
P
a

g
e

1

 P 24

Jeudi, 24 Nov., 2016Fichier POINTRS.PM5FE6AAE ∆ΡΟΥΙ Μιχηελ

Gérer une adresse dans PTR peut utiliser les opérations spécifiques
aux pointeurs telles que l'incrémentation, mais ces dernières sont
fonction de la taille des données ciblées, d'où type associé au pointeur.

PTR = &VARIABLE; // PTR pointe VARIABLE.

VARIABLEADH ADLPTR ADLADH

PTR reçoit l'adresse du premier octet de VARIABLE.

PTR2 = PTR1; // PTR2 reçoit le contenu de PTR1.

PTR2 PTR1ADH ADLADLADH

PTR1 et PTR2 sont deux pointeurs de même type.

*PTR = Valeur; // VARIABLE ciblée par PTR reçoit Valeur.

Constante ADRH/ADRL

PTR ADLADH VARIABLE

Valeur

ADRH ADRLPTR

ADH ADL

Affecte la Valeur respectant le type pointé à la zone mémoire
dont l'adresse du premier octet est contenue dans PTR.

Retourne la Valeur de VARIABLE actuellement ciblée par PTR.

Retour = *PTR // Retourne le contenu de la variable ciblée.
PTR ADLADH VARIABLEADH ADL

"Retour"

Pointe sur "RIEN".PTR$00 $00

type *PTR = NULL; // Déclare PTR sur cible de taille type.

RÉSUMÉ sur l'utilisation basique des POINTEURS :

PTR est une nouvelle variable de nature pointeur. La variable ciblée
sera du genre type. Bien que ce ne soit obligatoire on précise au
compilateur qu'actuellement PTR n'est pas affecté.

Affecte au pointeur PTR ciblant une variable de taille type la valeur
d'un entier que l'on peut exprimer en décimal, octal ou hexadécimal.

type *PTR = (type *) ADR; // PTR pointera l'adresse ADR.

UTILISATION DES POINTEURS.

OOOOO

Gestion dynamique de la SRAM sur Arduino...................... P02
Utilisation basique des POINTEURS................................... P04
Travail de base avec les POINTEURS P06
Afficher les adresses associées à un pointeur................... P07
Pointeurs et cibles déclarés constants................................ P10
Variables prédéfinies pour gérer la PILE P11
Pointeurs prédéfinis pour gérer la RAM P12
Vérification de "HEAP" encore disponible P14
Passage des paramètres par référence P15
Opérateurs valides sur les pointeurs P16
Opérations combinées avec les pointeurs P18
Parallèle entre tableaux et pointeurs P19
Passer des paramètres par adresses P20
Gestion dynamique des tableaux ... P22
Passer un tableau en paramètre de fonction P23
Tableau de pointeurs ... P23
RÉSUMÉ sur l'utilisation basique des POINTEURS P24

a pour contenu l'adresse d'un objet C typé. Ils permettent de :
• Définir des structures dynamiques, (Qui évolue au cours du temps)

par opposition aux tableaux, par exemple, qui sont des structures de
données statiques dont la taille est figée à leur déclaration.

• De manipuler de façon simple des données de tailles importantes. (Au

lieu de passer à une fonction un élément "volumineux" on pourra

par exemple lui fournir un pointeur vers cet élément ...)

• Les tableaux ne peuvent stocker qu'un nombre fixé d'éléments de
même type. En stockant des pointeurs dans les cases d'un tableau, il
sera possible de stocker des éléments de tailles diverses, et
même de rajouter des éléments au tableau en cours d'utilisation.
(Tableaux dynamiques étroitement liée à l'usage de pointeurs)

• Avec les pointeurs il devient possible de coder des fonctions qui
retournent plusieurs valeurs ce qui n'est pas faisable avec return.

• Ils sont parfaitement adaptés pour créer des structures chaînées.

bjets particuliers du langage C ils permettent de traiter des
variables par utilisation de leurs adresses en mémoire. Un pointeur

P
a

g
e

2

 P 2 P 23

Gestion dynamique de la SRAM sur Arduino :

PPPPP

• La PILE nommée STACK qui mémorise temporairement :
 * Les paramètres associés à l'appel des fonctions et procédures,
 * Les adresses de retour des fonctions et procédures,
 * Les variables locales aux fonctions et procédures.
La pile est une zone de mémoire commençant en haut de la SRAM qui
se charge vers le bas de façon linéaire et continue lors des appels des
fonctions ou des procédures. Elle se réduit vers le haut lors des retours.

L'utilisation de la mémoire dynamique doit être réduite au minimum,
et si possible uniquement durant les phases d'initialisations quand on
peut vérifier qu'il y a un risque de manque de mémoire. Noter que la
classe String est principalement basée sur l'allocation dynamique.
Utiliser String conduit à fragmenter très rapidement la zone HEAP.

Fonctionnement de la mémoire vive.
La mémoire vive (256 + 2Ko) est généralement divisée en 4 zones :
• Les 256 premiers octets pour les registres généraux du microcontrôleur

(Représentée en jaune sur la Fig.1) occupent "le bas" de la SRAM.
• La zone nommée BSS qui contient toutes les variables globales,

allouées statiquement au moment de l'édition de lien lors de la
compilation. La BSS est utilisé par de nombreux compilateurs pour
désigner une zone de données contenant les variables statiques
déclarées dans les initialisations, et forcées avec des octets à zéro.

• Le TAS (Nommé HEAP) est destiné aux allocations dynamiques dans
lequel on peut attribuer et libérer des blocs de mémoire. Le TAS se
fragmente généralement au cours de l'évolution du programme, avec
un risque notable de le rendre inutilisable. Défragmenter HEAP par

une séquence de code de type "Ramasse miettes" est faisable mais

relativement dangereux, car si l'on déplace une variable en cours

d'utilisation, les conséquences peuvent s'avérer ingérables.

ermettant un appel récursif des procédures et des fonctions, le
langage C engendre pour le compilateur des contraintes

spécifiques relatives à la gestion de la mémoire vive. Le sectionnement
et la répartition des données statiques et des données dynamiques en
sont forcément directement influencés avec une allocation dynamique
de certaines données. Il en résulte des risques de "collision" entre les
données dynamiques (HEAP) et la zone occupée par la PILE.

E
x

em
p

le
 :

 P
ro

g
ra

m
m

e
T

a
b

le
a

u
x

_
d

e
_

p
o

in
te

u
rs

.i
n

o

Passer un tableau en paramètre de fonction :

PPPPP our désigner un tableau dans une fonction, il faut passer en
argument son identificateur, et éventuellement en option sa taille.

Procédant par adresses, il n'y a pas recopie du tableau et l'on modifie
directement l'original. Pour "passer" un tableau à une fonction (Ou une
procédure si void remplace type) on écrit une instruction du genre :
type_fonction NOM_FONCTION (type TABLEAU[], type Taille)

E
x

em
p

le
 :

 P
ro

g
ra

m
m

e
p

o
in

te
u

rs
_

e
t_

ta
b

le
a

u
x

.i
n

o

NOTE : Inutile de préciser la Taille du tableau entre crochets car le
compilateur l'ignorera. On peut toutefois la passer en paramètre si l'on
utilise une boucle dans le traitement, (Il ne faut pas déborder le tableau)
la procédure pouvant traiter des tableaux de tailles différentes.
Un tableau est converti en un pointeur sur son premier élément. C'est
cette adresse qui est passée en paramètre à la procédure ou à la fonction.
Du reste on peut désigner un tableau comme argument avec la forme :
type_fonction NOM_FONCTION (type *TABLEAU)
Les deux écritures sont strictement équivalentes. (Dans les deux cas
type indique le type des éléments du tableau) Le choix de la forme
utilisée est personnel et ne concerne que la présentation du programme.
Tableau de pointeurs :

PPPPP
avons besoin d'un ensemble de pointeurs du même type, nous pouvons
les réunir dans un tableau de pointeurs :

Par exemple double *A[10]; déclare un tableau A de 10 pointeurs sur
des rationnels du type double dont les adresses et les valeurs ne sont
pas encore définies. Le programme Tableaux_de_pointeurs.ino donne
un exemple très complet d'un tableau de chaînes de caractères de
dimensions différentes, avec des traitements dans lesquels :
PLANETES [n] retourne la chaîne entière de caractères.
>>> Ne fonctionne pas en affectation : PLANETES [n] = "chaine":
*(PLANETES [n]) retourne le contenu (Caractères) de l'octet pointé.
(uint16_t) *(&PLANETES [n]) retourne l'adresse de la CIBLE : C'est

l'adresse du premier caractère de la chaîne de rang (n+1). .
(uint16_t) &PLANETES [n]) retourne l'adresse de l'élément de rang

(n+1) du tableau de pointeurs. (Adresse en RAM du pointeur)

type_cible * Nom_tableau [NB];
Déclare Nom_tableau de NB pointeurs de type_cible.

armi les applications possibles ils permettent de manipuler des
éléments de tailles variables, des structures chaînées etc. Si nous

P
a

g
e

3

 P 3 P 22

Gestion dynamique des tableaux :

application typique des pointeurs pour de l'allocation dynamique
de mémoire consiste à pouvoir décider de la taille d'une variable

au moment de l'exécution du programme, car elle n'est pas encore
connue lors de son développement. Ainsi, pour allouer un tableau de N
entiers, (N étant déterminé durant l'exécution du programme), on
déclare une variable de type pointeur sur entier avec lequel on alloue
une zone mémoire correspondant à la taille nécessaire. Exemple :

LLLLL'''''

E
x

em
p

le
 :

 P
ro

g
ra

m
m

e
T

a
b

le
a

u
x

_
d

y
n

a
li

q
u

e
s

.i
n

o

 (1) Le nombre d'éléments sera déterminé durant l'exécution du
programme. Par exemple une saisie clavier sur la ligne série etc.

 (2) Le pointeur TABLEAU reçoit l'adresse du premier élément au
moment de la réservation de mémoire. Si la place n'est plus disponible
en RAM, la réservation n'a pas lieu et malloc retourne la valeur
NULL. Donc un else préviendrait que l'action n'est pas possible.

 (3) Logiquement on peut considérer que l'exploitation du tableau va se
faire par utilisation du pointeur TABLEAU. Hors l'instruction free()
impose que le pointeur utilisé par malloc() contienne l'adresse du
début de la zone allouée. Il importe de sauvegarder cette dernière.

 (4) On ne libère la place que si l'utilisation du tableau n'est que
temporaire. S'il sert durant tout le programme, free() ne sert à rien.

Commentaires sur ce programme :

byte NB_elements; // byte : Car taille prévue < 255.

void loop() {
 NB_elements = Valeur entière; (1)
 /* Allocation dynamique du tableau */
 long *TABLEAU = NULL;
 TABLEAU = (long*) malloc(NB_elements *sizeof(long));
 /* Utilisation du tableau */
 if (TABLEAU != NULL) { (2)
 /* Sauvegarder l'adresse du début de TABLEAU. */
 long *DEBUT = TABLEAU; (3)
 ... instructions pour utiliser le tableau.... instructions pour utiliser le tableau.... instructions pour utiliser le tableau.... instructions pour utiliser le tableau.... instructions pour utiliser le tableau.

 /* Restituer la RAM utilisée par le tableau */
 TABLEAU = DEBUT; // Restituer l'adresse du pointeur.
 free(TABLEAU); } // Libérer la place réservée. (4)
 ... suite du programme. ... suite du programme. ... suite du programme. ... suite du programme. ... suite du programme.

{
Ø

{
Ø

La disposition standard de la SRAM montrée en Fig.1 consiste à placer
les variables de données au début de la mémoire vive interne, suivie de
la BSS. Le TAS disponible HEAP pour l'allocateur de mémoire
dynamique sera placé juste après la BSS. Ainsi, il n'y a pas de risque
d'écrasement entre la mémoire dynamique et les variables SRAM. Le
TAS et la PILE peuvent toutefois se heurter même si les espace exigés
pour les variables dynamiques ne sont pas exagérés, mais que
l'allocation de mémoire se fragmentant au fil du temps. De nouvelles
demandes ne peuvent alors plus se loger dans les "trous" des régions
déjà libérées, ou par une plongée de la PILE issue d'une fonction avec
beaucoup de variables locales. Enfin des appels récursifs d'une fonction
ou d'une procédure peuvent conduire à une plongée dans la PILE.
La surveillance de la disponibilité
de place dans la SRAM interne au
microcontrôleur est un impératif si l'on ne veut
pas risquer une collision des variables
dynamiques avec la zone de la PILE.
Il importe donc de surveiller, à divers
stades stratégiques du code, la quantité de
Mémoire d isponib le au cours du
déroulement d'un programme. Le logiciel
Veri f_SRAM_disponible. ino montre
comment quelques instructions
permettent de surveiller le
risque de collision entre TAS et
PILE. Noter que la SRAM
disponible pour les données fait
bien 2048 octets. (Mise en
évidence par la zone violet
pastel sur la Fig.1) Elle
commence en 0100, e t se
termine donc en 08FF. Les
divers pointeurs présentent des
identificateurs réservés par le
compilateur C d'Arduino et
n'ont pas besoin d'êtres déclarés. Noter que
les diverses adresses sur la Fig.1 (Sauf 01FF
et 08FF) sont fonction du logiciel en cours.

SRAM

Sta
ckPILE

"TAS" :
Données

dynamiques

D
o

n
n

é
e

s
st

a
ti

q
u

e
s

0060

M
é

m
o

ir
e

d
is

p
o

n
ib

le

__bss_start Ø

__bss_end Ø
__heap_start Ø

__heap_end Ø

RAMEND Ø

__data_end Ø

HEAP

SP Ø

Fig.1

08FF

08DB

05D0

03D6
03D6

031E

0100

031E

00FF
DATA.

Variables

005F
0020 64 I/O Reg.

160 Ext I/O Reg.

32 registres0000
001F

BSS

__data_start Ø

}

malloc()

P
a

g
e

4

 P 4 P 21

Utilisation basique des POINTEURS :

N
 O

c
te

ts

(N Octets)VARIABLE

V
a

le
u

r

 Retourner

la Valeur

Référencer

&
POINTEUR

ADH ADL

ADH ADL

ADH1 ADL1

ADH2 ADL1

ADHN ADLN
... ...

& (Adresse) * (Contenu)

• Référencer consiste à affecter l'adresse d'une VARIABLE au pointeur.
• Déréférencer consiste à lire le contenu de la VARIABLE pointée.

Référencer / Déréférencer un pointeur.

Un pointeur stocke une adresse mémoire. (Référence) et peut être
considéré comme un nombre allant de 0 à (TailleMémoire - 1) du
microcontrôleur considéré. Un pointeur occupe donc toujours la même
taille quel que soit le type de l'objet indexé. Il s'agit en général de la
plus grande taille directement gérable par le processeur : Sur une
architecture 16 bits comme celle d'Arduino utilisant un ATmega328 la
taille des pointeurs est de 2 octets. Sur une machine 32 bits elle passe
à 4 octets, avec 64 bits : 8 octets etc.

Déréférencer *

Deux variantes sont équivalentes pour déclarer un pointeur :
type* Nom_du_pointeur ou type *Nom_du_pointeur

Un pointeur non initialisé présente un danger potentiel car il pointe
n'importe où dans la mémoire. Si l'on affecte une valeur à une cellule
mémoire à l'aide de ce pointeur, on peut fort bien écraser une donnée
ou du code programme. L'option = NULL n'est pas obligatoire mais
précise au compilateur que Nom_du_pointeur n'a pas encore de
cible. (Cette affectation est fortement recommandée)

Déclaration d'un pointeur.
type *Nom_du_pointeur = NULL; .

Le symbole '* ' précise au compilateur que Nom_du_pointeur est
un pointeur qui ciblera une variable dont la taille en octets est défini
par type. Le type de variable pointée peut être aussi bien un élément
primaire (int, char, float , String ...) qu'une structure complexe.

cette place disponible pour les données en RAM étant très restreinte
sur les microcontrôleurs. Dans ce but, même si la variable ne doit pas
être modifiée, on utilise quand même un passage par adresse pour éviter
la copie implicite des variables autres que celles des tableaux. C'est
particulièrement vrai avec les structures, sans pour autant trop nuire à
la lisibilité, puisque celles-ci ont tendance à être assez imposantes.

PPPPP
Passage par adresse de données non modifiées.

asser des paramètres par adresse est également très utilisé pour
optimiser la quantité de données qui doit transiter par la PILE,

E
x

em
p

le
 :

 P
ro

g
ra

m
m

e
A

d
re

s
s

e
_

a
v

e
c

_
p

ro
b

le
m

e
.i

n
o

Problème potentiel lors du changement d'une adresse.
Il importe de toujours avoir à l'esprit que l'affectation d'un pointeur à
l'intérieur d'une procédure peut avoir un effet de bord si l'on y prend
pas garde. Dans l'exemple donné ci-dessous, le corps de la procédure
modifie la valeur de X même si on lui passe comme adresse celle de la
variable Y comme c'est le cas en @.

byte X = 0x20, Y = 0x40;

void Procedure_qui_modifie_X(byte *PTR) {
 PTR = &X; // PTR pointe X comme cible.
 ++*PTR; } // La cible de PTR est incrémentée.

void loop() {
 Procedure_qui_modifie_X(&X);
 Procedure_qui_modifie_X(&Y); @
 Suite du PGM ...

Si la lecture du contenu de la procédure n'est pas effectué, l'appel @
incite à penser que c'est la variable Y passée par adresse qui sera traitée
alors, que c'est toujours X qui est incrémentée, puisque dans le code la
valeur du pointeur est "détournée". Pour éviter ce risque, on pourrait
déclarer le pointeur ou la cible comme étant constant :

(1) : On impose que la donné pointée sera une constante.
(2) : On impose que le pointeur soit d'adresse constante.
Avec cette précaution le compilateur va s'apercevoir que dans le corps
de la procédure il y a tentative de modification soit de la valeur de la
cible, soit de celle de PTR et générer un message d'erreur. Il est toutefois
plus judicieux d'optimiser le code, car cette écriture n'est pas très lisible.

void Procedure_avec_verification(const byte *PTR) {...} (1)
void Procedure_avec_verification(byte *const PTR) {...} (2)

P
a

g
e

5

 P 20 P 5

Passer des paramètres par adresses :

TTTTT outes les variables en langage C sont passées par valeurs aux
paramètres des procédures ou des fonctions. (Exception faite

pour les valeurs des éléments constituant les tableaux) C'est à dire
que des copies de leurs valeurs sont effectuées dans la PILE au moment
de l'appel de la procédure ou de la fonction. Toutes les modifications
de ces variables effectuées durant la "subroutine" seront perdues lors
du retour au code appelant. Il y a des cas où l'on désirerait pouvoir
modifier une variable passée en paramètre et que ses modifications
perdurent dans la procédure ou la fonction appelante. C'est l'utilisé
fondamentale du passage des paramètres par adresse : Permettre la
modification d'une ou plusieurs variables en visibilité du code appelant.

E
x

em
p

le
 :

 P
ro

g
ra

m
m

e
P

a
s

s
a

g
e

_
p

a
ra

m
e

tr
e

s
_

p
a

r_
a

d
re

s
s

e
s

.i
n

o

Passage de paramètres par adresses.

Dans l'exemple de fonction retournant une valeur pointée donnée en
page 9, l'instruction return ne peut renvoyer qu'une seule valeur. Si l'on
désire renvoyer plusieurs valeurs, il faut procéder par l'utilisation des
adresses comme montré dans l'exemple ci-dessus. Rien n'interdit,
naturellement que return serve à retourner un résultat complémentaire
issu d'un traitement spécifique effectué durant la fonction.

Fonctions retournant plusieurs paramètres.

Dans cet exemple, la procédure crée les pointeurs au moment de l'appel,
dans le bloc de ses paramètres.

/* Passage de paramètres par adresses. */
// La procédure permute le contenu des deux variables.

byte X = 0x73, Y = 0x88, A = 0xAA, B = 0x55;

void setup() {Serial.begin(115200);}

void loop() { Permute_Octets (&X, &Y);
 Serial.print(" X = $"); Serial.println(X, HEX);
 Serial.print(" Y = $"); Serial.println(Y, HEX);
 Permute_Octets (&A, &B);
 Serial.print(" A = $"); Serial.println(A, HEX);
 Serial.print(" B = $"); Serial.println(B, HEX);
 INFINI: goto INFINI; }

void Permute_Octets (byte *X, byte *Y) {
 byte TMP = *X; *X = *Y; *Y = TMP; }

Nom_du_pointeur = (type) ADRESSE; ..
Dans cette affectation (type*) est un rappel du type affecté au
pointeur. ADRESSE est aussi bien une valeur entière qu'une constante
de type int préalablement définie :

int DEBUT_LISTAGE = 0x300; // Valeur hexadécimale 0300. @
byte *PTR = (byte*) DEBUT_LISTAGE;

byte *PTR = (byte*) 0x300; // Valeur hexadécimale 0300.

Identificateur_pour_une_Variable = *Nom_du_pointeur; .
Ce n'est qu'après avoir déclaré et initialisé un pointeur, qu'il devient
possible avec l'opérateur '*' d'accéder à l'objet ciblé en mémoire.
Dans cet exemple Identificateur_pour_une_Variable reçoit le
contenu de l'objet typé pointé par Nom_du_pointeur.

Accéder à l'objet pointé. (Déréférencer)

NOTE : Le langage C++ exige que tout soit rigoureusement typé.
Un entier de type int n'est pas de type pointeur. Il faut donc forcer la
structure convenable avec la conversion explicite (type*).

Est équivalent à :

Référencer un pointeur par une constante.

Dans l'écriture précédente nous n'avons pas à connaitre l'adresse de la
cible, d'autant plus qu'elle change à chaque lancement du programme
puisque le compilateur alloue les blocs de mémoire libres dans le TAS.
On peut si on le désire affecter une valeur d'adresse à convenance :

On peut initialiser un pointeur directement lors de sa déclaration :
*Nom_du_pointeur = &Nom_de_la_variable;

L'utilisation d'un pointeur se fait en trois phases :
1) Déclarer le pointeur avec le type de sa cible.
2) Placer l'adresse de la cible dans le pointeur.

type* Nom_du_Pointeur = &Nom_de_la_Variable;
3) Traiter ou utiliser le contenu de la donnée pointée.

Référencer un pointeur sur une variable.
Nom_du_pointeur = &Nom_de_la_variable; ..

L'opérateur & concaténé à Nom_de_la_variable préalablement

défini retourne l'adresse du premier octet de l'objet pointé.

P
a

g
e

6

 P 6 P 19

Référencer un pointeur par la valeur d'un autre pointeur.

POINTEUR1 = POINTEUR2; . .
Les pointeurs étant fondamentalement des objets comme les autres,
on peut librement leur affecter la valeur d'un autre objet de même
type. (Donc de type pointeur ciblant une donnée de "même taille".

byte *Nom_du_pointeur = NULL;
Puis plus avant dans le programme lors du traitement :
if (Nom_du_pointeur >= (byte*) 0x400) {Instructions pour true}

Dans cette instruction, l'adresse est indiquée directement sous la
forme d'une constante hexadécimale.

Déférencer deux pointeurs dans une même instruction.

*POINTEUR1 = *POINTEUR2; . .
Dans cette écriture, la variable ciblée par POINTEUR1 reçoit le
contenu de la donnée ciblée par POINTEUR2.

NNNNN MMMMM

ATTENTION : L'instruction ne sera correctement exécutée
que si les deux pointeurs sont de même type. Dans le cas
contraire la valeur affectée à la variable ciblée sera incorrecte.

Comparer la valeur d'un pointeur dans les structures if.

Comparer la valeur de la variable ciblée par un pointeur.
Le fait que la variable soit pointée ne modifie en rien son type. Donc la
comparaison se fait da façon tout à fait banale. Exemple :
if (*PTR == 0) {Serial.print('0');} // Si zéro compléter avec "0".
La seule nuance réside dans le fait que l'on précise la variable servant à
la comparaison non pas par son identificateur, mais par son pointeur
dont l'identificateur est associé à "*". (Retourne le contenu de la cible)

Noter que le type de DEBUT_LISTAGE est int puisque l'adresse est
en deux octets sur un ATmega328. Par contre, dans le test le type est
byte car il concerne le pointeur Nom_du_pointeur ciblant un OCTET.

Mais il est également possible d'utiliser un identificateur préalablement
initialisé à une valeur entière de type int. Exemple :
int DEBUT_LISTAGE = 0x500; // Valeur hexadécimale 0500.
if (Nom_du_pointeur >= (byte*) DEBUT_LISTAGE) {Instructions}

Travail de base avec les POINTEURS :

ondamentalement, un tableau qui ne contient que des variables
de type identique, (long, int, char, double…) fonctionne avec

un pointeur. Les "[...]" servent à la fois à préciser que l'identificateur
est celui d'un tableau, et à définir le nombre d'éléments qui vont le
constituer. Comme la déclaration est précédée du type des éléments, la
réservation statique de la place en mémoire est possible dès la
compilation. On peut considérer qu'un tableau est un pointeur constant
qui contient l'adresse du premier élément stocké en mémoire. Ensuite,
quand on cherche à accéder à un élément, c'est le mécanisme interne
qui génère l'adresse à partir de celle du premier élément, du type des
données et de l'ordre de celui que l'on désigne, précisé avec "[n]".

Parallèle entre tableaux et pointeurs :

FFFFF

Identifiant d'un tableau utilisé seul, avec & ou avec *.

Rappel : Une adresse n'est pas un nombre entier. Si on désire l'afficher
par exemple, il faut effectuer un "cast". (Transformation en un entier)

Serial.println((int)Tableau); // Cast en (int) car adresse x type int.

On peut les considérer comme des tableaux de caractères, sauf que
ces tableaux sont implicitement de type char, avec la sentinelle '\0'.

Remarque : Puisque l'identificateur d'un tableau se comporte comme
un pointeur constant sur son premier élément, il est impossible de lui
assigner une valeur quelconque, il y aura génération d'une alerte d'erreur.
Remarque : L'utilisation de l'opérateur sizeof qui, lorsqu'il est
appliqué à un identificateur de type tableau, donne bien la taille de tout
le tableau et non la taille d'un pointeur comme on pourrait le penser.

Pour un objet C déclaré Tableau[N], l'identifiant Tableau utilisé seul
correspond à l'adresse du début du tableau en mémoire. (L'identifiant

Tableau utilisé ici est en fait un pointeur.) Exemples :

Tableau retourne l'adresse du premier élément de Tableau.
&Tableau retourne comme ci-avant l'adresse du premier élément.
*Tableau retourne le contenu du premier élément de Tableau.
Tableau[0] retourne le contenu du premier élément de Tableau.
*&Tableau retourne le contenu du premier élément de Tableau.
*&Tableau[2] retourne le contenu du troisième élément de Tableau.
&Tableau[2] retourne l'adresse du troisième élément de Tableau.
&Tableau+X : Adresse augmentée X qui peut pointer n'importe où !

Chaines de caractères. (sizeof indique la taille du texte sans le '\0')

P
a

g
e

7

 P 18 P 7

Opérations combinées avec les pointeurs :

PTR

Valeur

I - 1

Autre exemple dans une boucle :
for (byte I=1; I < 11; I++) {*PTR++ = I-1;} ..

Affecte la valeur pointée par PTR avec I-1 puis incrémente PTR.

I : Compteur
de boucle

VARIABLE = *++PTR; . .
Incrémente d'abord PTR, puis déréférence sa cible dans VARIABLE.

Affecte puisAffecte puisAffecte puisAffecte puisAffecte puis

incrémenteincrémenteincrémenteincrémenteincrémente

PTR Valeur

Valeur + 1

VARIABLE

VARIABLE = (*PTR)++; . .
Affecte à VARIABLE la valeur pointée par PTR, puis incrémente la
valeur de la cible toujours pointée par PTR.

VARIABLE = ++*PTR; . .
Incrémente la cible de PTR, puis la déréférence dans VARIABLE.

VARIABLE

Valeur + 1

PTR

VARIABLEPTR ++

Valeur

LLLLL''''' usage optimisé de la priorité des opérateurs en langage C
autorise des expressions imbriquées dans des instructions

combinées et compactes. On peut complexifier les expressions à
convenance, mais c'est privilégier la compacité du code au détriment
de la clarté et de la simplicité. C'est une "erreur" à éviter.
Expressions combinées.
L'opérateur d ' incrémentation ayant la priori té sur celui de
déréférencement, c'est donc celui qui sera appliqué en premier. S'il est
postfixé, l'opérateur d'incrémentation ne prendra effet qu'à la fin de
l'expression, donc au moment de l'affectation. Voici les différents effets
obtenus en fonction des combinaisons de ces deux opérateurs :

Afficher l'adresse de la donnée pointée.
Pour afficher le contenu de PTR en standard on devrait écrire :
Serial.print(PTR);
Mais ce codage est refusé par le compilateur car l'instruction concernant
Serial.print ne peut traiter directement le type pointeur. Pour résoudre
cette incompatibilité il faut "réaliser un cast" :

NOTE : Fondamentalement l'opérateur "&" retourne l'adresse en
mémoire du premier octet de l'objet avec lequel il est associé, quel
que soit la type de cet objet. Que ce soit une variable quelconque,
ou celle d'un type pointeur il n'y a pas de différence.

Dans cette écriture c'est l'adresse de la variable pointée qui sera affichée.
L'option facultative HEX impose l'affichage en hexadécimal.

PTR VARIABLE

ADH/ADL

Valeur retournée

Variable de type int.

NOTE : Fondamentalement quand on utilise l'identificateur d'un
objet (Sans "*" ou "&") l'opérateur d'affectation "=" retourne sa
valeur, quel que soit son type. Si l'objet est un pointeur, "=" retourne
la valeur de ce dernier, donc l'adresse du premier octet de sa cible.

ADH ADL

Afficher l'adresse physique en mémoire du pointeur.
Il suffit en standard de faire précéder l'identificateur du pointeur par
l'opérateur "&" pour en obtenir son adresse. Naturellement (uint16_t)
déjà précisée ci-avant relative à Serial.print s'impose.

Pour afficher l'adresse d'un pointeur il faut coder :
Serial.print((uint16_t) &PTR , HEX);

Variable de type int.
ADH/ADL PTRADH/ADL

Valeur retournée
&

VARIABLE

PTR

Afficher les adresses associées à un pointeur :

(uint16_t) transforme l'adresse en un int.

... / ...

Pour afficher la valeur d'un pointeur il faut coder :
Serial.print((uint16_t) PTR , HEX);

P
a

g
e

8

 P 8 P 17
Récupérer dans un entier les adresses d'un pointeur.
Le codage est strictement identique à celui décrit en page 5 pour afficher
ces valeurs sur la ligne série. Il faut les transformer en int.
int ADRESSE; // Variable de réception des valeurs.
• Récupérer l'adresse de la cible :

PTR VARIABLE

ADH/ADL

Valeur retournée

Variable de type int.

ADH ADL

(uint16_t) transforme l'adresse en un int.

ADRESSE = (uint16_t) PTR; .
La variable de réception ADRESSE de type int reçoit sous forme
d'un entier le contenu de PTR qui est l'adresse du premier octet de
la variable ciblée. (Valeur $0000 si PTR = NULL)

• Récupérer l'adresse du pointeur :

Variable de type int.
ADH/ADL PTRADH/ADL

Valeur retournée
&

VARIABLE

PTR

ADRESSE = (uint16_t) &PTR; .
La variable de réception ADRESSE de type int reçoit sous forme
d'un entier l'adresse physique en mémoire d'implantation de PTR.

La seule nuance réside dans le fait que l'on précise la variable traitée
non pas directement avec son identificateur, mais par son pointeur dont
le nom est précédé du caractère "*". (Retourne le contenu de la cible)

void Affiche_le_contenu_de_la_cible() {
 Serial.print(*PTR); // Par défaut affiche la valeur en Décimal.
 Serial.print(*PTR, HEX); // Affiche la valeur en Hexadécimal.
 Serial.print(char(*PTR)); } // Affiche en équivalent ASCII.

Exemple :

Le fait que la variable soit pointée ne modifie en rien son type. Donc la
comparaison se fait da façon tout à fait banale. Il suffit en standard de
faire précéder l'identificateur du pointeur par l'opérateur "*" pour obtenir
le contenu de la variable pointée.

Récupérer / Afficher le contenu de la variable pointée.

Cette opération particulière permet de savoir combien d'objets du type
pointé sont intercalés entre les adresses ciblées par les deux
pointeurs. Le résultat est un entier positif ou négatif en fonction de l'ordre
des pointeurs précisés dans l'instruction.

Soustraction de deux pointeurs de même type.

Recopie de chaînes de caractères avec les pointeurs.

Exemple : (Voir Fig.3) :

int *PTR1 = NULL, *PTR2 = NULL;
int var_int, var_ENT; // variables du programme.

void loop() {

 PTR1 = &var_int; PTR2 = &var_ENT;

 PTR1--; PTR2++;

 // PTR2 - PTR1 retourne +3.
 // PTR1 - PTR2 retourne -3.

E
E

NOTE : Comme il s'agit d'une soustraction, c'est la valeur de l'adresse
la plus grande qui conditionne le signe du résultat. Le signe n'est pas
vraiment significatif, donc il ne faut pas tenir compte de ce dernier.

PTR1 PTR2
PTR2++PTR1--

PTR1 - PTR2 = -3

Fig.3

PTR2 - PTR1 = +3

var_int var_ENT

La soustraction entre deux
pointeurs de même type indique le
nombre d'éléments compris entre

les deux adresses.

TEXTE est recopié dans TITRE quelles que soient les tailles initiales
de ces deux chaînes de caractères.

String TITRE = "BONJOUR"; String TEXTE = "XXXX";
String *SOURCE = &TITRE; String *COPIE = &TEXTE;
 *COPIE = *SOURCE;
 TITRE = TEXTE; } sont deux instructions

qui ont le même effet.

La recopie d'une chaîne de caractères de type String se fait comme la
recopie directe des objets de type String. Quelles que soient les tailles
des chaînes origine et de destination au moment de l'affectation :

P
a

g
e

9

 P 16 P 9

Opérateurs valides sur les pointeurs :

NNNNN aturel lement on va retrouver l ' incrémentat ion et la
décrémentation qui permettent au pointeur de se déplacer d'une

donnée à la suivante. Mais dans le cas des pointeurs, l'incrément ne fait
"1" qui si le type pointé est char ou byte. Pour les autres types de
données pointées, la valeur ajoutée ou retranchée à l'adresse préservée
par le pointeur sera fonction de leur taille.

Arithmétique de base.

Les opérations arithmétiques permises avec les pointeurs sont l'addition
et la soustraction d'une valeur entière à un pointeur. L'adresse contenue
dans ce dernier augmente ou diminue de la [valeur de l'opérande N
multipliée par la taille de la donnée pointée] pour cibler un ou N objets
en amont ou en aval de la cible actuelle.

E
x

em
p

le
 :

 P
ro

g
ra

m
m

e
O

P
E

R
A

T
IO

N
S

_
s

u
r_

le
s

_
p

o
in

te
u

rs
.i

n
o

Pointeur = Pointeur + N; (Voir Fig.1) ..
L'adresse de l'objet ciblé par Pointeur est augmentée de N fois la
taille du type du pointeur pour cibler N objets plus en amont.

PTR PTR + 3

+3+2+1

Pointeur = Pointeur - N; (Voir Fig.2) ..
L'adresse de l'objet ciblé par Pointeur est diminuée de N fois la taille
du type du pointeur pour cibler N objets plus en aval.

PTRPTR - 4

-1-2-3- 4

Pointeur++ ; Po in teur- - ; . .
Décale l'adresse d'un élément en amont ou en aval d'un nombre
d'octet correspondant à la taille du type pointé. C'est la forme
condensée de l'instruction Pointeur = Pointeur + 1 ou de l'instruction
Pointeur = Pointeur - 1.

ATTENTION : Il importe de faire très attention avec ce
type d'opération à ne pas déborder du "bloc des données
pointées", car le programme généré n'effectue aucune
vérification. On peut librement cibler n'importe où dans la RAM
avec toutes les conséquences potentielles qui en résultent.

MMMMM

NNNNN

Fig.2

Fig.1

Pointeur provisoirement non typé déclaré avec "void".
void *Nom_du_pointeur;

Avec void on déclare un pointeur indifférencié qui peut changer de
type lors de son utilisation.

Un exemple pratique d'utilisation est donné dans le petit programme
Declaration_pointeur_avec_void.ino qui en passage de paramètre
dans des procédures peut cibler aussi bien un byte qu'un int.

Pointeur utilisés en paramètres de fonction.

void *PTR; // Définit un pointeur sans préciser son type.
byte OCTET = 0x73;
int ENTIER = 0x1234;
void loop() {
 PTR = &OCTET; // Pointe sur un octet.
 LISTE_octet_SRAM ("Pointe l'octet : ",(byte*) PTR);
 PTR = &ENTIER; // Pointe sur un entier.
 LISTE_un_Entier ("Cible l'entier : ",(int*) PTR);
 INFINI: goto INFINI; }

Un exemple beaucoup plus étoffé que le résumé listé ci-dessous est
donné dans Pointeurs_en_paramètres_de_fonctions.ino :

byte *PTR1 = NULL; // Pointeurs pour cet exemple.
byte OCTET; // Variable de réception de la fonction.

void loop() {
 PTR1 = (byte*) 0x100; // PTR1 pointe sur 0x100.
 Affiche_PTR(PTR1); // PTR1 passé en paramètre. (1)
 OCTET = Valeur_cible(PTR1); (2)
 Affiche_Octet();
 INFINI: goto INFINI; }

void Affiche_PTR(byte *INDEX) {
 Serial.print("Valeur de PTR = $");
 Serial.print((uint16_t) INDEX,HEX); }

byte Valeur_cible(byte *PTR) {return *PTR; } (3)

Dans cet exemple on peut observer que :
En (1) le pointeur PTR1 est passé en paramètre à la procédure
Affiche_PTR. En (2) PTR1 est passé en paramètre à la fonction
Valeur_cible, mais il sert également au retour le la valeur en (3).

P
a

g
e

1

0

 P 10 P 15

Pointeurs et cibles déclarés constants :

NNNNN otons au passage qu'utiliser le qualificateur const n'est pas
spécifiquement liée à la notion de pointeurs, mais reste

recommandée à chaque fois que cette précaution est pertinente. C'est
une bonne stratégie de programmation qui permet au compilateur de
détecter les erreurs de logique dans le source dès la traduction en binaire.
Adresse pointée qualifiée de constante.

Donnée pointée qualifiée de valeur constante.

Le petit programme Pointeurs_utilises_avec_CONST.ino illustre
l'utilisation de const dans les divers cas présentés ci-avant. On notera
avec ce petit logiciel d'expérimentation que les pointeurs sont placés en
mémoire les uns "contre" les autres, mais PTR0 déclaré const et initialisé
à NULL n'est pas placé en premier mais intercalé entre les autres.

Adresse et donnée pointée qualifiées de constantes.

 const byte *Nom_du_pointeur = &Valeur_a_figer; .
Le qualificateur const s'applique sur la valeur de la donnée pointée
qui ne peut plus être modifiée. Il importe de l'avoir initialisée avant de
déclarer ce pointeur, ou cette donnée sera inutilisable.

byte const *Nom_du_pointeur = &Valeur_a_figer; .
Écriture équivalente pour figer la valeur de la cible.

byte const * const Nom_du_pointeur = &Valeur_a_figer; .
Le pointeur contant vectorise vers une valeur elle-même constante qui
ne peut pas être modifiée par le code compilé, mais qui peut tout de
même changer s'il s'agit d'une "cellule" dont la mise à jour est
matérielle. (Registre significatif de l'état d'une E/S par exemple)

Le compilateur n'est pas autorisé à faire une optimisation en se basant
sur le fait que la valeur pointée est constante, mais générera une
erreur si le programme tente de la modifier par ses instructions.

byte * const Nom_du_pointeur = (byte*) 0x0300; .
Le qualificateur const est intercalé entre le caractère "*" et
l'identificateur du pointeur. L'adresse de la cible ne peut plus être
changée. (Donc indiquer NULL en adresse ne sera pas très utile !)

uint8_t * const Nom_du_pointeur = (uint8_t*) 0x0300; .
Écriture équivalente à celle de l'instruction précédente, c'est une autre
façon de déclarer le type byte pour la variable.

(1) Appel de la fonction sans utiliser l'opérateur d'affectation. Seule la
variable A passée en argument par référence est modifiée.

(2) Modifie la variable B car elle est passée en référence. Mais comme
il s'agit d'une fonction, on peut utiliser son résultat qui ici est affecté
à C. À l'issue de cette instruction B et C auront donc la même valeur.

(3) On déclare la référence en paramètre obligatoirement sous

forme d'une fonction typée. Il est tout aussi possible d'utiliser le
résultat dans un Serial.print du genre : Serial.println(Ajoute_1(C));

Le concept de passage par référence ne doit en aucun cas être confondu
avec celui de passage par adresse même si les deux formes utilisent le
caractère &. En passage par référence il n'y a pas déclaration d'un

pointeur. De plus la fonction ne peut avoir qu'un seul paramètre.

ette notion méconuue en langage C est apportée par le C++ qui
procure les avantages du passage par pointeur avec la simplicité

du passage par valeur grâce au concept novateur de référence. Une
référence permet de faire appel à des variables valides dans une autre
portée. Par exemple on peut manipuler une variable située dans une
procédure ou une fonction à partir d'une autre fonction. La déclaration
d'une référence se fait simplement en intercalant un caractère &
(Esperluette ou ET commercial) entre le type de la variable et son
identificateur. Exemple de passage d'argument par référence :

byte A = 72, B, C; // Variables banales sur un octet.

void setup() {Serial.begin(115200);}

void loop() {
 Ajoute_1(A); // Modifie A. (1)
 Serial.print(" Valeur de A = "); Serial.println(A);
 Ajoute_1(B); // Modifie B.
 Serial.print" Valeur de B = "); Serial.println(B);
 C = Ajoute_1(B); (2)
 Serial.print(" Valeur de B = "); Serial.println(B);
 Serial.print(" Valeur de C = "); Serial.println(C);
 INFINI: goto INFINI; }

byte Ajoute_1(byte &X) // Déclaration de la référence. (3)

{Serial.print(" Valeur de X = "); Serial.println(X); X ++;}

E
x

em
p

le
 :

 P
ro

g
ra

m
m

e
A

rg
u

m
e

n
t_

p
a

r_
re

fe
re

n
c

e
.i

n
o

Passage des paramètres par référence :

CCCCC

P
a

g
e

1

1

 P 14 P 11

Vérification de "HEAP" encore disponible :

PPPPP ouvoir s'assurer en cours de développement d'un programme que
la mémoire des données dynamiques n'approche pas la saturation

est un impératif. L'utilisation des pointeurs spécifiques dans une
procédure minimale avec affichage des paramètres pertinents sur la ligne
série USB permet une telle vérification. Le code ci-dessous donné dans
Verif_SRAM_disponible.ino précise les quelques lignes à ajouter
au programme pour introduire ce type de vérification :

} @

NOTE : La variable système __brkval représente la première cellule
mémoire non encore attribuée dans la zone dynamique HEAP. Si
__brkval est égal à zéro, c'est que malloc n'a pas encore utilisé de la
mémoire dynamique, dans ce cas on utilise l'adresse de __heap_start.

Ce code utilise le fait que __heap_start correspond à la fin de BSS.
(1) : Cette ligne fait généralement partie du programme en cours de

 développement, donc ne pénalise pas l'occupation de SRAM.
(2) : Possibilité de minimiser ce texte pour gagner de la place.
(3) : Appel en n'importe quel endroit du programme.
(4) : Déclaration en local des deux pointeurs servant aux calculs.

Le programme Saturer_SRAM.ino donne un exemple de boucle allant
jusqu'à la quasi saturation de la SRAM.

@ : La ligne de code utilise une écriture standard pour des raisons de
lisibilité. Mais dans un souci de compacité du programme elle est
généralement réduite par utilisation de l'opérateur ternaire et devient :
 return (int) &BIDON - (__brkval == 0 ? (int) &__heap_start
 : (int) __brkval);

void setup() { Serial.begin(115200); } (1)

void loop() {
 Serial.print("SRAM libre = "); (2) Serial.println(SRAM_LIBRE()); (3)
 INFINI: goto INFINI; }

int SRAM_LIBRE() { // Fonction qui retourne la taille de SRAM disponible.
 extern int __heap_start, *__brkval; (4)
 int BIDON; // Dernière variable allouée, donc en "haut" de la PILE.
 if (__brkval == 0) {return (int) &BIDON - (int) &__heap_start;}
 else {return (int) &BIDON - (int) __brkval;} }

Voir P12 et P13 les
pointeurs prédéfinis.

Variables prédéfinies pour gérer la PILE :

PPPPP lusieurs identificateurs réservés sont définis en standard pour
faciliter la gestion de la mémoire du microcontrôleur. Ces

pointeurs permettent de traiter les adresses des diverses zones
spécifiques d'utilisation de la mémoire SRAM. L'organisation générale
relative à la gestion de la SRAM est donnée en page 2.

Variables entières prédéfinies.
Deux entiers dont les identificateurs RAMEND et SP sont réservés et
n'ont pas à être déclarés pour permettre de gérer la PILE et la taille de
la SRAM. La variable RAMEND est spécifique, car le compilateur
interdit d'en changer la valeur par programme.
La variable SP peut être modifiée par programme. Mais il est très
dangereux potentiellement de modifier la valeur du S.P.

Un exemple d'emploi de ces deux pointeurs prédéfinis est donné dans
le petit programme Variables_PREDEFINIES.ino listé en partie
ci-dessous qui illustre l'utilisation possible de RAMEND et de SP :

void loop() {
// RAMEND = 1234; Instruction non acceptée par le compilateur
// car RAMEND ne doit pas être modifiée par programme.
// Pas besoin de déclarer RAMEND ni SP.
 Serial.print("La FIN est en $ "); Serial.println(RAMEND,HEX);
 Serial.print("Le S.P. est en $ "); Serial.println(SP,HEX);
 Serial.print("La pile fait "); Serial.print(RAMEND-SP);
 Serial.println(" octets.");
 Serial.print("La taille de SDRAM hors registres ATmega328 = ");
 Serial.print(RAMEND - 0xFF); // Registres du µP exclus.
 Serial.println(" octets.");
 INFINI: goto INFINI; }

P
a

g
e

1

2

 P 12 P 13

Pointeurs prédéfinis pour gérer la RAM :

AAAAA ssez similaires aux deux variables RAMEND et SP présentées
en page 11, ce sont des objets de type pointeur identifiés par

des noms réservés dans avr-libc (Bibliothèque standard qui n'a pas
à être déclarée) qui doivent être déclarés par des directives extern.
L'allocateur de mémoire mis en œuvre par avr-libc fait face aux
nombreuses contraintes liées à la faible taille de RAM disponible sur les
microcontrôleurs. Cette librairie prévoit des options d'ajustement qui
peuvent être utilisées s'il y a plus de ressources disponibles que dans la
configuration par défaut. (RAM externe possible sur certains µP)

CCCCC omme montré dans la Fig.1 située en page 3, l'allocation standard
de mémoire dynamique dans le TAS, et celle de la PILE sont

séparés dans des zones de RAM distinctes pour éviter les risques de
collision. Un certain nombre de variables peuvent être initialisées pour
adapter le comportement de malloc() à des exigences particulières de
l'application en cours de développement. Toutes modifications de ces
paramètres doivent être effectuées avant le premier appel à malloc().
Noter que certaines fonctions de la bibliothèque peuvent également
utiliser de la mémoire dynamique. (Par exemple certaines fonctions
de stdio.h telles que l'installation standard des I/O) Les modifications
d'implantation mémoire devront s'effectuer rapidement dès le début de
la séquence de démarrage. __heap_end

__heap_start
__bss_end
__bss_start
__data_end
__data_start
__brkval

Les pointeurs prédéfinis pour gérer
globalement la SRAM représentée sur la
Fig.1 de la page 3 sont listés ci-contre : Déclaration des pointeurs prédéfinis.

E
x

em
p

le
 :

 P
ro

g
ra

m
m

e
P

o
in

te
u

rs
_

P
R

E
D

E
F

IN
IS

.i
n

o
Les pointeurs prédéfinis doivent être déclarés par la directive extern
suivi de int , char ou byte qui est le type des objets pointés
extern int __heap_end; // Toujours égal à zéro.
extern int __heap_start;
extern int __bss_end;
extern int __bss_start;
extern int __data_end;
extern int __data_start; // Égal à $100 en standard.
extern int __brkval;

Description des pointeurs de limite des zones en SRAM.
__heap_start : Début de la zone HEAP et fin de la BSS.
__bss_end : Fin de la BSS et début de la zone HEAP.
__bss_start : Début de la BSS et fin de la zone DATA.
__data_end : Fin de la zone DATA et début de la BSS.
__data_start : Début de la zone DATA en $100.

Le pointeur __brkval.
Fondamentalement il représente la première cellule mémoire non encore
attribuée dans la zone dynamique HEAP. Si __brkval est égal à zéro,
c'est que malloc() par exemple, ou l'allocateur de mémoire dynamique
plus généralement n'a pas encore réservé de la mémoire.

__heap_end est fondamentalement une "constante" dont la valeur ne
change pas pendant l'exécution d'un programme. En utilisation

standard de la SRAM une valeur particulière pour __heap_end ne
présente pas de sens pratique réel. La valeur zéro symbolise le fait
qu'il n'y a pas de RAM externe au microcontrôleur. Elle précise à la
fonction malloc() que le "haut" du TAS n'est pas vraiment déterminé
puisque son extension varie de façon dynamique, et qu'il importe de
vérifier la valeur du S.P. au moment d'allouer de la mémoire.

Tout se passe comme si en permanence __heap_end était égal à la
valeur actuelle du SP, bien que sa valeur reste égale à zéro.
On ne change la valeur de __heap_end que pour utiliser une RAM
additionnelle externe. En standard, la PILE occupe alors toute la RAM
interne du µP et __heap_start pointe vers le début de la RAM externe,
avec __heap_end qui indique la fin de cette RAM complémentaire.
Les variables __malloc_heap_start et __malloc_heap_end peuvent
être utilisés pour restreindre la fonction malloc() à une zone de mémoire
bien définie. Ces variables sont statiquement initialisées pour pointer
respectivement vers __heap_start (Initialisé par l'éditeur de liens
pour pointer juste après la BSS) et __heap_end qui est forcé à 0,
ce qui permet à malloc() de maintenir le TAS en dessous du S.P.
Si le TAS est déplacé en RAM externe, __malloc_heap_end doit
être ajustée en conséquence pendant l'exécution du programme en
écrivant directement la valeur dans cette variable, ou peut être fait
automatiquement en lieu et temps en ajustant la valeur de __heap_end.

__malloc_heap_start ,
__malloc_heap_end ne
sont pas à déclarer.

F

Pointeurs spécifiques pour
délimiter les zones en SRAM.

