il soit disponible & tout moment et puisse étre utilisé
directement en cas de besoin. La figure suivante vous en donne un
avant-gofit et vous incitera peut-étre a essayer.

< Figure 22-11
Dé électronique sur un shield

Je vous donne ici les informations nécessaires pour que tout fonc-
tionne parfaitement.

Composants nécessaires

7 LED rouges

7 résistances de 330 Q

1 résistance de 10 k€2

1 bouton-poussoir

1 shield de prototypage (carte de circuit
imprimé perforée + connecteurs femel-
les empilables)

Montage 22 : Réalisation d'un shield 567

Code du sketch

Vous pouvez bien entendu réutiliser le code du sketch du montage
n’ 8 du dé€ électronique, car le circuit n’a pas été modifié technique-
ment.

Réalisation du shield

Je me suis servi du logiciel CAD Target 3001! pour construire le
shield. Vous pouvez aussi construire le circuit non pas sur une carte
de circuit imprimé perforée, mais sur une carte que vous aurez fabri-
quée vous-méme a cet effet. Les manieres de fabriquer ces cartes sont
trés diverses. Vous pouvez par exemple les graver chimiquement ou
encore utiliser une fraise.

La figure 22-12 montre le shield du co6té de la face supérieure, la o
les composants se trouveront. Les pistes conductrices se trouvent sur
la face inférieure, qui est bien siir la symétrie de celle ou sont les
composants.

Figure 22-12 p
Carte du dé électronique coté 000000

composants

Dé électronique

7 LED rouges|

>

Bouton-poussair

Résistance pull-down 10 kQ2
7 résistanaes

wa

0
00000000I00000000

Erik Bartmann

568 Partie Il : Les montages

Copyright © 2015 Eyrolles.

Pour que vous puissiez voir le trajet des pistes conductrices soudées,
voici enfin la face inférieure de la carte finie.

Pour des informations plus précises concernant le soudage, je vous
invite a consulter les tutoriels existant sur Internet.

Pour aller plus loin

Si vous envisagez de construire plusieurs de ces shields avec toutes sortes de
circuits et si vous ne voulez pas toujours avoir a tordre les broches du connec-
teur femelle, vous pouvez fabriquer une fois pour toutes un shield qui servira
quasiment de carte adaptatrice. Vous posez alors dessus les shields, dont les

Montage 22 : Réalisation d'un shield

<« Figure 22-13
Carte du dé électronique,
vue du dessous

<« Figure 22-14
Pistes conductrices soudées du dé
électronique

569

Carte Arduino + carte adaptatrice

570

Figure 22-15 p

+ shield

trous sont bien entendu espacés de 2,54 mm. Vous n'avez ainsi plus besoin de
tordre les différentes broches.

La disposition des composants serait par conséquent celle illustrée a
la figure 22-15.

Carte adaptatrice

Carte Arduino

Toute chose ayant ses avantages et ses inconvénients, c’est 2 vous
qu’il revient en définitive de choisir. Le principal est que vous ayez
plaisir & expérimenter et que vous trouviez votre voie.

Pour aller plus loin
Si vous ne souhaitez pas empiler plusieurs shields les uns sur les autres, vous
pouvez, méme pour la carte adaptatrice, renoncer aux connecteurs femelles
empilables. Il existe des barrettes avec des broches trés longues (13 mm
environ) d'un coté.

Vous pouvez bien siir utiliser ces barrettes, cela peut méme vous
cofiter un peu moins cher.

Partie Il : Les montages

Annexe

Référentiel
des instructions

Cette annexe vous donnera un bref apercu des instructions utilisées.
Pour en savoir plus, allez sur le site Arduino http://www.arduino.cc/
fr/Main/Reference. Vous y trouverez des instructions et des informa-
tions qui ne figurent pas faute de place dans ce livre.

Structure d'un sketch

La structure d’un sketch Arduino doit impérativement présenter les
deux fonctions suivantes.

setup

La fonction setup est exécutée une seule fois en début de sketch et
sert généralement a initialiser, autrement dit a doter de valeurs
initiales, des éléments de programme tels que des variables. C’est ici
que les broches numériques sont par exemple programmées comme

entrées ou sorties par pinMode.

loop

La fonction loop peut étre comparée, comme son nom I’indique, & une
boucle en perpétuelle exécution. Elle est pratiquement la force
motrice de chaque sketch et contient toutes les instructions néces-
saires, telles que I'interrogation continuelle de broches, pour pouvoir
réagir le cas échéant a des influences extérieures.

5N

572

Structures de controle

Les structures de contréle permettent d’influer sur le déroulement
d’un sketch et réagissent aux conditions exprimées : si ceci ou cela
est vrai, alors je fais quelque chose.

if
L’instruction if est typique de la catégorie. Sa syntaxe est la
suivante :

if(<condition>)

/ alors exécuter cette ligne

Si plusieurs instructions doivent étre exécutées, elles doivent étre
réunies dans un bloc encadré par une paire d’accolades.

If(<condition>) {

alors exécuter cette 1 LEneg

}

Si la condition formulée est évaluée comme vraie, alors 1'instruction
ou les instructions suivantes sont exécutées.

if-else

L’instruction if-else est une extension de I'instruction if. Si la condi-
tion formulée est évaluée comme fausse, alors 1’option else est
choisie.

if(<condition>)

// si vrai alors exécuter cette ligne
else

' si faux alors exécuter cette ligne

Un bloc constitué de séquences d’instructions peut ici aussi étre
utilisé sur le mode précédemment indiqué.

switch-case

La structure switch-case sert principalement quand une variable
entiére est susceptible de prendre un certain nombre de valeurs
connues a priori. Une instruction if pourrait suffire mais la variante
switch-case est considérée ici comme plus élégante.

Annexe : Référentiel des instructions

switch(<variable>){
case <valeuri>:
/ instructions
break;
case <valeur2s:

// instructions
break;

default:
// instructions

}

Les nombres suivis d’un deux-points sont comparés a la valeur de la
variable et, lorsqu’il y a égalité, les instructions qui suivent sont
exécutées. L’instruction break entraine une interruption dans I'exécu-
tion de la structure et donc la sortie de cette structure. La ligne default
est optionnelle et finit par étre atteinte quand aucune des lignes case
précédentes n’est vérifiée. Elle est en tout point comparable a 1’ alter-
native else dans une construction if-else.

Boucles

Les boucles servent en programmation a exécuter en permanence
certaines instructions. La fonction loop en est un exemple. Il est
évidemment possible de programmer ses propres boucles.

for

La boucle for est toujours utilisée quand on sait, au moment d’entrer
dans la boucle, combien de fois elle doit s’exécuter.

for(<initialisationy; <condition>; <incrémentation>)
<instructionXYZ>;//cette ligne est contrdlée par la boucle for

Les points indiqués dans 'en-téte de la boucle ont la signification
suivante :

¢ initialisation : définition de la valeur initiale pour la variable de
contrdle de la boucle ;
¢ condition : nombre d’itérations (nombre de répétitions) ;

* incrémentation : adaptation des variables indiquées dans I’initiali-
sation.

Annexe : Référentiel des instructions

573

574

Voici un exemple :

for(int i = 0; 1 < 10; i++)
Serialprintln(i); // exécution 10 fois

while

Contrairement a la boucle for, seule une condition est formulée dans
I’en-téte de la boucle while. Cela implique, par exemple, que la valeur
de la variable figurant dans la condition doit étre modifiée dans le
corps de la boucle, faute de quoi vous aurez une boucle sans fin.

while(<conditions){
<instructionXYZ>; // cette ligne sera controlée via la
// boucle while
<update>; // tres important, pour éviter une boucle sans fin
}

Ce type de boucle est utilisé principalement quand on ne sait pas
exactement au début de la boucle combien de fois elle doit s’exécuter.

break

Les boucles for et while, qui s’exécutent tant que la condition formulée
le permet, disposent également de ce que j’appelle une «issue de
secours », L'instruction break permet en effet de quitter prématuré-
ment une boucle, le sketch reprenant alors aussitot apres celle-ci.
for(i = 0; i < 10; i++){

if(i » 5) // sortie prématurée de la boucle for si i > 5

break;
Serial.println(i);

Constantes importantes

La programmation d’un sketch nous amene a cdtoyer ce qu’on
appelle des constantes. Leurs noms, bien compréhensibles par 1’étre
humain, cachent cependant des valeurs quelque peu mystérieuses.

INPUT

La constante INPUT est utilisée pour programmer les broches numéri-
ques quand il s’agit d’établir le sens de circulation des données. Si

Annexe : Référentiel des instructions

/rolles.

2015 Ey

\

Copyright €

une broche numérique doit servir d’entrée, cette constante est trans-
mise comme deuxieme argument a l’instruction pinMode, dont je
parlerai plus tard dans ce référentiel. La ligne suivante configure la
broche 13 comme entrée :

pinMode(13, INPUT);

OUTPUT

La constante OUPUT sert également pour programmer les broches
numériques quand il s agit de définir une broche numérique comme
sortie. La ligne suivante configure la broche 13 comme sortie :

pinMode(13, OUTPUT);

HIGH

La constante HIGH est par exemple utilisée pour mettre une sortie
numérique au niveau HIGH. La ligne d’instruction suivante met la
broche 8 au niveau HIGH :

digitalWrite(8, HIGH);

LOW

La constante LOW est par exemple employée pour mettre une sortie
numérique au niveau LoW. La ligne d’instruction suivante met la
broche 8 au niveau LOW :

digitalWrite(s, LOW);

true

La constante true sert par exemple dans des conditions gouvernant
des structures de contrdle :

if(a == true)..

Si la variable booléenne a prend la valeur true, 1’instruction qui suit
I’instruction if est exécutée.

Annexe : Référentiel des instructions

575

576

false

La constante false est par exemple utilisée dans des conditions
gouvernant des structures de contrdle :

if(a == false)..

Si la variable booléenne a prend la valeur false, I’instruction qui suit
Iinstruction if est exécutée.

Fonctions

Fonctions concernant les broches
numeériques

pinMode

Avec T'instruction pinMode, on peut programmer une broche numé-
rique pour qu’elle serve soit d’entrée soit de sortie. Les constantes
INPUT et 0UTPUT, dont nous venons de parler dans ce référentiel, sont ici
utilisées.

digitalWrite

L’instruction digitallirite permet d’une part d’influer sur le niveau de
sortie d’une broche numérique programmée comme sortie avec
oUTPUT. Les constantes HIGH et LoW décrites plus haut dans ce référentiel
sont ici utilisées. Elle active d’autre part la résistance pull-up interne
sur une broche numérique programmée comme entrée avec INPUT.

digitalRead

L’instruction digitalRead permet de connaitre 1’état (HIGH ou LOW) d’une
broche numérique. La ligne suivante lit la valeur de la broche appelée
inputPin et sauvegarde le résultat dans la variable digvalue :

digValue = digitalRead(inputPin};

Annexe : Référentiel des instructions

Fonctions concernant les broches
analogiques

analogRead

L’instruction analogRead permet d’interroger une entrée analogique,
une valeur comprise entre (0 et 1023 est alors délivrée en retour. Ce
domaine de valeurs est basé sur la résolution de 10 bits du convertis-
seur analogique/numérique.

La ligne suivante lit la valeur analogique de la broche appelée

inputPin et la sauvegarde dans la variable anvalue :

anValue = analogRead(inputPin);

analoghrite

L’instruction analoghrite permet d’agir sur une sortie numérique en
utilisant la MLI (modulation de largeur d’impulsions). Il ne s’agit pas
ici d’un vrai signal analogique mais d’un signal numérique avec un
certain rapport cyclique (voir a ce sujet la section « Que signifie
MLI ? » du chapitre 10, page 214).

Fonctions concernant la durée

Certaines fonctions comportent un composant temporel.

delay

L’instruction delay sert a interrompre 1’exécution du sketch pendant le
temps indiqué, la valeur transmise étant interprétée comme des milli-
secondes. La ligne suivante provoque une attente de trois secondes :

delay(3000);

delayMicroseconds

Si I'instruction delay est trop imprécise du fait que la valeur est inter-
prétée comme une indication en millisecondes, 1’instruction delayMi-
croseconds peut étre utilisée. L’exécution du sketch est alors
interrompue pendant le temps indiqué, la valeur étant interprétée
comme des microsecondes. La ligne suivante provoque une attente de
cent microsecondes :

delayMicroseconds(100);

Annexe : Référentiel des instructions

578

millis

L’instruction millis renvoie une valeur indiquant, en millisecondes,
le temps écoulé depuis le début du sketch. Cette valeur atteint, au
bout de 50 jours environ, une taille telle que la variable utilisée pour
la sauvegarde déborde et que le comptage recommence a (.

Nombres aléatoires

random

L’instruction random permet de générer des nombres pseudo-aléa-
toires.

random(10);// génération de nombres aléatoires compris entre 0 et 9
random(10, 20); / :

énération de nombres aléatoires compris entre
// 10 et 19

A noter que le maximum indiqué n’est jamais inclus.

randomSeed

L’instruction randomSeed sert a réinitialiser la génération des nombres
aléatoires. Ainsi, ce ne sont pas toujours les mémes nombres aléa-
toires qui sont générés.

ramdomSeed(analogRead(0));

L’entrée analogique disponible broche 0 est utilisée et renvoie des
valeurs non prévisibles a randomSeed.

L'interface série

Pour ce qui est de 1'interface série, qui est abordée via 1’objet Serial,
différentes méthodes sont proposées.

begin
La méthode begin initialise I’objet Serial avec la vitesse de transfert
souhaitée.

Serial .begin(9600); //vitesse de transfert de 9 600 bauds
print

La méthode print envoie un message a I’interface série, une fois sans
et une fois avec saut de ligne

Annexe : Référentiel des instructions

Serial.print("lci parle Arduino !"); // sans saut de ligne
Serial.println("Ici parle Arduino III"}; // avec saut de ligne

available

La méthode available vérifie que les données a récupérer aupres de
I’interface série sont bien disponibles.

if(Serial.available() > 0) {.}

read

La méthode read lit les données de 1'interface série.

data = Serial.read();

Directives de prétraitement

Deux directives de prétraitement, qui obligent le compilateur a se
comporter d’une maniére particuliére, ont servi dans notre sketch.

#include

La directive include ordonne au compilateur d’intégrer la bibliothéque
indiquée dans le sketch en cours. S’agissant d’une directive, la ligne
ne se termine pas par un point-virgule. Par exemple :

#include <Stepper.h>

#tdefine

La directive define permet de donner un nom & des constantes. Le
compilateur remplace le nom par la définition indiquée partout dans
tout le sketch lors de la compilation. S’agissant d’une directive, la
ligne ne se termine pas par un point-virgule. Par exemple :

#define ledPin 8

Annexe : Référentiel des instructions

579

'$9](04A3 §T0Z @ 1ybLAdOD

Index

A
adresse
IP 476
MAC 477
afficheur
LCD 413
sept segments 383
algorithme 185
alimentation
électrique 31
externe 173
amplificateur 94
analogique 60
anode 91
API 349
Arduino
alimentation électrique 31
environnement de développement 36, 37, 48
famille 11
microcontroleur 27
ports d’entrées-sorties 33
structure 27
Arduino Due 22
Arduino Esplora 16
Arduino Leonardo 13
Arduino LilyPad 21
Arduino Mega 2560 15
Arduino Nano 20
Arduino Uno 12
Arduino Y'n 24
Arefl 496
ATmega328 3
ATTinyl3 99
auto-induction 128

bargraphe 270

BC557C 98

bibliotheque 347

bit 188

Boarduino V2.0 18

boucle 195
avec condition de sortie en queue 198
avec condition de sortie en téte 195
for 196, 271
while 197

Bounce 266

bouton-poussoir 102, 247, 259
miniature 103
symbole 103

breadboard 155

broche MLI 34

buzzer piézoélectrique 112
symbole 112

C

C/C++ 34
cible 157
capteur 231

de température 444
carte 153
cathode 91
cavalier flexible 160
CC 71
champ électrique 85
champ magnétique 105
chronogramme 254
circuit 74

avec transistors 125

581

yrolles.

5 E

201¢

Copyright €

capacitif 123
condensateur électrolytique 125

condensateurs de filtrage 124
montage en parallele 124

montage en série 123
de travail 96
facteur d’amplification 126
imprimé 131
intégré 3, 99
résistif 115

diviseur de tension 120

montage en parallele 118

montage en série 116

simple 115
classe 353
clavier numérique 397
clignotement 247
commentaires 202

sur plusieurs lignes 203

sur une ligne 202
commultateur électronique 94
compilateur 35
composant

actif 78

assemblage 153

électronique 78

passif 78
concaténation 428
condensateur 85

a film plastique 86

céramique 86

électrolytique 86

non polarisé 86

polarisé 86
conductance 73
constructeur 357, 406
contact normalement fermé

symbole 102, 103
coupleur de piles 175
courant 69

alternatif 72

continu 71

de commande 96

de travail 96
CPU 6

D

DC 71
dé électronique 327

débogage 220
débordement 251
déclaration 221, 224
delay 221, 256
détecteur de lumiere 369
différence

de charge 70
de potentiel 70

digitalRead 231
digitalWrite 221
diode 90

a effet tunnel 94

de roue 449

de roue libre 128

électroluminescente 100
symbole 101

symbole 91

Zener 94

diviseur de tension 120
données 186

E

types 188

EEBoard 180
électron 68
électronique 67
entrée 62

analogique 62, 213
numérique 62, 211

erreur

chronologique 66
de syntaxe 65
logique 65

exces de charge 70
extracteur de circuit intégré 168

F

fer & souder 178
feu de circulation 305
fichier

d’en-téte 359, 404
de classe 361

fil de soudure 179
flux d’électrons 68
Fritzing 131, 240

circuit imprimé 133, 144
connexions 139
enchevétrement 142

fils conducteurs courbes 139

582

Index

pyright €

Cc

interface 132

PCB 145

platine d’essai 133

point de flexion 143

Routage 146

vue schématique 133, 140
Fritzing Creator Kit 148
Fritzing Fab 147

G

gabarit de pliage pour résistances 176
générateur de signaux rectangulaires 88
germanium 90

H

Hello World 221
HID 13

IC 3, 99

IDE 36

if-else 231

inductance 128
initialisation 221, 224
Installation de I’environnement de développement 37
instanciation 356
instruction 200
interface série 219
interrupteur 101
interruption 6

isolant 73

ISR 9

L

langage orienté objet 280
LDR 82, 370

LED 100, 271
LiquidCrystal 419

LM35 444

loi d’Ohm 74

M

machine a états 305
manque de charge 70
masque de ré 476

matériel 165
matrice de LED 151

mémoire
de données 7
de programme 7
flash 7
SRAM 8
méthode 351
microcontréleur 3
applications 4
ATmega328 3
bus de données 6
controleur d’interruption 9
mémoire 7
ports d’entrées-sorties 8
structure 5
unité centrale 6
microfarad 86
milliampére 70
millis 247
MLI 216
modulo 265
montage
en parallele 124
en série 123
moteur 104
4 courant continu
symbole 105
électrique 104
pas-a-pas 106, 431
symbole 107
MSB 190
multimétre 76, 163
numérique 169

N

nanofarad 86

NPN 98

NTC 83
symbole 84

numérique 60

0

opérateur conditionnel 321
oscilloscope 171

P

particule élémentaire 68

passerelle 477

patte de raccordement 101

photorésistance 82, 370
symbole 82

Index

583

yrolles.

5 E

201¢

Copyright €

Physical Computing VI
picofarad 86
piézo 459
piézoélectrique 112
pile 70
pince 165
a dénuder 166
diverses 165
pinMode 221
plaque d’essais 155
PNP 98
polling 9
pompe & dessouder 179
port
analogique 213
numérique 211
USB 32
ports d’entrée ou de sortie 33
potentiomeétre 81, 82
symbole 82
principe ETS 33
Processing 376, 445
programmation 185, 211
orientée objet 350
programme 185
protocole 475
prototypage VII
PTC 83
symbole 84

Q

quantité de charge 86

R

random 283
rebond 259
recommandations XII
registre
a décalage 286
de port 495
relais 103
schéma 104
symbole 103
réseau 473
résistance 73, 78

a coefficient de température négatif 83
i coefTicient de température positif 83

ajustable 81, 82
code couleur 79
fixe 78

photosensible 370
pull-down 242
pull-up 243
R2R 502
thermosensible 83
variable 81

routine d’interruption 9

S

semi-conducteur 73, 90, 95
sens du courant 77
physique 77
technique 77
servomoteur 109, 431
symbole 110
shield 410, 439, 489, 495, 561
shiftOut 285
signal
analogique 489
numérique 489
silicium 90
sketch 37, 185, 221
déclaration 205
initialisation 205
loop 205
setup 205
structure 204
transmission 56
son 459
sortie 62
analogique 63, 216
numérique 63, 212
soudure a I’étain 178
Stepper 439
structure de controle 199
surcharge 358

systéme
binaire 188
décimal 189
T
tableaun 271
bidimensionnel 327, 331
TCP/IP 475
température 443
tension 70
thermistance 83
NTC 84
PTC 84

)

Index

yrolles.

2015

Copyright €

tournevis 166
traitement des données 187
transistor 94
base 96
collecteur 96
émetteur 96
troisiéme main 168

U

unité centrale 5, 6

v

variable 187
volt 70

W
wrapper 349

Index

585

	Flash_page613_image1
	Flash_page613_image2
	Flash_page613_image3
	Flash_page613_image4
	Flash_page613_image5
	Flash_page613_image6
	Flash_page613_image7
	Flash_page613_image8
	Flash_page613_image9
	Flash_page613_image10
	Flash_page613_image11
	Flash_page613_image12
	Flash_page613_image13
	Flash_page613_image14
	Flash_page613_image15
	Flash_page613_image16
	Flash_page613_image17
	Flash_page613_image18
	Flash_page613_image19
	Flash_page613_image20
	Flash_page613_image21
	Flash_page613_image22
	Flash_page613_image23
	Flash_page613_image24
	Flash_page613_image25
	Flash_page613_image26
	Flash_page613_image27
	Flash_page613_image28
	Flash_page613_image29
	Flash_page613_image30
	Flash_page613_image31
	Flash_page613_image32
	Flash_page613_image33
	Flash_page613_image34
	Flash_page613_image35
	Flash_page613_image36
	Flash_page613_image37
	Flash_page613_image38
	Flash_page613_image39
	Flash_page613_image40
	Flash_page613_image41
	Flash_page613_image42
	Flash_page613_image43
	Flash_page613_image44
	Flash_page613_image45
	Flash_page613_image46
	Flash_page613_image47
	Flash_page613_image48
	Flash_page613_image49
	Flash_page613_image50
	Flash_page613_image51
	Flash_page613_image52
	Flash_page613_image53
	Flash_page613_image54
	Flash_page613_image55
	Flash_page613_image56
	Flash_page613_image57
	Flash_page613_image58
	Flash_page613_image59
	Flash_page613_image60
	Flash_page613_image61
	Flash_page613_image62
	Flash_page613_image63
	Flash_page613_image64
	Flash_page613_image65
	Flash_page613_image66
	Flash_page613_image67
	Flash_page613_image68
	Flash_page613_image69
	Flash_page613_image70
	Flash_page613_image71
	Flash_page613_image72
	Flash_page613_image73
	Flash_page613_image74
	Flash_page613_image75
	Flash_page613_image76
	Flash_page613_image77
	Flash_page613_image78
	Flash_page613_image79
	Flash_page613_image80
	Flash_page613_image81
	Flash_page613_image82
	Flash_page613_image83
	Flash_page613_image84
	Flash_page613_image85
	Flash_page613_image86
	Flash_page613_image87
	Flash_page613_image88
	Flash_page613_image89
	Flash_page613_image90
	Flash_page613_image91
	Flash_page613_image92
	Flash_page613_image93
	Flash_page613_image94
	Flash_page613_image95
	Flash_page613_image96
	Flash_page613_image97
	Flash_page613_image98
	Flash_page613_image99
	Flash_page613_image100
	Flash_page613_image101
	Flash_page613_image102
	Flash_page613_image103
	Flash_page613_image104
	Flash_page613_image105
	Flash_page613_image106
	Flash_page613_image107
	Flash_page613_image108
	Flash_page613_image109
	Flash_page613_image110
	Flash_page613_image111
	Flash_page613_image112
	Flash_page613_image113
	Flash_page613_image114
	Flash_page613_image115
	Flash_page613_image116
	Flash_page613_image117
	Flash_page613_image118
	Flash_page613_image119
	Flash_page613_image120
	Flash_page613_image121
	Flash_page613_image122
	Flash_page613_image123
	Flash_page613_image124
	Flash_page613_image125
	Flash_page613_image126
	Flash_page613_image127
	Flash_page613_image128
	Flash_page613_image129
	Flash_page613_image130
	Flash_page613_image131
	Flash_page613_image132
	Flash_page613_image133
	Flash_page613_image134
	Flash_page613_image135
	Flash_page613_image136
	Flash_page613_image137
	Flash_page613_image138
	Flash_page613_image139
	Flash_page613_image140
	Flash_page613_image141
	Flash_page613_image142
	Flash_page613_image143
	Flash_page613_image144
	Flash_page613_image145
	Flash_page613_image146
	Flash_page613_image147
	Flash_page613_image148
	Flash_page613_image149
	Flash_page613_image150
	Flash_page613_image151
	Flash_page613_image152
	Flash_page613_image153
	Flash_page613_image154
	Flash_page613_image155
	Flash_page613_image156
	Flash_page613_image157
	Flash_page613_image158
	Flash_page613_image159
	Flash_page613_image160
	Flash_page613_image161
	Flash_page613_image162
	Flash_page613_image163
	Flash_page613_image164
	Flash_page613_image165
	Flash_page613_image166
	Flash_page613_image167
	Flash_page613_image168
	Flash_page613_image169
	Flash_page613_image170
	Flash_page613_image171
	Flash_page613_image172
	Flash_page613_image173
	Flash_page613_image174
	Flash_page613_image175
	Flash_page613_image176
	Flash_page613_image177
	Flash_page613_image178
	Flash_page613_image179
	Flash_page613_image180
	Flash_page613_image181
	Flash_page613_image182
	Flash_page613_image183
	Flash_page613_image184
	Flash_page613_image185
	Flash_page613_image186
	Flash_page613_image187
	Flash_page613_image188
	Flash_page613_image189
	Flash_page613_image190
	Flash_page613_image191
	Flash_page613_image192
	Flash_page613_image193
	Flash_page613_image194
	Flash_page613_image195
	Flash_page613_image196
	Flash_page613_image197
	Flash_page613_image198
	Flash_page613_image199
	Flash_page613_image200
	Flash_page613_image201
	Flash_page613_image202
	Flash_page613_image203
	Flash_page613_image204
	Flash_page613_image205
	Flash_page613_image206
	Flash_page613_image207
	Flash_page613_image208
	Flash_page613_image209
	Flash_page613_image210
	Flash_page613_image211
	Flash_page613_image212
	Flash_page613_image213
	Flash_page613_image214
	Flash_page613_image215
	Flash_page613_image216
	Flash_page613_image217
	Flash_page613_image218
	Flash_page613_image219
	Flash_page613_image220
	Flash_page613_image221
	Flash_page613_image222
	Flash_page613_image223
	Flash_page613_image224
	Flash_page613_image225
	Flash_page613_image226
	Flash_page613_image227
	Flash_page613_image228
	Flash_page613_image229
	Flash_page613_image230
	Flash_page613_image231
	Flash_page613_image232
	Flash_page613_image233
	Flash_page613_image234
	Flash_page613_image235
	Flash_page613_image236
	Flash_page613_image237
	Flash_page613_image238
	Flash_page613_image239
	Flash_page613_image240
	Flash_page613_image241
	Flash_page613_image242
	Flash_page613_image243
	Flash_page613_image244
	Flash_page613_image245
	Flash_page613_image246
	Flash_page613_image247
	Flash_page613_image248
	Flash_page613_image249
	Flash_page613_image250
	Flash_page613_image251
	Flash_page613_image252
	Flash_page613_image253
	Flash_page613_image254
	Flash_page613_image255
	Flash_page613_image256
	Flash_page613_image257
	Flash_page613_image258
	Flash_page613_image259
	Flash_page613_image260
	Flash_page613_image261
	Flash_page613_image262
	Flash_page613_image263
	Flash_page613_image264
	Flash_page613_image265
	Flash_page613_image266
	Flash_page613_image267
	Flash_page613_image268
	Flash_page613_image269
	Flash_page613_image270
	Flash_page613_image271
	Flash_page613_image272
	Flash_page613_image273
	Flash_page613_image274
	Flash_page613_image275
	Flash_page613_image276
	Flash_page613_image277
	Flash_page613_image278
	Flash_page613_image279
	Flash_page613_image280
	Flash_page613_image281
	Flash_page613_image282
	Flash_page613_image283
	Flash_page613_image284
	Flash_page613_image285
	Flash_page613_image286
	Flash_page613_image287
	Flash_page613_image288
	Flash_page613_image289
	Flash_page613_image290
	Flash_page613_image291
	Flash_page613_image292
	Flash_page613_image293
	Flash_page613_image294
	Flash_page613_image295
	Flash_page613_image296
	Flash_page613_image297
	Flash_page613_image298
	Flash_page613_image299
	Flash_page613_image300
	Flash_page613_image301
	Flash_page613_image302
	Flash_page613_image303
	Flash_page613_image304
	Flash_page613_image305
	Flash_page613_image306
	Flash_page613_image307
	Flash_page613_image308
	Flash_page613_image309
	Flash_page613_image310
	Flash_page613_image311
	Flash_page613_image312
	Flash_page613_image313
	Flash_page613_image314
	Flash_page613_image315
	Flash_page613_image316
	Flash_page613_image317
	Flash_page613_image318
	Flash_page613_image319
	Flash_page613_image320
	Flash_page613_image321
	Flash_page613_image322
	Flash_page613_image323
	Flash_page613_image324
	Flash_page613_image325
	Flash_page613_image326
	Flash_page613_image327
	Flash_page613_image328
	Flash_page613_image329
	Flash_page613_image330
	Flash_page613_image331
	Flash_page613_image332
	Flash_page613_image333
	Flash_page613_image334
	Flash_page613_image335
	Flash_page613_image336
	Flash_page613_image337
	Flash_page613_image338
	Flash_page613_image339
	Flash_page613_image340
	Flash_page613_image341
	Flash_page613_image342
	Flash_page613_image343
	Flash_page613_image344
	Flash_page613_image345
	Flash_page613_image346
	Flash_page613_image347
	Flash_page613_image348
	Flash_page613_image349
	Flash_page613_image350
	Flash_page613_image351
	Flash_page613_image352
	Flash_page613_image353
	Flash_page613_image354
	Flash_page613_image355
	Flash_page613_image356
	Flash_page613_image357
	Flash_page613_image358
	Flash_page613_image359
	Flash_page613_image360
	Flash_page613_image361
	Flash_page613_image362
	Flash_page613_image363
	Flash_page613_image364
	Flash_page613_image365
	Flash_page613_image366
	Flash_page613_image367
	Flash_page613_image368
	Flash_page613_image369
	Flash_page613_image370
	Flash_page613_image371
	Flash_page613_image372
	Flash_page613_image373
	Flash_page613_image374
	Flash_page613_image375
	Flash_page613_image376
	Flash_page613_image377
	Flash_page613_image378
	Flash_page613_image379
	Flash_page613_image380
	Flash_page613_image381
	Flash_page613_image382
	Flash_page613_image383
	Flash_page613_image384
	Flash_page613_image385
	Flash_page613_image386
	Flash_page613_image387
	Flash_page613_image388
	Flash_page613_image389
	Flash_page613_image390
	Flash_page613_image391
	Flash_page613_image392
	Flash_page613_image393
	Flash_page613_image394
	Flash_page613_image395
	Flash_page613_image396
	Flash_page613_image397
	Flash_page613_image398
	Flash_page613_image399
	Flash_page613_image400
	Flash_page613_image401
	Flash_page613_image402
	Flash_page613_image403
	Flash_page613_image404
	Flash_page613_image405
	Flash_page613_image406
	Flash_page613_image407
	Flash_page613_image408
	Flash_page613_image409
	Flash_page613_image410
	Flash_page613_image411
	Flash_page613_image412
	Flash_page613_image413
	Flash_page613_image414
	Flash_page613_image415
	Flash_page613_image416
	Flash_page613_image417
	Flash_page613_image418
	Flash_page613_image419
	Flash_page613_image420
	Flash_page613_image421
	Flash_page613_image422
	Flash_page613_image423
	Flash_page613_image424
	Flash_page613_image425
	Flash_page613_image426
	Flash_page613_image427
	Flash_page613_image428
	Flash_page613_image429
	Flash_page613_image430
	Flash_page613_image431
	Flash_page613_image432
	Flash_page613_image433
	Flash_page613_image434
	Flash_page613_image435
	Flash_page613_image436
	Flash_page613_image437
	Flash_page613_image438
	Flash_page613_image439
	Flash_page613_image440
	Flash_page613_image441
	Flash_page613_image442
	Flash_page613_image443
	Flash_page613_image444
	Flash_page613_image445
	Flash_page613_image446
	Flash_page613_image447
	Flash_page613_image448
	Flash_page613_image449
	Flash_page613_image450
	Flash_page613_image451
	Flash_page613_image452
	Flash_page613_image453
	Flash_page613_image454
	Flash_page613_image455
	Flash_page613_image456
	Flash_page613_image457
	Flash_page613_image458
	Flash_page613_image459
	Flash_page613_image460
	Flash_page613_image461
	Flash_page613_image462
	Flash_page613_image463
	Flash_page613_image464
	Flash_page613_image465
	Flash_page613_image466
	Flash_page613_image467
	Flash_page613_image468
	Flash_page613_image469
	Flash_page613_image470
	Flash_page613_image471
	Flash_page613_image472
	Flash_page613_image473
	Flash_page613_image474
	Flash_page613_image475
	Flash_page613_image476
	Flash_page613_image477
	Flash_page613_image478
	Flash_page613_image479
	Flash_page613_image480
	Flash_page613_image481
	Flash_page613_image482
	Flash_page613_image483
	Flash_page613_image484
	Flash_page613_image485
	Flash_page613_image486
	Flash_page613_image487
	Flash_page613_image488
	Flash_page613_image489
	Flash_page613_image490
	Flash_page613_image491
	Flash_page613_image492
	Flash_page613_image493
	Flash_page613_image494
	Flash_page613_image495
	Flash_page613_image496
	Flash_page613_image497
	Flash_page613_image498
	Flash_page613_image499
	Flash_page613_image500
	Flash_page613_image501
	Flash_page613_image502
	Flash_page613_image503
	Flash_page613_image504
	Flash_page613_image505
	Flash_page613_image506
	Flash_page613_image507
	Flash_page613_image508
	Flash_page613_image509
	Flash_page613_image510
	Flash_page613_image511
	Flash_page613_image512
	Flash_page613_image513
	Flash_page613_image514
	Flash_page613_image515
	Flash_page613_image516
	Flash_page613_image517
	Flash_page613_image518
	Flash_page613_image519
	Flash_page613_image520
	Flash_page613_image521
	Flash_page613_image522
	Flash_page613_image523
	Flash_page613_image524
	Flash_page613_image525
	Flash_page613_image526
	Flash_page613_image527
	Flash_page613_image528
	Flash_page613_image529
	Flash_page613_image530
	Flash_page613_image531
	Flash_page613_image532
	Flash_page613_image533
	Flash_page613_image534
	Flash_page613_image535
	Flash_page613_image536
	Flash_page613_image537
	Flash_page613_image538
	Flash_page613_image539
	Flash_page613_image540
	Flash_page613_image541
	Flash_page613_image542
	Flash_page613_image543
	Flash_page613_image544
	Flash_page613_image545
	Flash_page613_image546
	Flash_page613_image547
	Flash_page613_image548
	Flash_page613_image549
	Flash_page613_image550
	Flash_page613_image551
	Flash_page613_image552
	Flash_page613_image553
	Flash_page613_image554
	Flash_page613_image555
	Flash_page613_image556
	Flash_page613_image557
	Flash_page613_image558
	Flash_page613_image559
	Flash_page613_image560
	Flash_page613_image561
	Flash_page613_image562
	Flash_page613_image563
	Flash_page613_image564
	Flash_page613_image565
	Flash_page613_image566
	Flash_page613_image567
	Flash_page613_image568
	Flash_page613_image569
	Flash_page613_image570
	Flash_page613_image571
	Flash_page613_image572
	Flash_page613_image573
	Flash_page613_image574
	Flash_page613_image575
	Flash_page613_image576
	Flash_page613_image577
	Flash_page613_image578
	Flash_page613_image579
	Flash_page613_image580
	Flash_page613_image581
	Flash_page613_image582
	Flash_page613_image583
	Flash_page613_image584
	Flash_page613_image585
	Flash_page613_image586
	Flash_page613_image587
	Flash_page613_image588
	Flash_page613_image589
	Flash_page613_image590
	Flash_page613_image591
	Flash_page613_image592
	Flash_page613_image593
	Flash_page613_image594
	Flash_page613_image595
	Flash_page613_image596
	Flash_page613_image597
	Flash_page613_image598
	Flash_page613_image599
	Flash_page613_image600
	Flash_page613_image601
	Flash_page613_image602
	Flash_page613_image603
	Flash_page613_image604
	Flash_page613_image605
	Flash_page613_image606
	Flash_page613_image607
	Flash_page613_image608
	Flash_page613_image609
	Flash_page613_image610
	Flash_page613_image611
	Flash_page613_image612
	Flash_page613_image613

