
S4 – Développement logiciel

Programmation orientée objet

Programmation orientée objet avec Arduino
Créer une classe pour Arduino

Objectifs : être capable de créer et d'utiliser une classe pour Arduino .

 Introduction
L'objectif de ce TP est de mettre en pratique les notions abordées lors de l'étude de la
programmation orientée objet. Vous allez créer une classe pour Arduino et l'utiliser. Vous écrirez
tous les fichiers nécessaires à l'utilisation de cette classe : fichier en-tête (fichier .h), fichier de
définition de classe (fichier .cpp), fichier d'exemple et un fichier mot-clé permettant la coloration
syntaxique des éléments créés. Tous ces fichiers seront regroupés dans un répertoire « prêt à
l'emploi ».

 Tutoriel (TuTuTu ToToTo TuTuTu)

 1. Le code morse

Le code morse ou alphabet morse, est un code permettant de transmettre un texte à l’aide de
séries d’impulsions courtes et longues, qu’elles soient produites par des signes, une lumière ou un
geste. En code morse, S.O.S s'écrit : … --- … (C'est bon à savoir, on ne sait jamais, ça peut
toujours servir !).

Code morse (image wikipedia)

Louis Reynier - Créer une classe pour Arduino 1

La plus grande partie de ce tutoriel est traduite et adaptée (librement) d'un document en anglais
disponible sur le site Arduino : « Writing a library for Arduino » à l'adresse suivante :
https://www.arduino.cc/en/Hacking/LibraryTutorial

 2. Implémentation « normale »

Voici une implémentation « normale » (sous entendu sans utiliser de classe mais en utilisant des
fonctions) d'un programme émettant avec une led un SOS en code morse.

int pin = 13;

void setup()
{
 pinMode(pin, OUTPUT);
}

void loop()
{
 point(); point(); point(); // S
 delay(500); // espace lettre
 trait(); trait(); trait(); // O
 delay(500); // espace lettre
 point(); point(); point(); // S
 delay(1500); // espace "mot"
}

void point()// point ou court .
{
 digitalWrite(pin, HIGH);
 delay(250);
 digitalWrite(pin, LOW);
 delay(250);
}

void trait()// trait ou long -
{
 digitalWrite(pin, HIGH);
 delay(750);
 digitalWrite(pin, LOW);
 delay(250);
}

 Travaux dirigés 1
Q.1) Représenter sur un chronogramme l'état de la led au cours du temps sur un cycle.

Q.2) Vérifier la conformité des signaux avec le code morse tel que décrit sur la figure « code
morse ».

Q.3) Détaillez le rôle des fonctions utilisées.

Louis Reynier - Créer une classe pour Arduino 2

https://www.arduino.cc/en/Hacking/LibraryTutorial

 3. Écriture de la classe

Nous allons maintenant implémenter certaines parties de ce programme dans une classe nommée
Morse.

Nom de la classe Morse

Attributs - _pin

méthodes()
+ Morse(int pin)
+ point() : void
+ trait() : void

 Constructeur de la classe

« + » signifie public ; « - » signifie privé

L'attribut (privé) de cette classe est _pin qui représente la broche où sera connectée la led.
Les méthodes (publiques) sont Morse(int pin) le constructeur de la classe (voir ci dessous), point()
la méthode qui permet d'allumer la led pendant la durée d'un point et trait(), la méthode qui permet
d'allumer la led pendant la durée d'un trait (ou tiret).

Il s'agit de créer maintenant a l'aide de Notepad++ (vous pouvez aussi utiliser Code::Blocks) le
fichier en-tête (ou header) appelé Morse.h (avec une majuscule).

On rappelle : les deux premières lignes et la dernière ligne permettent d'éviter des boucles
d'inclusion infinies.

La ligne #include "Arduino.h" permet d'avoir accès aux variables et constantes spécifiques à
Arduino.

Une classe doit posséder une méthode spécifique (une fonction) appelée constructeur qui est chargé
d’initialiser une instance (objet) de la classe. Le constructeur est appelé systématiquement au
moment de la création de l'objet, il porte le même nom que la classe et ne retourne aucun type.
Les méthodes point() et trait() sont définies en public.

L'attribut _pin est déclaré comme privé, cette variable contiendra le numéro du pin où la led est

Louis Reynier - Créer une classe pour Arduino 3

câblée. On utilise généralement le caractère _ pour distinguer l’appellation de l'attribut de
l'argument de la fonction.

Il faut maintenant créer un nouveau fichier appellé « Morse.cpp ».
Ce fichier contiendra la description des méthodes.

Le fichier contient sur les deux premières lignes : #include "Arduino.h" (accès au fonctions
Arduino) et #include "Morse.h" (définition de l'en-tête associé).
Puis vient la définition des méthodes.
Toutes les méthodes commencent par Morse ::
On retrouve le constructeur (qui effectue aussi l'initialisation de la broche en sortie) puis les deux
méthodes (point et trait) qui correspondaient aux fonctions dans le cas d'une « implémentation
normale ».
Remarquez les tours de passe-passe entre pin et _pin. Les méthodes ne « manipulent pas » pin mais
sa « réplique » privée _pin ! _pin prend la valeur de pin au moment de l'instanciation de l'objet.

Manipulation n°1
Q.1) Tester et validez le premier programme sur Arduino (implémentation « normale » c'est à dire
sans utiliser de classes.

Louis Reynier - Créer une classe pour Arduino 4

Manipulation n°2
En suivant les instructions du tutoriel, vous allez :

Q.1) Créer les fichiers Morse.h et Morse.cpp .

Q.2) Placer vos deux fichiers dans un répertoire Morse puis déplacer ce répertoire dans le
repertoire « libraries » d'Arduino.

Q.3) Relancer Arduino et vérifier que le répertoire est bien vu par Arduino en effectuant l'opération
Croquis > Importer bibliothèque.

Q.4) Saisir le programme SOS permettant de tester la classe réalisée. Celui ci est donné :

Q.5) Vérifier le bon fonctionnement du programme de test !

Louis Reynier - Créer une classe pour Arduino 5

 4. Les « finitions »

Le programme est opérationnel, on peut encore améliorer la convivialité de cette classe.

 Fichier exemple

Il est agréable lorsque l'on récupère une classe (une bibliothèque) d'avoir des exemples de
mise en œuvre de cette classe.

Il suffit de placer le répertoire SOS contenant le fichier SOS.ino (programme Arduino) dans un
répertoire « examples » dans votre répertoire Morse.
Je récapitule :
Arduino>Libraries>Morse>examples>SOS>SOS.ino
Morse.h et Morse.cpp etant placés dans Arduino>Libraries>Morse>
Relancer Arduino après l'opération.

Manipulation n°3
Q.1) Vérifier que le fichier SOS d'exemple est bien accessible à partir du menu Arduino
Fichier>Exemples>Morse

 Coloration syntaxique

Pour finir, notre classe manque un peu de couleur. Il est possible d'obtenir la coloration
syntaxique du programme réalisé en réalisant un fichier nommé keywords.txt.

Chaque ligne porte le nom d'un mot clé suivi d'une tabulation (pas d'espaces) suivi de KEYWORD1
pour une classe ou de KEYWORD2 pour une méthode. La classe sera ainsi coloré en orange, les
méthodes en marron (la différence de couleur est faible). Il faut là aussi re-démarrer Arduino pour
que la modification soit effective.

Manipulation n°4
Q.1) Vérifier que tout fonctionne bien avec la coloration syntaxique : noms de la classe et des
méthodes en couleur !

Louis Reynier - Créer une classe pour Arduino 6

 Ma led a la classe !
Maintenant, à vous de jouer. Nous allons commencer par réaliser une classe très simple : une classe
permettant d'allumer une led, de l'éteindre ou de la faire clignoter.

Voici la définition de la classe :

Nom de la classe Led

Attributs - _pin
- _etat

méthodes()

+ Led(int pin)
+ ledOn() : void
+ ledOff() : void
+ ledClign(int T, int N) : void
+ ledChange() : void
+ getEtat() : bool

 Constructeur de la classe

Définition des attributs

_ pin correspond au numéro de la broche
_etat correspond à l'état de la led (false : led éteinte ; true : led allumée)

Définition des méthodes

Led(int pin) : le constructeur de la classe
ledOn() : allume la led et renseigne son état
ledOff() : éteint la led et renseigne son état
ledClign(int T, int N) fait clignoter la led N fois, la led est allumée de 0 à T/2, éteinte de T/2 à T.
ledChange() allume la led si elle est éteinte, éteint la led si elle est allumée et renseigne l'état de la
led
getEtat() permet de récuperer l'état de la led

Remarque : ledClign(int T,int N) et ledChange() pourront utiliser ledOn() et LedOff().

Manipulation n°5
Q.1) Écrire tous les fichiers (Led.h, Led.cpp, fichier exemple, fichier keyword) permettant de faire
fonctionner cette classe et de valider son bon fonctionnement. Votre fichier exemple devra tester
toutes les méthodes et utilisera le moniteur série (en particulier) pour valider la méthode getEtat().

Bon courage !!

Louis Reynier - Créer une classe pour Arduino 7

Arduino la Classe !

Non, lui c'est pas Arduino la classe, c'est Aldo la classe, c’était un personnage à la mode dans les
années 80. Vous êtes trop jeunes, vous pouvez pas comprendre, mais c'est drôle !

Retrouvez d'autres cours et documents sur :
http://www.louisreynier.com

Louis Reynier - Créer une classe pour Arduino 8

http://www.louisreynier.com/

	Introduction
	Tutoriel (TuTuTu ToToTo TuTuTu)
	1. Le code morse
	2. Implémentation « normale »
	3. Écriture de la classe
	4. Les « finitions »
	Fichier exemple
	Coloration syntaxique

	Ma led a la classe !
	Définition des attributs
	Définition des méthodes

