— P 24

RESUME sur I'utilisation basique des POINTEURS :

type *PTR = ; // Déclare PTR sur cible de taille type.
PTR —
PTR est une nouvelle variable de nature pointeur. La variable ciblée

sera du genre type. Bien que ce ne soit obligatoire on précise au
compilateur qu'actuellement PTR

Gérer une adresse dans PTR peut utiliser les opérations spécifiques

aux pointeurs telles que l'incrémentation, mais ces dernieres sont
fonction de la taille des données ciblées, d'ou type associé au pointeur.

PTR=&VARIABLE; //PTR pointe VARIABLE.
ADH PTR ADL [~} ADH ADL VARIABLE
PTR recoit1'adresse du premier octet de VARIABLE.

PTR2=PTR1; //PTR2recoitle contenude PTR1.
ADH PTR2 ADL |«s— ADH PTR1 ADL

PTR1 et PTR2 sontdeux pointeurs de méme type.

type *PTR = (type *) ADR; // PTR pointera I'adresse ADR.
ADRH PTR ADRL [«@— Constante ADRH/ADRL

Affecte au pointeur PTR ciblant une variable de taille type la valeur
d'un entier que I'on peut exprimer en décimal, octal ou hexadécimal.

*PTR=Valeur;//VARIABLE ciblée par PTR recoit Valeur.
ADH PTR ADL |—@»| ADH ADL VARIABLE

Valeur ¢~

Affecte 1a Valeur respectant le type pointé a la zone mémoire
dont I'adresse du premier octet est contenue dans PTR.

Retour:l *PTR// Retourne le contenu de la variable ciblée.
ADH PTR ADL || ADH ADL VARIABLE

"Retour"” -}
Retourne la Valeur de VARIABLE actuellement ciblée par PTR.

([UTILISATION DES POINTEURS.)

O bjets particuliers du langage C ils permettent de traiter des

variables par utilisation de leurs adresses en mémoire. Un pointeur

a pour contenu l'adresse d'un objet C typé. Ils permettent de :

* Définir des structures dynamiques, (Qui évolue au cours du temps)
par opposition aux tableaux, par exemple, qui sont des structures de
données statiques dont la taille est figée a leur déclaration.

* De manipuler de facon simple des données de tailles importantes.(Au
lieu de passer a une fonction un élément "volumineux" on pourra
par exemple lui fournir un pointeur vers cet élément ...)

* Les tableaux ne peuvent stocker qu'un nombre fixé d'éléments de
méme type.En stockant des pointeurs dans les cases d'un tableau, il
sera possible de stocker des éléments de tailles diverses, et
méme de rajouter des éléments au tableau en cours d'utilisation.
(Tableaux dynamiques étroitement liée a l'usage de pointeurs)

* Avec les pointeurs il devient possible de coder des fonctions qui
retournent plusieurs valeurs ce qui n'est pas faisable avec return.

* IIs sont parfaitement adaptés pour créer des structures chainées.

Gestion dynamique de la SRAM sur Arduino..........ccceeeee.... P02
Utilisation basique des POINTEURS.........ccccoiiiiiiiiiieneens P04
Travail de base avec les POINTEURS ... P06
Afficher les adresses associ€es a un pointeur........ccc....... P07
Pointeurs et cibles déclarés constants...........ccccceeeeeeeennnnee P10
Variables prédéfinies pour gérer la PILEcccccevviinennenn. P11
Pointeurs prédéfinis pour gérerla RAM ... P12
Vérification de "HEAP" encore disponiblecccceeeee.. P14
Passage des paramétres par référenceccccceeeeeeeeennnee P15
Opérateurs valides sur les pointeursccccocceeeeiiieeneennee P16
Opérations combinées avec les pointeursccocceeeeennnee. P18
Paralléle entre tableaux et pointeursccoccciiieeeeeiinnnnee P19
Passer des parameétres par adresSSes........coeecuvveeeeeeeeeennnnee P20
Gestion dynamique des tableauXcooccvvveeeeeeiieeciiiieeennnn. P22
Passer un tableau en parametre de fonction...................uu...... P23
Tableau de pointeurs P23
RESUME sur l'utilisation basique des POINTEURS P24

Jeudi. 24 Nov.. 2016

— P2

Gestion dynamique de la SRAM sur Arduino :

P ermettant un appel récursif des procédures et des fonctions, le
langage C engendre pour le compilateur des contraintes
spécifiques relatives a la gestion de la mémoire vive. Le sectionnement
et la répartition des données statiques et des données dynamiques en
sont forcément directement influencés avec une allocation dynamique
de certaines données. Il en résulte des risques de "collision" entre les
données dynamiques (HEAP) et la zone occupée par la PILE.
Fonctionnement de la mémoire vive.
La mémoire vive (256 + 2Ko) est généralement divisée en 4 zones :
*Les 256 premiers octets pour les registres généraux du microcontroleur
(Représentée en jaune surla Fig.l)occupent "le bas" de la SRAM.
* La zone nommée BSS qui contient toutes les variables globales,
allouées statiquement au moment de 1'édition de lien lors de la
compilation.LaBSS est utilisé par de nombreux compilateurs pour
désigner une zone de données contenant les variables statiques
déclarées dans les initialisations, et forcées avec des octets a zéro.
*Le TAS (Nommé HEAP) est destiné aux allocations dynamiques dans
lequel on peut attribuer et libérer des blocs de mémoire. Le TAS se
fragmente généralement au cours de 1'évolution du programme, avec
unrisque notable de le rendre inutilisable. Défragmenter HEAP par
une séquence de code de type "Ramasse miettes" est faisable mais
relativement dangereux, car sil'on déplace une variable en cours
d'utilisation, les conséquences peuvent s'avérer ingérables.

L'utilisation de la mémoire dynamique doit €tre réduite au minimum,
et si possible uniquement durant les phases d'initialisations quand on
peut vérifier qu'il y a un risque de manque de mémoire. Noter que la
classe String est principalement basée sur I'allocation dynamique.
Utiliser String conduit a fragmenter trés rapidement la zone HEAP.

* La PILE nommée STACK qui mémorise temporairement :

* Les parametres associés a I'appel des fonctions et procédures,

* Les adresses de retour des fonctions et procédures,

* Les variables locales aux fonctions et procédures.
La pile est une zone de mémoire commencant en haut de la SRAM qui
se charge vers le bas de fagon linéaire et continue lors des appels des
fonctions ou des procédures. Elle se réduit vers le haut lors des retours.

Passer un tableau en paramétre de fonction :

P our désigner un tableau dans une fonction, il faut passer en
argument son identificateur, et éventuellement en option sa taille.
Procédant par adresses, il n'y a pas recopie du tableau et 1'on modifie
directement l'original. Pour "passer" un tableau a une fonction (Ou une
procédure si void remplace type) on écrit une instruction du genre :

type fonction NOM_FONCTION (type TABLEAUI],typeTaille)

NOTE : Inutile de préciser la Taille du tableau entre crochets car le

compilateur l'ignorera. On peut toutefois la passer en parametre si 1'on

utilise une boucle dans le traitement, (// ne faut pas déborder le tableau)

la procédure pouvant traiter des tableaux de tailles différentes.

Un tableau est converti en un pointeur sur son premier élément. C'est

cette adresse qui est passée en parametre a la procédure ou a la fonction.

Du reste on peut désigner un tableau comme argument avec la forme :

type_fonction NOM_FONCTION (type *TABLEAU)

Les deux écritures sont strictement équivalentes. (Dans les deux cas

type indique le type des éléments du tableau) Le choix de la forme

utilisée est personnel et ne concerne que la présentation du programme.

Tableau de pointeurs :

P armi les applications possibles ils permettent de manipuler des
éléments de tailles variables, des structures chainées etc. Sinous

avons besoin d'un ensemble de pointeurs du méme type, nous pouvons

les réunir dans un tableau de pointeurs :

type_cible *Nom_tableau [NB];

DéclareNom_tableau de NB pointeurs detype cible.

Par exemple double *A[10]; déclare un tableau A de 10 pointeurs sur
des rationnels du type double dont les adresses et les valeurs ne sont
pas encore définies. Le programme Tableaux_de_pointeurs.ino donne
un exemple trés complet d'un tableau de chaines de caracteres de
dimensions différentes, avec des traitements dans lesquels :
PLANETES [n] retourne la chaine entiere de caracteres.
>>> Ne fonctionne pas en affectation : PL e":
*(PLANETES [n]) retourne le contenu(Caracteéres)de 1'octet pointé.
(uint16_t) *(& PLANETES [n]) retourne l'adresse de la CIBLE : C'est
I'adresse du premier caractéere de la chaine de rang (n+1).
(uint16_t) &PLANETES [n]) retourne 1'adresse de 1'é1ément de rang
(n+1) du tableau de pointeurs. (Adresse en RAM du pointeur)

P 23

— P 22

Gestion dynamique des tableaux :

L’ application typique des pointeurs pour de 'allocation dynamique

de mémoire consiste a pouvoir décider de la taille d'une variable
au moment de I'exécution du programme, car elle n'est pas encore
connue lors de son développement. Ainsi, pour allouer un tableau de N
entiers, (N étant déterminé durant l'exécution du programme), on
déclare une variable de type pointeur sur entier avec lequel on alloue
une zone mémoire correspondant a la taille nécessaire. Exemple :

byte NB_elements; // byte : Car taille prévue < 255.

void loop() {
NB_elements = Valeur entiere; (1)

>/* Allocation dynamique du tableau */
{ long *TABLEAU = NULL;

TABLEAU = (long*) malloc(NB_elements *sizeof(long));

/* Utilisation du tableau */

if (TABLEAU !=NULL) { (2)
/* Sauvegarder I'adresse du début de TABLEAU. */
long *DEBUT = TABLEAU; (3)
... instructions pour utiliser le tableau.

>/* Restituer la RAM utilisée par le tableau */
Q’TABLEAU = DEBUT; // Restituer I'adresse du pointeur.
free(TABLEAU); } // Libérer la place réservée. (4)
... Suite du programme.
Commentaires sur ce programme :

(1) Le nombre d'éléments sera déterminé durant 1'exécution du
programme. Par exemple une saisie clavier sur la ligne série etc.

(2) Le pointeur TABLEAU recoit 1'adresse du premier élément au
moment de laréservation de mémoire. Silaplace n'est plus disponible
en RAM, la réservation n'a pas licu et malloc retourne la valeur
NULL. Donc unelse préviendrait que I'action n'est pas possible.

(8) Logiquement on peut considérer que I'exploitation du tableau va se
faire par utilisation du pointeur TABLEAU. Hors l'instruction free()
impose que le pointeur utilisé parmalloc() contienne 1'adresse du
débutde la zone allouée. Il importe de sauvegarder cette derniere.

(4) On ne libere la place que si l'utilisation du tableau n'est que
temporaire. S'il sert durant tout le programme,free() ne sert a rien.

P 3 -
La disposition standard de la SRAM montrée en Fig.1 consiste a placer
les variables de données au début de la mémoire vive interne, suivie de
la BSS. Le TAS disponible HEAP pour l'allocateur de mémoire
dynamique sera placé juste aprés 1aBSS. Ainsi, il n'y a pas de risque
d'écrasement entre la mémoire dynamique et les variables SRAM. Le
TAS et la PILE peuvent toutefois se heurter méme si les espace exigés
pour les variables dynamiques ne sont pas exagérés, mais que
I'allocation de mémoire se fragmentant au fil du temps. De nouvelles
demandes ne peuvent alors plus se loger dans les "trous” des régions
déja libérées, ou par une plongée de la PILE issue d'une fonction avec
beaucoup de variables locales. Enfin des appels récursifs d'une fonction
ou d'une procédure peuvent conduire a une plongée dans la PILE.

La surveillance de la disponibilité SRAM

de place dans la SRAM interne au RAMEND —>
microcontroleur est un impératif si I'on ne veut
pas risquer une collision des variables
dynamiques avec la zone de la PILE.
Il importe donc de surveiller, a divers
stades stratégiques du code, la quantité de
Mémoire disponible au cours du
déroulement d'un programme. Le logiciel
Verif _SRAM_disponible.ino montre

comment quelques instructions I
permettent de surveiller le —_heap_end—>05D0

risque de collision entre TAS et "TAS": S
PILE. Noter que la SRAM malloc() { jDonnees &2
disponible pour les données fait ynamiques

SP —

Mémoire
disponible

bien 2048 octets. (Mise en heap start—>{03D6

évidence par la zone violet __bss_end —> 03D6

pastel sur la Fig.1) Elle :)
commence en 0100, et se Fig.1 2
termine donc en O8FF. Les bss start—>{031E

divers pointeurs présentent des __data_end—>|031E | Variables (%)
identificateurs réservés parle __data_start —|0100 DATA. sl
compilateur C d'Arduino et 00FF 4 60 Ext 1/O Reg. |&
n'ont pas besoin d'étres déclarés. Noter que gggg gH
les diverses adresses sur la Fig.1 (Sauf OIFF |go20 ©41/OReg. 2
et O8FF)sont fonction du logiciel en cours. 8885 32 registres é’;

— P 4

Utilisation basique des POINTEURS :

Déclaration d'un pointeur.

type *Nom_du_pointeur = X
Le symbole '*' précise au compilateur que Nom_du_pointeur est
un pointeur qui ciblera une variable dont la taille en octets est défini
partype. Le type de variable pointée peut étre aussi bien un élément
primaire(int, char, float, String ...) qu'une structure complexe.

Deux variantes sont équivalentes pour déclarer un pointeur :

type* Nom_du_pointeur ou type *Nom_du_pointeur

Un pointeur non initialisé présente un danger potentiel car il pointe
n'importe ou dans la mémoire. Si 1'on affecte une valeur a une cellule
mémoire a I'aide de ce pointeur, on peut fort bien écraser une donnée
ou du code programme. L'option = n'est pas obligatoire mais
précise au compilateur que Nom_du_pointeur n'a pas encore de
cible. (Cette affectation est fortement recommandée)

Un pointeur stocke une adresse mémoire. (Référence) et peut étre
considéré comme un nombre allant de 0 a (TailleMémoire - 1) du
microcontroleur considéré. Un pointeur occupe donc toujours la méme
taille quel que soit le type de I'objet indexé. Il s'agit en général de la
plus grande taille directement gérable par le processeur : Sur une
architecture 16 bits comme celle d'Arduino utilisant un ATmega328 la
taille des pointeurs est de 2 octets. Sur une machine 32 bits elle passe
a 4 octets, avec 64 bits : 8 octets etc.

Référencer / Déréférencer un pointeur.
* Référencer consiste a affecter 1'adresse d'une VARIABLE au pointeur.
» Déréférencer consiste a lire le contenu de la VARIABLE pointée.

POINTEUR Référencer VARIABLE (N OCtetS)
ADH | ADL |-—— & | ADH'| ADL

5 @
& (Adresse) * (Contenu) o 2L
ADH | ADL © 8
Dér;’fe;rencer * ADH ADL = >
etourner o
la Valeur —p ADH | ADL

-y

P21+
Passage par adresse de données non modifiées.
P asser des parametres par adresse est également tres utilisé pour
optimiser la quantité de données qui doit transiter par la PILE,
cette place disponible pour les données en RAM étant tres restreinte
sur les microcontréleurs. Dans ce but, méme si la variable ne doit pas
étre modifiée, on utilise quand méme un passage par adresse pour éviter
la copie implicite des variables autres que celles des tableaux. C'est
particuliecrement vrai avec les structures, sans pour autant trop nuire a
la lisibilité, puisque celles-ci ont tendance a étre assez imposantes.
Probleme potentiel lors du changement d'une adresse.
Il importe de toujours avoir a I'esprit que 1'affectation d'un pointeur a
l'intérieur d'une procédure peut avoir un effet de bord si l'on y prend
pas garde. Dans l'exemple donné ci-dessous, le corps de la procédure
modifie la valeur de X méme si on lui passe comme adresse celle de la
variable Y comme c'est le cas en @.

byte X = 0x20, Y = 0x40;

void Procedure_qui_modifie_X(byte *PTR) {
PTR = &X; // PTR pointe X comme cible.
++*PTR; }// Lacible de PTR estincrémentée.

void loop() {
Procedure_qui_modifie_X(&X);
Procedure_qui_modifie_X(&Y); @

Sila lecture du contenu de la procédure n'est pas effectué, I'appel @
incite a penser que c'est la variable Y passée par adresse qui sera traitée
alors, que c'est toujours X qui est incrémentée, puisque dans le code la
valeur du pointeur est "détournée". Pour éviter ce risque, on pourrait
déclarer le pointeur ou la cible comme étant constant :
void Procedure_avec_verification(const byte *PTR) {...} (1
void Procedure_avec_verification(byte *const PTR) {...} (2
(1) : On impose que la donné pointée sera une constante.
(2) : On impose que le pointeur soit d'adresse constante.
Avec cette précaution le compilateur va s'apercevoir que dans le corps
de la procédure il y a tentative de modification soit de la valeur de la
cible, soit de celle de PTR et générer un message d'erreur.

)
)

— P 20

Passer des parametres par adresses :

T outes les variables en langage C sont passées par valeurs aux
parametres des procédures ou des fonctions. (Exception faite
pour les valeurs des éléments constituant les tableaux) C'est a dire
que des copies de leurs valeurs sont effectuées dans la PILE au moment
de l'appel de la procédure ou de la fonction. Toutes les modifications
de ces variables effectuées durant la "subroutine" seront perdues lors
du retour au code appelant. Il y a des cas ol 1'on désirerait pouvoir
modifier une variable passée en parametre et que ses modifications
perdurent dans la procédure ou la fonction appelante. C'est 1'utilisé
fondamentale du passage des parametres par adresse : Permettre la
modification d'une ou plusieurs variables en visibilité du code appelant.

Passage de paramétres par adresses.
/* Passage de parametres par adresses. */
// La procédure permute le contenu des deux variables.

byte X = 0x73, Y = 0x88, A = 0xAA, B = 0x55;
void setup() {Serial.begin(115200);}

void loop() { Permute_Octets (&X, &Y);
Serial.print(" X = $"); Serial.printin(X, HEX);
Serial.print(" Y = $"); Serial.printin(Y, HEX);
Permute_Octets (&A, &B);

Serial.print(" A = $"); Serial.printin(A, HEX);
Serial.print(" B = $"); Serial.printin(B, HEX);
INFINI: goto INFINI; }

void Permute_Octets (byte *X, byte *Y) {
byte TMP = *X; *X = *Y; *Y = TMP; }

Dans cet exemple, la procédure crée les pointeurs au moment de I'appel,
dans le bloc de ses parametres.
Fonctions retournant plusieurs parametres.
Dans I'exemple de fonction retournant une valeur pointée donnée en
page 9, l'instruction return ne peut renvoyer qu'une seule valeur. Sil'on
désire renvoyer plusieurs valeurs, il faut procéder par l'utilisation des
adresses comme montré dans I'exemple ci-dessus. Rien n'interdit,
naturellement que return serve a retourner un résultat complémentaire
issu d'un traitement spécifique effectué durant la fonction.

P5—

L'utilisation d'un pointeur se fait en trois phases :
1) Déclarer le pointeur avec le type de sa cible.
2) Placer I'adresse de la cible dans le pointeur.

type* Nom_du_Pointeur = &Nom_de_la_Variable;
3) Traiter ou utiliser le contenu de la donnée pointée.
Référencer un pointeur sur une variable.
Nom_du_pointeur = &Nom_de_la_variable;

L'opérateur& concaténé aNom_de la_variable préalablement

définiretourne I'adresse du premier octet de I'objet pointé.

On peut initialiser un pointeur directement lors de sa déclaration :
*Nom_du_pointeur=&Nom_de_la_variable;

Dans 1'écriture précédente nous n'avons pas a connaitre l'adresse de la
cible, d'autant plus qu'elle change a chaque lancement du programme
puisque le compilateur alloue les blocs de mémoire libres dans le TAS.
On peut si on le désire affecter une valeur d'adresse a convenance :
Référencer un pointeur par une constante.
Nom_du_pointeur = (type) ADRESSE;

Dans cette affectation (type*) est un rappel du type affecté au

pointeur. ADRESSE estaussi bien une valeur entiére qu'une constante

de typeint préalablement définie :

int DEBUT_LISTAGE = 0x300; // Valeur hexadécimale 0300. @
byte *PTR = (byte*) DEBUT_LISTAGE;

Est équivalent a :

byte *PTR = (byte*) 0x300; // Valeur hexadécimale 0300.

NOTE : Le langage C++ exige que tout soit rigoureusement typé.
Un entier de type int n'est pas de type pointeur. Il faut donc forcer la
structure convenable avec la conversion explicite (type?®).

Accéder a I'objet pointé. (Déréférencer)

Identificateur_pour_une_Variable = *Nom_du_pointeur;
Cen'estqu'apres avoir déclaré et initialisé un pointeur, qu'il devient
possible avec l'opérateur '*' d'accéder a I'objet ciblé en mémoire.
Dans cet exemple |dentificateur_pour_une_Variable regoit le
contenu del'objet typé pointé parNom_du_pointeur.

— P6

Travail de base avec les POINTEURS :

Référencer un pointeur par la valeur d'un autre pointeur.
POINTEUR1 = POINTEURZ2;
Les pointeurs étant fondamentalement des objets comme les autres,
on peut librement leur affecter la valeur d'un autre objet de méme
type.(Donc de type pointeurciblant une donnée de "méme taille".

Déferencer deux pointeurs dans une méme instruction.
*POINTEUR1 = *POINTEURZ;

Dans cette écriture, la variable ciblée par POINTEURT1 recoit le
contenu de la donnée ciblée parPOINTEUR2.

ATTENTION : L'instruction ne sera correctement exécutée
& que si les deux pointeurs sont de méme type. Dans le cas §*
contraire la valeur affectée a la variable ciblée sera incorrecte.

Comparer la valeur d'un pointeur dans les structures if.

byte *Nom_du_pointeur=NULL;

Puis plus avant dans le programme lors du traitement :

if (Nom_du_pointeur >= (byte*) 0x400) { }
Dans cette instruction, I'adresse est indiquée directement sous la
forme d'une constante hexadécimale.

Mais il est également possible d'utiliser un identificateur préalablement

initialisé a une valeur enti¢re de type int. Exemple :
int DEBUT_LISTAGE = 0x500; // Valeur hexadécimale 0500.
if (Nom_du_pointeur >= (byte*) DEBUT_LISTAGE) { }

Noter que le type de DEBUT_LISTAGE estint puisque I'adresse est
en deux octets sur un ATmega328. Par contre, dans le test le type est
byte car il concerne le pointeur Nom_du_pointeur ciblant un OCTET.

Comparer la valeur de la variable ciblée par un pointeur.
Le fait que la variable soit pointée ne modifie en rien son type. Donc la
comparaison se fait da fagon tout a fait banale. Exemple :

if (*PTR ==0) {Serial.print('0');}

La seule nuance réside dans le fait que 1'on précise la variable servant a
la comparaison non pas par son identificateur, mais par son pointeur

dont l'identificateur est associé a "*". (Retourne le contenu de la cible)

Paralléle entre tableaux et pointeurs :

F ondamentalement, un tableau qui ne contient que des variables
de type identique, (long, int, char, double...) fonctionne avec
un pointeur. Les "[...]" servent a la fois a préciser que l'identificateur
est celui d'un tableau, et a définir le nombre d'éléments qui vont le
constituer. Comme la déclaration est précédée du type des éléments, la
réservation statique de la place en mémoire est possible des la
compilation. On peut considérer qu'un tableau est un pointeur constant
qui contient I'adresse du premier élément stocké en mémoire. Ensuite,
quand on cherche a accéder a un élément, c'est le mécanisme interne
qui génere 1'adresse a partir de celle du premier élément, du type des
données et de I'ordre de celui que 1'on désigne, précisé avec "[n]".
Identifiant d'un tableau utilisé seul, avec & ou avec *.
Pour un objet C déclaré Tableau[N], I'identifiant Tableau utilisé seul
correspond a l'adresse du début du tableau en mémoire. (L'identifiant
Tableau utilisé ici est en fait un pointeur.) Exemples :

Tableau retourne 1'adresse du premier élément de Tableau.
&Tableau retourne comme ci-avant 'adresse du premier élément.
*Tableau retourne le contenu du premier élément de Tableau.
Tableau[0] retourne le contenu du premier élément de Tableau.
*&Tableau retourne le contenu du premier élément de Tableau.
*&Tableau[2] retourne le contenu du troisieme élément de Tableau.
&Tableau[2] retourne I'adresse du troisieme élément de Tableau.
&Tableau+X : Adresse augmentée X qui peut pointer n'importe ou !

Rappel : Une adresse n'est pas un nombre entier. Si on désire 1'afficher
par exemple, il faut effectuer un "cast".
Serial.printin((int)Tableau); // Cast en (int) car adresse x type int.

Remarque : Puisque l'identificateur d'un tableau se comporte comme
un pointeur constant sur son premier élément, il est impossible de lui
assigner une valeur quelconque, il y aura génération d'une alerte d'erreur.
Remarque : L'utilisation de l'opérateur sizeof qui, lorsqu'il est
appliqué a un identificateur de type tableau, donne bien la taille de tout
le tableau et non la taille d'un pointeur comme on pourrait le penser.

Chaines de caracteres. (sizeof indique la taille du texte sans le \0')
On peut les considérer comme des tableaux de caracteres, sauf que
ces tableaux sont implicitement de type char, avec la sentinelle \0'.

P19

— P 18
Opérations combinées avec les pointeurs :

y usage optimisé de la priorité des opérateurs en langage C
autorise des expressions imbriquées dans des instructions

combinées et compactes. On peut complexifier les expressions a
convenance, mais c'est privilégier la compacité du code au détriment
de la clarté et de la simplicité. C'est une "erreur" a éviter.
Expressions combinées.
L'opérateur d'incrémentation ayant la priorité sur celui de
déréférencement, c'est donc celui qui sera appliqué en premier. S'il est
postfixé, I'opérateur d'incrémentation ne prendra effet qu'a la fin de
I'expression, donc au moment de I'affectation. Voici les différents effets
obtenus en fonction des combinaisons de ces deux opérateurs :

VARIABLE = *++PTR;
Incrémente d'abordPTR, puis déréférence sa cible dansVARIABLE.

PTR ++ VARIABLE

Valeur <

VARIABLE = ++*PTR;
Incrémente la cible dePTR, puis la déréférence dans VARIABLE.

PTR VARIABLE

Valeur + 1 ¢

VARIABLE = (*PTR)++;
Affecte aVARIABLE la valeur pointée parPTR, puis incrémente la
valeur de la cible toujours pointée parPTR.

PTR —®- valeur O—P» VARIABLE

Affecte puis
incrémente L

Valeur + 1

Autre exemple dans une boucle :
for (byte I=1; | < 11; l++) {*PTR++ = |-1;}

Affecte la valeur pointée parPTR avecl-1 puisincrémente PTR.

PTR I-1

. X | : Compteur
Valeur de boucle

Afficher les adresses associées a un pointeur :

Afficher I'adresse de la donnée pointée.

Pour afficher le contenu de PTR en standard on devrait écrire :
SerfalprntRTR]._

Mais ce codage est refusé par le compilateur car l'instruction concernant
Serial.print ne peut traiter directement le type pointeur. Pour résoudre
cette incompatibilité il faut "réaliser un cast" :

Pour afficher la valeur d'un pointeur il faut coder :

Serial.print((uint16_t) PTR , HEX);

Dans cette écriture c'est 'adresse de la variable pointée qui sera affichée.
L'option facultative HEX impose 1'affichage en hexadécimal.

Valeur retournée PTR —»| ADH VARIABLE ADL |
ADH/ADL -t ? g

. ; (uint16_t) transforme 1'adresse en un int.
Variable de type int.

NOTE : Fondamentalement quand on utilise 1'identificateur d'un

objet (Sans "*" ou "&") I'opérateur d'affectation "=" retourne sa

valeur, quel que soit son type. Si l'objet est un pointeur, "=" retourne
la valeur de ce dernier, donc l'adresse du premier octet de sa cible.

Afficher I'adresse physique en mémoire du pointeur.

Il suffit en standard de faire précéder l'identificateur du pointeur par
I'opérateur "&" pour en obtenir son adresse. Naturellement (uint16_t)
déja précisée ci-avant relative a Serial.print s'impose.

Pour afficher1'adresse d'un pointeur il faut coder :

Serial.print((uint16_t) &PTR , HEX);

Valeur retournée - PTR

ADH/ADL .q'—&¢ADH/ADL PTR| VARIABLE

Variable de typé int.

NOTE : Fondamentalement l'opérateur "&" retourne 1'adresse en
mémoire du premier octet de I'objet avec lequel il est associé, quel
que soit la type de cet objet. Que ce soit une variable quelconque,
ou celle d'un type pointeur il n'y a pas de différence.

P7 -

— P8
Récupeérer dans un entier les adresses d'un pointeur.
Le codage est strictement identique a celui décrit en page 5 pour afficher
ces valeurs sur la ligne série. Il faut les transformer enint.
int ADRESSE; // Variable de réception des valeurs.

* Récupérer 1'adresse de la cible :
Valeur retournée PTR —»| ADH VARIABLE ADL|

ADH/ADL -t 4 g

- ; (uint16_t) transforme 1'adresse en un int.
Variable de type int.

ADRESSE = (uint16_t) PTR;
La variable de réception ADRESSE de typeint regoit sous forme
d'un entier le contenu de PTR qui est1'adresse du premier octet de
la variable ciblée. (Valeur $0000 si PTR = NULL)

* Récupérer 1'adresse du pointeur :

Valeur retournée P PTR

ADH/ADL 4—¢ADH/ADL PTR VARIABLE

Variable de type int.

ADRESSE = (uint16_t) &PTR;
La variable de réception ADRESSE de typeint regoit sous forme
d'un entier 1'adresse physique en mémoire d'implantation dePTR.

P17 -
Recopie de chaines de caracteres avec les pointeurs.

La recopie d'une chaine de caracteres de type String se fait comme la
recopie directe des objets de type String. Quelles que soient les tailles
des chaines origine et de destination au moment de l'affectation :

String TITRE = "BONJOUR"; String TEXTE = "XXXX";

String *SOURCE = &TITRE; String *COPIE = &TEXTE;
*COPIE = *SOURCE; sont deux instructions
TITRE = TEXTE; } qui ont le méme effet.

TEXTE est recopié dans TITRE quelles que soient les tailles initiales
de ces deux chaines de caracteres.

Récupérer / Afficher le contenu de la variable pointée.

Le fait que la variable soit pointée ne modifie en rien son type. Donc la
comparaison se fait da facon tout a fait banale. Il suffit en standard de
faire précéder l'identificateur du pointeur par I'opérateur "*" pour obtenir
le contenu de la variable pointée.

Exemple :

void Affiche_le_contenu_de la_cible() {
Serial.print(*PTR); // Par défaut affiche la valeur en Décimal.
Serial.print(*PTR, HEX); // Affiche la valeur en Hexadécimal.
Serial.print(char(*PTR)); } // Affiche en équivalent ASCII.
La seule nuance réside dans le fait que I'on précise la variable traitée

non pas directement avec son identificateur, mais par son pointeur dont
le nom est précédé du caracteére "*". (Retourne le contenu de la cible)

Soustraction de deux pointeurs de méme type.

Cette opération particuliere permet de savoir combien d'objets du type
pointé sont intercalés entre les adresses ciblées par les deux
pointeurs. Le résultat est un entier positif ou négatif en fonction de 1'ordre
des pointeurs précisés dans l'instruction.

Exemple : (Voir Fig.3) :
int *PTR1 = NULL, *PTR2 = NULL;
int var_int, var_ENT; // variables du programme.
void loop() {
PTR1 = &var_int; PTR2 = &var _ENT;
PTR1--; PTR2++; La soustraction entre deux
pointeurs de méme type indique le

/'PTR2 - PTR1 retourne +3. %} nombre d'éléments compris entre
/I PTR1 - PTR2 retourne -3. les deux adresses.
PTR2 - PTR1 = +3

¢ var_int var ENT l
| PTR1-- | . PTR2++|

> PTR1__| | PTR2 Fig.3
T PTR1 - PTR2 = -3

NOTE : Comme il s'agit d'une soustraction, c'est la Valeur de l'adresse
la plus grande qui conditionne le signe du résultat. Le signe n'est pas
vraiment significatif, donc il ne faut pas tenir compte de ce dernier.

P9 —

—P 16
Opérateurs valides sur les pointeurs :

N aturellement on va retrouver l'incrémentation et la

décrémentation qui permettent au pointeur de se déplacer d'une
donnée a la suivante. Mais dans le cas des pointeurs, I'incrément ne fait
"1" qui si le type pointé est char ou byte. Pour les autres types de
données pointées, la valeur ajoutée ou retranchée a l'adresse préservée
par le pointeur sera fonction de leur taille.

Arithmétique de base.
Les opérations arithmétiques permises avec les pointeurs sont l'addition
et la soustraction d'une valeur entiére a un pointeur. L'adresse contenue
dans ce dernier augmente ou diminue de la [valeur de 1'opérande N
multipliée par la taille de 1a donnée pointée] pour cibler un ou N objets
en amont ou en aval de la cible actuelle.
Pointeur = Pointeur + N; (Voir Fig.1)
L'adresse de 1'objet ciblé par Pointeur est augmentée de N fois la
taille du type du pointeur pour cibler N objets plus en amont.

| I L A o e

|]
PR o2 TR+ 3 Fio.l

Pointeur = Pointeur - N; (Voir Fig.2)
L'adresse de l'objet ciblé parPointeur est diminuée deN fois la taille
du type du pointeur pour ciblerN objets plus en aval

4 | T T |

*—PTR 4—— S PTR <>—4 F|92

Pointeur++; Pointeur==-;
Décale 1'adresse d'un élément en amont ou en aval d'un nombre
d'octet correspondant a la taille du type pointé. C'est la forme
condensée de l'instructionPointeur = Pointeur + 1 ou de I'instruction
Pointeur = Pointeur - 1.

ATTENTION : Il importe de faire trés attention avec ce

> type d'opération a ne pas déborder du "bloc des données
pointées", car le programme généré n'effectue aucune

v Vérification. On peut librement cibler n'importe ou dans la RAM
avec toutes les conséquences potentielles qui en résultent.

Pointeur provisoirement non typé déclare avec "void".
void *Nom_du_pointeur;
Avec void on déclare un pointeur indifférencié qui peut changer de
type lors de son utilisation.
Un exemple pratique d'utilisation est donné dans le petit programme
Declaration_pointeur_avec_void.ino qui en passage de parametre
dans des procédures peut cibler aussi bien unbyte qu'unint.
void *PTR; // Définit un pointeur sans préciser son type.
byte OCTET = 0x73;
int ENTIER = 0x1234;
void loop() {
PTR = &OCTET,; // Pointe sur un octet.
LISTE octet SRAM ("Pointe I'octet : ",(byte*) PTR);
PTR = &ENTIER; // Pointe sur un entier.
LISTE_un_Entier ("Cible I'entier : ",(int*) PTR);
INFINI: goto INFINI; }

Pointeur utilisés en parametres de fonction.

Un exemple beaucoup plus étoffé que le résumé listé ci-dessous est
donné dans Pointeurs_en_paramétres_de fonctions.ino :

byte *PTR1 = NULL; // Pointeurs pour cet exemple.
byte OCTET; // Variable de réception de la fonction.

void loop() {
PTR1 = (byte*) 0x100; // PTR1 pointe sur 0x100.
Affiche PTR(PTR1);// PTR1 passé en parametre. (1)
OCTET = Valeur_cible(PTR1); (2)
Affiche Octel();
INFINI: goto INFINI; }

void Affiche PTR(byte *INDEX) {
Serial.print("Valeur de PTR = $");
Serial.print((uint16_t) INDEX,HEX); }

byte Valeur cible(byte *PTR) {return *PTR; } (3)

Dans cet exemple on peut observer que :

En (1) le pointeur PTR1 est passé en parameétre a la procédure
Affiche_PTR. En (2) PTR1 est passé en parameétre a la fonction
Valeur_cible, mais il sert également au retour le la valeur en (3).

—P 10

Pointeurs et cibles déclarés constants :

N otons au passage qu'utiliser le qualificateur const n'est pas
spécifiquement liée a la notion de pointeurs, mais reste
recommandée a chaque fois que cette précaution est pertinente. C'est
une bonne stratégie de programmation qui permet au compilateur de
détecter les erreurs de logique dans le source dés la traduction en binaire.
Adresse pointée qualifiée de constante.
byte * const Nom_du_pointeur = (byte*) 0x0300;
Le qualificateur const est intercalé entre le caractere "*" et
I'identificateur du pointeur. L'adresse de la cible ne peut plus étre
changée.(Donc indiquer NULL en adresse ne sera pas tres utile !)

uint8_t* const Nom_du_pointeur = (uint8_t*) 0x0300;
Ecriture équivalente 2 celle de l'instruction précédente, c'est une autre
facon de déclarer le typebyte pourla variable.

Donnée pointée qualifiée de valeur constante.

const byte *Nom_du_pointeur =&Valeur_a_figer;
Le qualificateurconst s'applique sur la valeur de la donnée pointée
qui ne peut plus étre modifiée. Il importe de I'avoir initialisée avant de
déclarer ce pointeur, ou cette donnée sera inutilisable.

byte const *Nom_du_pointeur =&Valeur_a_figer;
Ecriture équivalente pour figer la valeur de la cible.

Adresse et donnée pointée qualifiees de constantes.

byte const * const Nom_du_pointeur =&Valeur_a_figer;
Le pointeur contant vectorise vers une valeur elle-mé&me constante qui
ne peut pas étre modifiée par le code compilé, mais qui peut tout de
méme changer s'il s'agit d'une "cellule" dont la mise a jour est
matérielle. (Registre significatif de l'état d'une E/S par exemple)
Le compilateur n'est pas autorisé a faire une optimisation en se basant
sur le fait que la valeur pointée est constante, mais générera une
erreur sile programme tente de la modifier par ses instructions.

Le petit programme Pointeurs_utilises_avec_CONST.ino illustre
l'utilisation de const dans les divers cas présentés ci-avant. On notera
avec ce petit logiciel d'expérimentation que les pointeurs sont placés en
mémoire les uns "contre" les autres, mais PTRO déclaré const et initialisé
a NULL n'est pas placé en premier mais intercalé entre les autres.

Passage des parameétres par référence :

C ette notion méconuue en langage C est apportée par le C++ qui
procure les avantages du passage par pointeur avec la simplicité
du passage par valeur grace au concept novateur de référence. Une
référence permet de faire appel a des variables valides dans une autre
portée. Par exemple on peut manipuler une variable située dans une
procédure ou une fonction a partir d'une autre fonction. La déclaration
d'une référence se fait simplement en intercalant un caractére &
(Esperluette ou ET commercial) entre le type de la variable et son
identificateur. Exemple de passage d'argument par référence :

byte A =72, B, C;// Variables banales sur un octet.
void setup() {Serial.begin(115200);}

void loop() {
Ajoute_1(A);// Modifie A. (1)
Serial.print(" Valeur de A ="); Serial.printin(A);

Ajoute_1(B); // Modifie B.

Serial.print" Valeur de B ="); Serial.printin(B);

C = Ajoute_1(B); (2)

Serial.print(" Valeur de B ="); Serial.printin(B);

Serial.print(" Valeur de C ="); Serial.printIn(C);
}

byte Ajoute_1(byte &X) // Déclaration de la référence. (3)
{Serial.print(" Valeur de X ="); Serial.printin(X); X ++;}

(1) Appel de la fonction sans utiliser 'opérateur d'affectation. Seule la
variable A passée en argument par référence est modifiée.

(2) Modifie la variable B car elle est passée en référence. Mais comme
il s'agit d'une fonction, on peut utiliser son résultat quiici est affecté
aC. Al'issue de cette instructionB et C auront donc la méme valeur.

(8) On déclare la référence en parametre obligatoirement sous
forme d'une fonction typée. Il est tout aussi possible d'utiliser le
résultat dans unSerial.print du genre : Serial.printin(Ajoute_1(C));

Le concept de passage par référence ne doit en aucun cas étre confondu

avec celui de passage par adresse méme si les deux formes utilisent le

caractere &. En passage par référence il n'y a pas déclaration d'un
pointeur. De plus la fonction ne peut avoir qu'un seul parameétre.

P 15—

—P 14

P11

Vérification de "HEAP' encore disponible :

P ouvoir s'assurer en cours de développement d'un programme que

la mémoire des données dynamiques n'approche pas la saturation
est un impératif. L'utilisation des pointeurs spécifiques dans une
procédure minimale avec affichage des parameétres pertinents sur la ligne
série USB permet une telle vérification. Le code ci-dessous donné dans
Verif _SRAM_disponible.ino précise les quelques lignes a ajouter
au programme pour introduire ce type de vérification :

void setup() { Serial.begin(115200); } (1) Voir P12 et P13 les
pointeurs prédéfinis.

void loop() {
Serial.print("SRAM libre = "); (2) Serial.printin(SRAM_LIBRE()); (3)
}

int SRAM_LIBRE() {// Fonction qui retourne la taille de SRAM disponible.
externint __heap_start, *__brkval; (4)
int BIDON; // Derniere variable allouée, donc en "haut" de la PILE.
if (__brkval==0) {return (int) &BIDON - (int) & __heap_start;} } @
else {return (int) &BIDON - (int) _ brkval;} }

Ce code utilise le faitque __heap_start correspond a la fin de BSS.

(1) : Cette ligne fait généralement partie du programme en cours de
développement, donc ne pénalise pas 1'occupation de SRAM.

(2) : Possibilité de minimiser ce texte pour gagner de la place.

(3) : Appel en n'importe quel endroit du programme.

(4) : Déclaration en local des deux pointeurs servant aux calculs.

NOTE : La variable systeme _ brkval représente la premiére cellule

mémoire non encore attribuée dans la zone dynamique HEAP. Si

__brkval est égal a zéro, c'est que malloc n'a pas encore utilisé de la

mémoire dynamique, dans ce cas on utilise I'adresse de ___heap_start.

@ : Laligne de code utilise une écriture standard pour des raisons de
lisibilité. Mais dans un souci de compacité du programme elle est
généralement réduite par utilisation de l'opérateur ternaire et devient :
return (int) &BIDON - (__brkval == 0 ? (int) & __heap_start
: (int) _ brkval);

Le programme Saturer SRAM.ino donne un exemple de boucle allant
jusqu'a la quasi saturation de la SRAM.

Variables prédéfinies pour gérer la PILE :

P lusieurs identificateurs réservés sont définis en standard pour

faciliter la gestion de la mémoire du microcontroleur. Ces
pointeurs permettent de traiter les adresses des diverses zones
spécifiques d'utilisation de la mémoire SRAM. L'organisation générale
relative a la gestion de la SRAM est donnée en page 2.

Variables entieres prédéfinies.

Deux entiers dont les identificateurs RAMEND et SP sont réservés et
n'ont pas a étre déclarés pour permettre de gérer la PILE et la taille de
la SRAM. La variable RAMEND est spécifique, car le compilateur
interdit d'en changer la valeur par programme.

La variable SP peut étre modifiée par programme. Mais il est trés
dangereux potentiellement de modifier la valeur du S.P.

Un exemple d'emploi de ces deux pointeurs prédéfinis est donné dans
le petit programme Variables PREDEFINIES.ino listé en partie
ci-dessous qui illustre 1'utilisation possible de RAMEND et de SP :

void loop() {
// RAMEND = 1234; Instruction non acceptée par le compilateur
/! car RAMEND ne doit pas étre modifiée par programme.

// Pas besoin de déclarer RAMEND ni SP.

Serial.print("La FIN est en $ "); Serial.printin(RAMEND,HEX);
Serial.print("Le S.P. est en $ "); Serial.printin(SP,HEX);
Serial.print("La pile fait "); Serial.print(RAMEND-SP);
Serial.printin(" octets.");

Serial.print("La taille de SDRAM hors registres ATmega328 =");
Serial.print(RAMEND - OxFF); // Registres du puP exclus.
Serial.printin(" octets.");

INFINI: goto INFINI; }

ComM4 [E=3|EoH =

La FIN est en & BFF

Le S5.P. est en % EFS

La pile fait & occtets.

La taille de SORAM hors registres ATmega32® = 2048 octets.

— P 12

P13

Pointeurs prédéfinis pour gérer la RAM :

A ssez similaires aux deux variables RAMEND et SP présentées
en page 11, ce sont des objets de type pointeur identifiés par
des noms réservés dans avr-libc (Bibliothéque standard qui n'a pas
aétre déclarée) qui doivent étre déclarés par des directives extern.
L'allocateur de mémoire mis en ceuvre par avr-libc fait face aux
nombreuses contraintes liées a la faible taille de RAM disponible sur les
microcontroleurs. Cette librairie prévoit des options d'ajustement qui
peuvent étre utilisées s'il y a plus de ressources disponibles que dans la
configuration par défaut. (RAM externe possible sur certains uP)

C omme montré dans la Fig.1 située en page 3, I'allocation standard
de mémoire dynamique dans le TAS, et celle de la PILE sont
séparés dans des zones de RAM distinctes pour éviter les risques de
collision. Un certain nombre de variables peuvent étre initialisées pour
adapter le comportement de malloc() a des exigences particulieéres de
I'application en cours de développement. Toutes modifications de ces
parametres doivent étre effectuées avant le premier appel a malloc().
Noter que certaines fonctions de la bibliotheque peuvent également
utiliser de la mémoire dynamique. (Par exemple certaines fonctions
de stdio.h telles que l'installation standard des I/0) Les modifications
d'implantation mémoire devront s'effectuer rapidement des le début de

la séquence de démarrage. __heap_end
Pointeurs spécifiques pour __heap_start
délimiter les zones en SRAM. __bss_end
Les pointeurs prédéfinis pour gérer __bss_start
globalement la SRAM représentée sur la __data_end
Fig.1 de la page 3 sont listés ci-contre : __data_start
__brkval

__heap_endestfondamentalement une "constante" dont la valeur ne
change pas pendant I'exécution d'un programme. En utilisation
standard de la SRAM une valeur particuliere pour___heap_endne
présente pas de sens pratique réel. La valeur zéro symbolise le fait
qu'iln'y apas de RAM externe au microcontrdleur. Elle précise a la
fonctionmalloc() que le "haut" du TAS n'est pas vraiment déterminé
puisque son extension varie de facon dynamique, et qu'il importe de
vérifier la valeur du S.P. au moment d'allouer de la mémoire.

Tout se passe comme si en permanence ___heap_end était égal a la
valeur actuelle du SP, bien que sa valeur reste égale a zéro.

On ne change la valeur de___heap_end que pour utiliser une RAM
additionnelle externe. En standard, la PILE occupe alors toute la RAM
interne du uP et ___heap_start pointe vers le début de la RAM externe,
avec __heap_end qui indique la fin de cette RAM complémentaire.
Les variables _malloc_heap startet _malloc_heap end peuvent
étre utilisés pour restreindre la fonction malloc() a une zone de mémoire
bien définie. Ces variables sont statiquement initialisées pour pointer
respectivement vers ___heap_start (Initialisé par l'éditeur de liens
pour pointer juste aprés la BSS) et __heap_end qui est forcé a 0,
ce qui permet amalloc() de maintenir le TAS en dessous du S.P.
Sile TAS est déplacé en RAM externe, _malloc_heap end doit
étre ajustée en conséquence pendant l'exécution du programme en
écrivant directement la valeur dans cette variable, ou peut étre fait
automatiquement en lieu et temps en ajustant la valeur de___heap_end.
Description des pointeurs de limite des zones en SRAM.
__heap_start: Début de la zone HEAP et fin de 1a BSS.
__bss_end: Fin de la BSS et début de la zone HEAP.
_bss_start: Début de 1a BSS et fin de la zone DATA.
~_data_end: Fin de la zone DATA et début de 1a BSS.
__data_start: Début de la zone DATA en $100.

Le pointeur__brkval.

Fondamentalement il représente la premiere cellule mémoire non encore
attribuée dans la zone dynamique HEAP. Si___ brkval est égal a zéro,
c'est que malloc() par exemple, ou l'allocateur de mémoire dynamique
plus généralement n'a pas encore réservé de la mémoire.
Déclaration des pointeurs prédéfinis.

Les pointeurs prédéfinis doivent étre déclarés par la directive extern
suivi de int, char ou byte qui est le type des objets pointés
externint __heap_end;// Toujours égal a zéro.

externint __heap_start;
externint __bss end; =
externint _ bss start;
externint data end;)
externint _ data_start; // Egal a $100 en standard.
externint brkval;

__malloc_heap_start,
__malloc_heap_end ne
sont pas a déclarer.

