— P 48

Codes ASCII de quelques caracteres spéciaux. (En décimal.)
CAR | code | CAR | code | CAR | code | CAR | code
a 224 i 236 u 249 Q 199
a 225 i 237 u 250 E 200
a | 226 i 238 0 251 E | 20f
a 228 i 239 U 252 I§ 202
e 232 0 242 (0°] 156 | 206
é [238 | o 243 + 177 | O [212
é 234 o} 244 VI 181 A 192
é 235 o] 246 © 231 A 194

Pour obtenir tous les codes possibles utiliser Codes SPECIAUX.ino

Envoyer des caracteres sur la ligne série avec print().
C'est I'instruction a privilégier quand on désire envoyer sur la ligne série
des caracteres représentant le contenu d'une variable, quelle soit de
type numérique ou de type chaine de caracteres. Comme pour le cas
de Sérial.write les caracteéres spéciaux seront altérés et doivent étre
exprimés explicitement par leurs codes ASCII.
Serial.print(char(212)); // Affiche un "O" non altéré.

byte X = 73; // Sans format print affichera la valeur 73.

int Y = 12345; // Sans format print affichera la valeur 12345.

float Z = 12345.67890123; // Affiché avec 2 décimales par défaut.
Formats pour les nombres entiers avec l'instruction print() :
Serial.printin(X,5); // Affiche la valeur de X en base 5.
Serial.print(Y,DEC); // Affiche Y en décimal avec format spécifié.
Serial.print(Y,OCT); // Affiche Y en binaire codé OCTAL.
Serial.print(X,HEX); // Affiche X en binaire codé HEXADECIMAL.
Serial.printin(Y,BIN); // Affiche la valeur de Y en BINAIRE pur.

NOTE : Les zéros en téte ne sont pas affichés.
Formats pour les nombres float avec l'instruction print() :
Serial.printin(Z,0); // Pas de décimales. @:D
. . o : Dans tous les
Serial.printin(Z,1); // Une seule décimale. cas float est limité a
Serial.print(Z,4); // Quatre décimales et @. sept ou huit ;‘hiffres
Serial.print(Z,15): //Quinze décimales et @. significatifs.

RAPPEL : Si la valeur pour imposer un nombre de décimales est
remplacée par BIN, OCT, DEC ou HEX, le nombre de décimales
sera respectivement de 2, 8, 10 ou 16.

Fichier SYNTAXE.PM5

([SYNTAXE du langage C d'ARDUINO)

Caractéres spéciaux Les structures impératives P02
Les constantes.................. Lesvariablesuueeeeeeiieeeiieennnnnn. P03
Les bascules de type boolean - Conversions de types P03
Les variables de type float et de typedoubleccceeeeeeeennee P04
Le type ENUMEration (ENUM)ceeveveeeeeeeeeesesesseneseneeeeeeneen, P05
Les constantes en C d'ArdUiNOcceeeeeeeceviiieeeeeeeeeciiieeeee e e P06
La directive #define........... GIOSSaAIre. o P07
La structures de controleif /€ISeccoeeeviiiieiiiiiieeeeeeee e P08
La structures de boucle while etdo whilecccoooiiiiiiiiinnnnes P09
La structures de bouclefor ... P10
La structures de contrdle switch /Casecccccevveeeeiicciieiiineeeenne P11
L'instruction de contréle continueccccvvvveeeeeeeeeccciiieeeeee e P11
Le gotoenlangage C........ Les tableaux de variables P12
Les fonctions avec passage de parametrescccccecennnnnnnnes P14
Les expressions NUMErqUes entieresccccevveivieeeeeeeeeennne P15
Les expressions numériques "floating point"ccccceveeeennnne P16
Opérateurs arithmetiqQuescoei i P16
OPErateurs COMPOSESceeiiuriereeiiiieee ettt ee et ee e e e eeeeeas P17
Fonctions arithmetiquescovveeiiiiiiiiiii e P18
Fonctions trigoNOMELIQUESceeveeiiiiiiiiiiieeeee e P19
Génération de nombres aléatoiresc..coeecvvvveeeeeeeeeecciiieeeenn. P19
Les opérateurs LOGIQUES bitabitcccceevveeeiiiiiiiiiieeeeeee P20
Les fonCtioNsS SHIFT ...ooooiiiiieeeee e P20
Les fonctions orientées OCTETSccoooiiiiiiiiiiiciccns P21
Les fonctions orientées BITS ..., P21
Travail sur les ports de I'ATmega328ccccvveeeeeiiiicciiieeennn. P22
Circuit minimal pour un ATmegaB28cooceeveiiiiieeeiiiieeeens P23
Les Entrées analogiques (= 0/ ics Diaien e P24
Les sorties analogiques PWM ... P25
Les Entrées / Sorties binairesooeecvvveeeeeeeieiiciiieeeeee e P26
Les Entrées/ Sorties EVOIUEESceovviiiiiiiiiiee e P27
Probléme de cohérence du type des variablescccc........ P28
Forcer la taille des données dans un calcul...........ccccccccunnnnnnnees P29

Mardi. 2 Dec.. 2014

— P2
Utilisation des E/S bIiN@Irescccceviiriiieiiiniiiiec e P29
Transpositions de valeurs avec la fonctionmapcccccoeeeueeeee. P30
Fonctions de gestion du tempPS.......oooveceiiiieeeee e P31
Portée des variables et qualificateurscccccoviiiiiieeeeennnne P32
L'opérateur ternaire " 2"oooeieeeiee e PEie
Gestion des interruptionseeveiiiiiie i P34
Allocation dynamique de la mémoire :cccoeciiieeeeeeeiiinnene. P36
Convertion chaines de caractéres / valeurs numériques......... P38
Convertion valeurs numeérigues / chaine de caractere............ P39
Décodage de valeurs représentées en BCDccccoevuieeenne P39
Les chaines de Caracteresoocueeveeiiieeeeeniiiee e P40
La classe StNg() «eeeeeeeeeeeeiiiiiie s P41
Fonctions de la classe SHiNgGcoccooeiiiiiiiiiiiiieee e P42
Opérateurs de la classe StiNgGccocoeeiiieeiiiiiiieeniiieeeens P44
Récupérer une chaine de caractéres sur la ligne série............... P45
Travail d'écriture surlaligne Seriecccoveveeiiiiieeee e P47

Codes ASCII de quelques caractéres spéciaux. (En écimal.)... P48

Les séparateurs et caractéres spéciaux.

";" : Termine une instruction. (Obligatoire a la fin de chaque instruction)
"{" et "}" : Délimitent un "bloc" d'instructions.

NOTE : Le ";" apres le délimiteur "}" n'est pas impératif.

"#" : Précise une entité qui sera traitée par le Précompilateur.
"/l": Lafin de cette ligne est un commentaire ignoré par la compilation.
"[*" et "*/" : Délimiteurs d'un commentaire étalé sur plusieurs lignes.
Les structures de base impératives.

//'Instructions d'initialisation de la carte.

void setup() { Instructions ;} Sont obligatoires
/I Programme principal : Boucle infinie. mémesi elle ne
void Loop() { Instructions ; } contiennent pas

// Procédure de servitude. d'instruction.

void NomProcedure(Parametres) { Instructions ; }
NomProcedure : Les caractéres accentués
* Des lettres, des chiffres et "_". sont interdit en langage C

. . Y d'Arduino sauf dans les
* Pas de chiffre en premier caractere. .
commentaires.

* Majuscules et minuscules sont différenciées.

Travail d'écriture sur la ligne série :

P our dialoguer avec le monde extérieur via une ligne série, Arduino
va échanger des octets avec les tampons de 'UART tant en
entrée qu'en sortie. En fonction de la nature des informations échangées,
textes ou entités numériques, des traitements spécifiques s'imposent,
mais dans tous les cas les transferts se font octet par octet.
Envoyer des caracteres sur la ligne série avec write().
Conceptuellement I'instruction write('caractere') ou write("chaine") est
destinée a envoyer des octets considérés comme des caracteres ASCII
dont on donne le code a convenance sous divers formats possibles :
Serial.write('A'); // Caractere "A" directement précisé.
Serial.write(66); // Affiche "B" code ASCII donné en décimal.
Serial.write(B1000011);// Affiche "C" code ASCII donné en binaire.
Puisque cette instruction ne manipule que des octets, une valeur > 255
va conduire a faire ignorer les bits de poids fort supérieurs au rang 7 :
Serial.write(33572); // Affiche "$". Dans cet exemple, la valeur 33572
se traduit en binaire par 10000011-00100110. Seul l'octet de poids faible
est utilisé par le compilateur. C'est le code ASCII du "$" soit 36 en décimal.
Serial.write("TEXTE"); Se contente de lister en ligne les caractéres du
texte sans interprétation. Noter que writeln() n'est pas accepté. (Voir'l\n’)
Caractéres réservés pour l'instruction write() :
Serial.write("\n'); // Affiche CR suivi de LF sur la ligne série USB.
Serial.write('\t'); // Affiche une tabulation.
Serial.write('\r'); // Affiche un CR sur terminal standard mais ignoré
sur le terminal série USB de I'environnement Arduino.
Afficher des caractéres spéciaux sur la ligne série.

L'utilisation directe de caractéres spéciaux conduit a des aléas
d'affichage car le compilateur traduit ces derniers en utilisant la norme
UTEF-8 pour stocker les valeurs équivalentes en mémoire. Pour obtenir
des affichages cohérents il faut impérativement passer par leurs codes
ASCII exprimés en décimal ou en Binaire. Deux méthodes possibles :
* Donner leur code ASCII et préciser que c'est un char.
Serial.write(char(233)); // Affiche un "é" non altéré.

Cette structure est également valides avecSerial.print().
» Affecter une variable byte ou int avec leur code ASCII.
Caractere =B11100111; // Code ASCII du "¢" exprimé en binaire.

Serial.write(Caractere); // Affiche correctement le "¢".

P 47 —

— P 46

P3 -

les textes issus de la ligne série. Chaque octet extrait de la pile est alors
défini comme un caractere de type char et concaténé a la variable String.
Le programme Saisie_ CHAINES_ sur USB.ino et le programme
ESSAI de SERIAL EVENT.ino sont deux variantes d'une telle
méthode. Dans les exemples proposés sur Internet, la détection de la fin de
la saisie est effectuée sur le CR codé"\r'. Sur le terminal d'Arduino ce caractére
ne convient pas. Il faut indiquer la fin de la saisie par un caractere laissé au
choix du programmeur et noté "sentinelle" dans ces deux programmes.

#define Sentinelle "' // Choisir un caracteére pour la "sentinelle".
char Caractere;
String Chaine_Memorisee =""; // Emplacement pour la chaine entrante.
boolean Sentinelle_detectee = false; // Délimiteur de fin détecté.
void setup() {Serial.begin(115200); Chaine_Memorisee.reserve(200);}
// Reserve 200 octets pour la chaine. Taille possible quelconque.

void loop() {
while (Serial.available()) { Caractere = Serial.read(); // Lire un Octet.
// Puis concaténer ce caractere sauf si c'est la sentinelle.
if (Caractere |= Sentinelle) Chaine_Memorisee += Caractere;
/! Si sentinelle détectée, informer la boucle de base :
if (Caractere == Sentinelle) Sentinelle_detectee = true; } ;
if (Sentinelle_detectee) { Instructions pour TRAITER la CHAINE;
Chaine_Memorisee =""; // Vider le tampon pour une nouvelle capture.
Sentinelle detectee =false; } } /Réarme une attente de texte.

Aléas liés a la lenteur de transmission sur un terminal.
Quand on effectue des lectures d'octets sur un terminal de type série,
une foule de comportements anormaux surgissent et sont la conséquence
d'une lenteur relative avec laquelle la ligne série débite ses octets. Méme
ala vitesse maximale de 115200 bauds, il faut environ 100us pour fournir
un caractere. Le microcontroleur qui cadence a 16 MHz a largement le
temps d'exécuter plusieurs instructions. Par conséquent, entre la
réception de deux caracteres il peut vider la PILE de réception. Si on
désire effectuer le traitement quand toute la chaine est extraite du tampon
de la ligne série, on utilise la fonction Serial.available(). Mais compte
tenu des explications qui précedent, elle revoie une valeur erronée
puisque le buffer est provisoirement vidé. La parade consiste a :
e Utiliser la vitesse maximale sur le terminal d'Arduino. (//5200bauds)
* Toujours mettre un delay(5) apres un Serial.available() afin de
laisser le temps a la transmission de tous les octets de se terminer.
C'est particulierement vrai si les chaines saisies sont longues.

La procédure setup() est appelée au démarrage du programme pour
initialiser les variables, le sens des broches, les librairies utilisées ...
La procédure setup() n'est exécutée qu'une seule fois, apres chaque
mise sous tension ou sur un RESET de la carte Arduino.

La procédure loop () s'exécute en boucle sans fin et constitue le corps
du programme. Elle est obligatoire, méme vide, dans tout programme.
En C standard c'est la fonction main() qui integre setup() etloop().
Les constantes. (Voir page 6)

byte const Masse = 2; // Sortie 2 pour la masse.

const byte Bleu = 3; // Sortie 3 pour piloter le BLEU.
Constantes prédéfinies :

HIGH, LOW, INPUT, OUTPUT, false, true.

Pl : Constante =3.141592 7 limitée a 7 chiffres. (Voir page 4)
NOTE : Les constantes #define et const peuvent se trouver n'importe
ou dans le programme, mais doivent étre déclarées avant leur utilisation.
Les variables.

Une variable est unidentificateur typé, qui a la compilation réserve un
emplacement de mémoire adapté a sa taille présumée.

Les bascules de type boolean.

Deux variantes sont possibles pour inverser 1'état d'un booleen. La
premiere méthode consiste a utiliser I'opérateur NON :

boolean LED _active;

LED_ active = ILED active;

Mais le codage interne de false et de true étant respectivement "0" et
"> 0", on peut aussi utiliser I'astuce suivante qui fait gagner 4 octets :
LED active =1 - LED_active;

Conversions de types de variables.

Fonction | Valeur renvoyée Taille
char(X) Valeur de type char 8 bits
byte(X) Valeur de type byte 8 bits
int(X) Valeur de type int 16 bits
word(X) Valeur de type word 16 bits
Long(X) Valeur de type Long | 32 bits

float(X) Valeur de type float 32 bits

X est une variable de n'importe quel type.
word(H,L) H :Octet de poids fort /L : Octet de poids faible.

— P4

Les variables de type float et de type double.
Déclarent des variables de type virgule-flottante, c'est a dire des nombres
décimaux. Ces variables sont souvent utilisées pour l'expression des
valeurs analogiques et continues, parce qu'elles ont une meilleure
résolution que les nombres entiers. Les nombres décimaux ainsi stockés
peuvent prendre des valeurs aussi élevées que 3.4028235E+38 et aussi
basses que -3.4028235E+38. Les variables float et double présentent
. Ceci concerne
le nombre total de chiffres, partie entiére et décimale comprises. A la
différence d'autres plateformes sur lesquelles on peut obtenir plus de
précision en utilisant une variable de type double, sur le compilateur
d'Arduino, les variables double ont méme précision que les float.

La précision d'un réel de type float et celle d'un type
& double est limitée a une définition totale de 6 a 7 chiffres @*
significatifs, partie entiere et partie fractionnaire confondues.

Les nombres a virgule flottante sont forcément des approximations, et
peuvent conduire a des résultats imprévus quand ils sont comparés.
Exemple : 6.0 divisé par 3.0 peut ne pas étre strictement égal a 2.0
raison pour laquelle il ne faut pas utiliser 1'égalité dans une condition. Il
est recommandé de vérifier que la valeur absolue de la différence entre
le rapport calculé et 1a borne testée soit inférieure a un seuil tres petit.
Exemple de déclaration et d'utilisation de réels :

int X;// Déclare une variable entiére de type int appelée X.
int Y;// Déclare une variable entiere de type int désignée Y.
float Z;// Déclare unréel de type float identifié Z.

X=1;

Y =X/2;//Y vaut 0 car les entiers n'ont pas de décimales.
Z = (float)X / 2.0;// Z vaut actuellement 0.5.

(Remarquer la conversion de X en float pour avoir 2.0 et non 2.)

Optimisation des programmes :

Les opérations mathématiques sur les nombres a virgules flottantes sont
plus lentes que les calculs effectués sur les nombres entiers. S'ils doivent
s'exécuter a une vitesse maximale, les programmateurs adoptent souvent
la stratégie qui consiste a convertir les calculs de virgule flottante vers
un traitement sur des entiers pour améliorer la rapidité d'exécution.

P 45
Récupérer une chaine de caractéres sur la ligne série :

D eux méthodes de base sont applicables pour récupérer une

chaine de caracteres issue de la PILE d'attente de la ligne série.
Soit on procede caractere par caractere dans une variable chaine, soit
on extrait octet par octet que 1'on stocke dans un tableau de caracteres.
Dans tous les cas, si 1'on désire éviter les effets de bord, il faut gérer les
espaces réservés aux chaines dans le programme.

Récupeérer du texte dans un tableau de caracteéres.

Un programme treés complet avec vérification du non débordement est
proposé dans Lire_Chaine LGR_verifiee.ino dont voici la structure :
Dans les initialisations de base, PTR=0 signifie
qu'actuellement aucune chaine n'est arrivée sur
Fiqi PTR=0 la ligne série. Des que la PILE de réception n'est

. plus vide, c'est que 1'on a regu des caracteres et
Void Loop ()
le test (1) devient positif. On va alors extraire de
PILE non'0Ul _ (2)

Void Setup ()

la PILE FIFO le texte saisi sur la ligne

Vq série. Sur la Fig.1 les

NON PILE non vide et *N°N | instructions de lecture sont

non () PTR < M?gsllace non colorées. Mais avant
|Dépiler loctet du FlFO‘ de lire l'octet en attente

dans la PILE, le test (2)
vérifie que 1'on ne va pas
déborder la taille réservée
a la chaine et pointée par

Placer l'octet dans
I'emplacement de la
) chaine pointé par PTR

VIDER la
PILE

NON [Incrémenter PTR] PTR. Il est possible que la
e Sl +:' chaine saisie sur la ligne
capturée sur Placer le délimiteur série dépasse la taille
la ligne Série || | a I'emplacement de la autorisée. Dans ce cas la

chaine pointe par PTR PILE n'est pas entierement

®) [pTR=0

vidée. On effectue la vérification (3) que
I'on peut faire suivre de la purge du tampon de donnée, ou laisser en
attente et la traiter apres l'instruction repérée en orange. Le test (4) a
pour fonction de déterminer si une réception sur la ligne série a été
traitée. Enfin l'instruction (5) signale qu'il n'y a plus de chaine a traiter.

Récupérer du texte dans une variable de type String.
La technique consiste a réserver un emplacement de type String pour

— P 44

chaine.charAt(N);
Retourne un caractere copié danschaine de type String et pointé
par N, I'index du premier étant égal a 0. (Artention au débordement de N)
chainel.concat(chaine2); (Voirégalement I'opérateur +)
Concatenedans chainel les deux objets String chaine1 etchaine?2.
Contrairement a ce que précise la "documentation mise en ligne"
il ne semble pas possible de concaténer dans une String tierce
mais uniquement dans la String "d'origine" chainef.
chaine.toLowwerCase(); chaine.toHupperCase();
Fonction quitransforme le contenu d'une chaine de caractéres en
son équivalent Minuscule ou Majuscule.Seuls les caracteres ASCII
alphabétiques sont modifiés, les autres caracteres restent inchangés.
chaine.trim();
Purge une chaine de type String de ses'espaces' en téte et en queue.

Opérateurs de la classe String.

Accéder a un caractere particulier d'un objet String.
Serial.printin(texte[3]); // Affichera "J". (Premier caractére = n°0)
Serial.printin(LCDJ[1]);// Affichera "Ligne 2". (Premiére chaine = n°0)
(Exemples issus du listage donné en page 42.)
Concaténer des String avec des chaines ou des caracteres.
String Texte1, Texte2, TOTAL; int Valeur = -23456; byte Octet = 123;
void setup() { Serial.begin(115200); Serial.printin();
Texte1l = String("-111111-"); Texte2 = String("-222222-");}
void loop() { String texte1; String texte2;// Instancier deux String.
texte1 = "BONJOUR"; texte2 = String(" LES COPAINS");
String TOTAL = texte1 + texte2;// Instancier TOTAL par concaténation.
texte2 = texte2 + texte2; // Une String concaténée avec elle-méme.
TOTAL = String("aaaa") + String("zzzzzz"); // Concaténer des chaines.
TOUT = Texte1 + Octet; // Concaténer une String avec une variable byte.
TOTAL = Textel + Valeur; // Concaténer une String avec une variable int.
TOUT = Texte2 + 123456789; // Concaténer une String avec un entier.
TOTAL = Textel +'A'; // Concaténer une String avec un caractere.
TOUT = 'A’ + Texte2; // Concaténer est "commutatif”.
TOTAL = Textel + "abc"; // Concaténer une String avec une chaine.

Fonction comparaison de String.

La fonction chaine1 == chaine2 ne retourne true que si les deux
chaines sont strictement égales en longueur et en contenu.

chainel peut étre une "chaine" ou une String, mais chaine2 est
obligatoirement une variable de type String.

P5 -

Le type Enumération (enum)_:

F ondamentalement, un type énuméré sert a générer une famille de
constantes relatives a un theme commun avec un identificateur
de substitution pour chacune élément de 1'ensemble déclaré. Exemple :
enum couleur_carte {
TREFLE, // Par défaut valeur 0. 1 < quival 2 d
CARREAU, // Par défaut valeur 1. S sont cquivalents a ces
COEUR, // Par défaut valeur 2. entiers valant dans ordre
PIQUE}; // Par défaut valeur 3. 0.1,2,3,4,5 etc.

Par exemple COEUR * PIQUE retournera la valeur 6.

Les énumérateurs ont une portée globale ou limitée a un bloc en fonction
de leur localisation dans le programme. Il est possible de choisir
explicitement les valeurs des constantes d'énumération (Ou gue pour
certaines d'entre elles. Dans ce cas, les autres suivent la regle

d'incrémentation donnée précédemment) Exemple :
enum couleur_carte {

TREFLE, // Par défaut valeur 0.
CARREAU, // Par défaut valeur 1.
COEUR=45, // Forcé a la valeur 45.
PIQUE }; // Par défaut valeur 46. Glups !
ATTENTION : Si un NOM ne précede pas le bloc de 1'ensemble, le
compilateur accepte, mais tous les éléments auront la premiere valeur.
Définir une énumération améliore significativement la lisibilité du code
source. Il est logique de désirer utiliser un type énuméré comme
parametre ou comme résultat d'une fonction. Exemple :
enum Couleur{TREFLE=1231,CARREAU,COEUR,PIQUE};
int CARTE;
void setup() {Serial.begin(19200);}
void loop() { CARTE = JEU(TREFLE);// L'appel "donne TREFLE".
Serial.printin(CARTE);// Affiche la valeur retournée par JEU.
infini: goto infini; }
int JEU(int CARTE) { // Récupeére le parametre "TREFLE".
Serial.printin(CARTE); // Utilise le paramétre regu.
int VALEUR = CARREAU; // Affecte la variable locale VALEUR.
return VALEUR,; }// Retourne la valeur "CARREAU" en sortie de fonction.
(Ce programme retourne "1231" puis "1232" sur la ligne série USB)

— P6

Les constantes en C d'Arduino :

ncontournable, le mot clé const est un qualificateur qui modifie le
][comportement de l'identificateur en générant une variable de type
"lecture seule". L'entité créée peut étre utilis€ée comme n'importe quelle
autre variable du méme type, mais sa valeur ne peut pas étre changée
dans le code du programme. Toute tentative de réaffectation génerera
un message d'erreur. Les constantes définies avec const obéissent aux
mémes regles de portée (Gestion des types) que celles qui gouvernent
les autres variables. C'est la raison pour laquelle, outre les picges de
l'utilisation de #define, le mot-clé const fournit une meilleure stratégie
de programmation pour définir les constantes et sera préféré a #define.
On peut utiliser aussi bien const que #define pour créer des constantes
numériques ou des chaines. Mais pour les tableaux, il faut impérativement
utiliser I'instruction const. o

Sont équivalents. Les deux

#define pi 3-.1 41592 n'occupent aucune place en
const float pi = 3.141592 ; mémoire du uP.

NOTE : Les constantes #define et const peuvent se trouver n'importe
ou dans le programme, mais doivent €tre déclarées avant leur utilisation.

La directive #define : (Voir encadré page 7)

ll | tile en programmation, cette directive permet au programmeur

de donner un nom a une constante numérique avant que le source
ne soit compilé. Les constantes ainsi définie ne consomment aucune
place en mémoire dans le microcontréleur. Le compilateur remplacera
les références a ces constantes par la valeur définie au moment de la
compilation. Par ailleurs, remplacer dans le code une constante par un

identificateur peut augmenter la lisibilité d'un programme.

Exemple : #define LED_Arduino 13 // Broche 13 utilisée.

Un point-virgule apreés l'instruction #define ou un "=" entre
l'identificateur et sa valeur génerent une erreur de compilation.

La directive #define peut cependant présenter quelques effets de bord
indésirables. Par exemple, un nom de constante qui a été défini par
#define estinclus dans d'autres constantes ou nom de variable : Dans
ce cas, le texte de ces constantes ou de ces variables sera remplacé
par la valeur définie avec #define.

D'une maniere générale, le mot clé const est préférable pour définir les

constantes et doit étre utilisé plutdt que #define.

P 43—
chainel.endsWith(chaine2);
Teste si un objet String se termine avec les mémes caractéres que
tous ceux d'un autre objetString ou chaine. Retournetrue oufalse.
chainel.startsWith(chaine2);
Teste si un objet String commence avec les mémes caractéres que
tous ceux d'un autre objetString ou chaine. Retournetrue oufalse.
chainet.lastindexOf(TEXTE,Position);
Fonction qui localise un caractere ou une séquence de caracteres
ASCII dans un objet de type String. Mais effectue la recherche en
sens rétrograde et par défaut commence ala fin. Peut aussi débuter
une recherche inverse a partir d'unePosition(Option) donnée, pour
rechercher toutes les instances. TEXTE peut étre un caractere, une
chaine, ou uneString. Retourne-1 si non trouvé ou sa position.
chaine.length();
Fonction qui retourne la valeur de longueur de la chaine d'un objet
String, sans inclure le "nul" marqueur de fin de chaine.
chainel.replace(chaine2,chainel);
Fonction qui permet de remplacer dans un objet chainel de type
String toutes les instances d'une sous-chainechaine2 par une autre
sous-chaine chaine3. Pour remplacer toutes les instances d'un
caractere il suffit de définir pour chaque sous-chaine un seul caractere.
chaine.setCharAt(Position,'caractére’);
Remplace le caractere d'un objetString dont on précise laPosition
et le caractere de substitution. Aucun effet sur les emplacements
débordant 1'espace de 1'objetString existant.(Position > longueur)
chaine.substring(Début,Fin);
Retourne une sous-chaine d'un objet String depuis le caractére
pointé parDébut jusqu'a celui pointé parFin-1. Silepointeur de fin
estomis, 'extraction renvoyée s'étend jusqu'ala fin de 'objetchaine.
chaine.toCharArray(TABLEAU,NB+1);
Copie lesNB premiers caracteres d'un objetString chainedans un
tableau de caracteres TABLEAU. Il faut donner le nombre augmenté
de 1 carle délimiteur\Q' fait partie du bloc recopié. Sile nombreNB
dépasse 1'étendue possible de TABLEAU il y aura débordement.

* + ¥
[char TABLEAUII[B]OIN]] <[<[] [BJO[N]J JOJU]R]\0] Stringchaine |

— P 42
Fonctions de la classe String.
String(valeur,base); (baseestune option nonimpérative)
Ce constructeur crée ou retourne une instance de la classe String qui
transforme lavaleuren une séquence de caractéres. Exemples :

String texte = "BONJOUR?"; // Utilisation d'une chaine de caracteéres.

String TEXTE = String('a");// Conversion d'un caractére en objet String.
String Car = String(char(234));// Conversion d'un caractére spécial. ("é")
String TEXTE = String(texte + "XXX");// Concaténation String + chaine.
String TEXTE = String(13);// Conversion d'un entier en base 10 par défaut.
String E5 = String(analogRead(5), DEC); // Conversion d'uninten base 10.
String ADR = String(-18273,HEX);// Conversion d'unint en base 16.

String Octet = String(123, BIN); // Conversion du nombre 123 en base 2.
String Duree = String(millis(), DEC);// Conversion d'unlong en base 10.
String LCD[4] = {"","Ligne 2","","Ligne 4"}; // TABLEAU de String.

ATTENTION : String TEXTE = ou String TEXTE; déclare la
chaine et peut se situer en global ou en local. Mais une seule instance
doit figurer dans le programme. Par la suite seul l'identificateur
TEXTE devra étre utilisé pour manipuler cette chaine de caracteres.
chainel.equals(chaine2);
Compare 1'égalité totale de deux objets String. Les objets sont
comparées caractere par caractere, par leurs valeurs ASCII, la casse
est prise en compte ainsi que le nombre de caracteres.
chainel.equalslgnoreCase(chaine2);
Compare I'égalité de deux objets String. Les objets sont comparées
caractere par caractere, par leurs valeurs ASCII, la casse est
IGNOREE mais tient comptedu nombre de caracteres si#.
chainel.compareTo(chaine2);
Compare deux objets String, testant si 1'un vient avant ou apres
l'autre, ou s'ils sont égaux. Les objets sont comparées caractere par
caractere, par leurs valeurs ASCII. Par exemple, 'a' vient avant'b’
mais apres'A'. Les chiffres viennent avant les lettres etc.
chaine1.indexOf(TEXTE,Position);
Fonction qui localise un caractere ou une séquence de caracteres
ASCII dans un objet de type String. Par défaut, recherche depuis le
del'objetStringal’ ,mais peut également débuter la
recherche a partird'unePPosition(Optionnel) donnée, permettant la
recherche de toutes les instances. TEXTE peut étre un caractere, une
chaine, ou uneString. Retourne-1 si non trouvé, ou

P7 -

Glossaire.

AVR : Nom de la famille des microcontroleurs a laquelle
appartiennent I'ATmega328P de la carte "UNO" ou le 2560 du
modele "Mega".

Bibliotheque : Ensemble de procédures utilitaires, regroupées et
mises a disposition des utilisateurs d’ Arduino.

Segment BSS : En informatique, ce sigle est utilisé par les
compilateurs et les éditeurs de liens pour désigner une partie du
segment de données contenant les variables statiques déclarées et
initialisées a zéro au démarrage du programme. Historiquement,
Block Started by Symbol était une étape en assembleur (UA-SAP)
développé dans les années 1950 pour I'IBM 704.

IDE : (Integrated development environment)

L'environnement de développement intégré (/DE) est un programme
regroupant un ensemble d’outils pour la création de logiciels. Il
regroupe un éditeur de texte, un compilateur, des fonctions
automatiques et souvent un dévermineur.

Librairie : Anglicisme pour Bibliotheque. (Voir Bibliotheque)

Shield : Carte comprenant un circuit complexe qui se connecte
directement a I’ Arduino et qui assure une fonction spécifique.

Sketch : programme dans le langage Arduino.

void : Mot clef utilisé pour spécifier qu’il n’y a pas de variable ou
de valeur. On le retrouve généralement dans le préfixe d’une
procédure ou dans la liste éventuelle des parametres pour indiquer
que celle-ci ne renvoie pas de parametre. (Ou qu’elle n’en recoit pas)
EXEMPLES pour lesquels on précise qu'il n'y a pas de parametre :
void setup(void)

void loop(void)

void Afficher_Date_et Heure(void)

"Bug et aléas sur #define".

Attention : On peut faire suivre une définition d'un commentaire de
type */ xxx */ mais il ne faut pas que ce dernier commence 2 la ligne
du #define et se termine sur une autre ligne, ou le compilateur va
générer une cascade d'erreurs incompréhensibles.

— P8

La structures de contréle if / else_:
Sous sa forme la plus complete I'instruction s'écrit : Voir
if (Condition) {Instructions} else {Instructions}

) ; . également
(Le ; n'est pas utile apreés un bloc de type {}) 'opérateur
» Condition est une expression booléenne. ternaire "?"

* L'instruction else est optionnelle. en page 33.
Opérateurs logiques de comparaison :
X==Y (Xestégalay)
X 1=Y (X est différent de Y)
X <Y (X estinférieura)
X >Y (X estsupérieura)
X <=Y (X estinférieur ou égal aY)
X >=Y (X est supérieur ou égal ay) Y

ATTENTION : Prendre garde a ne pas utiliser accidentellement
@ le signe = unique qui est I'opérateur d'affectation d'une &
7% valeur 2 une variable. La condition est alors toujours vraie.

Le test est faussé et la variable est modifiée intempestivement.

Conditions composées :

Imposer des conditions composées est possible :

if (Test1 && Test2 && Test3) {Action();} // Trois tests en chaine.
Imposer une condition négative impose de parentheser :

if (Test1 && ! (Test2) || Test3) {Action();} // Trois tests en chaine.

Opérateurs logiques de combinaisons conditionnelles :
Ces opérateurs peuvent étre utilisés a l'intérieur de la condition d'une
instruction if pour associer plusieurs conditions (ou opérandes) a tester.

(Condition1 && Condition2) : ET logique.

(Condition1 | | Condition2) : OU logique.

! (Condition) : NON logique >>>true si 'opérande est false.

ATTENTION : 1l importe de ne pas confondre &&, 1'opérateur
® ET utilisé dans les expressions booléennes des expressions if, ou
avec l'opérateur logique & utilisé avec des masques logiques
dans les instructions bit a bit. (Voir page 31)
.. De la méme facgon, ne pas confondre | |, I'opérateur OU dans les
¢ expressions booléennes des expressions pour if, avec 1'opérateur
| pour le OU utilisé dans les instructions spécifiques bit a bit.

Yo

de caracteres. Comme les chaines de caracteres sont elles-mémes des
tableaux, c’est un cas particulier de tableau a deux dimensions.

char *Tableau_de_textes[]={"Chaine de caracteres 1", "Bonjour.",

"Ceci est la chaine 3", "Et de 4", "5 I",">FIN<"};

void setup(){ Serial.begin(19200);

for (inti=0;i<86;i++)
{ Serial.printin(Tableau_de_textes]i]); } }
void loop(){}

Dans le code listé ci-dessus, I’astérisque apres la déclaration de donnée
de type char * indique qu’il s’agit d’un tableau de pointeurs. (Voirpl3)

Modifier un tableau char élément par élément.
La chaine sera complétée caracteére par caractere en précisant la
position. L'indice doit varier entre O et la longuer de la chaine.
(Longueur de texte délimiteur non compris) Attention, si on place
un caractere sur le délimiteur nul, la chaine va se prolonger jusqu'au
prochain nul. Si I'indice est ""hors calibre', le caractere sera
placé plus avant dans la mémoire et écrasera l'octet qui s'y
trouve. Le compilateur ne vérifie pas la validité des indices.
Un débordement peut engendrer un comportement aléatoire du
programme si le caractere vient écraser "du code exécutable".

—Place réservée —
Chaine6—~/A[r [d]u[i[n]of00] | [T[E[S]T]. Joo]
012 34546 7 8 9101112131415

La classe String()_:

ntégrée dans la version 0019 du logiciel Arduino, la classe String()
][permet d'utiliser et de traiter des chaines de caracteres dans des
utilisations plus complétes que ce que permettent les chaines de
caracteres simples. Par exemple on peut concaténer des String, y
ajouter du texte, chercher ou remplacer des parties etc. Leur utilisation
occupe plus de place en mémoire qu'une simple chaine de caractere,
mais la programmation en est bien plus aisée pour certaines fonctions.

NOTE : Les chaines de caracteres constantes du type "Texte libre"
sont prises en charge comme des tableaux de caracteéres, et non gérées
comme des instances de la classe String.

P 41 —

— P 40

Les chaines de caracteres :

F ondamentalement les chalnes de caracteres sont instanciées sous
forme de tableaux de variables de type char et se terminent par un
octet nul. Plusieurs syntaxes de déclaration de chaines sont possibles :

* Déclarer un tableau de caracteres sans I’initialiser.
char Chaine1[15] ;/ Ici pour 14 caracteres plus le nul.

* Déclarer un tableau de caracteres et laisser le compilateur ajouter
lui méme l'octet nul requis(Sentinelle) :
char Chaine2[8] ={'A','r",'d",'u", "', 'n",'0'} ;

* Déclarer explicitementle caractere nul :
char Chaine3[8] = {"'A",'r",'d", 'u', "I, 'n', '0", "\0'} ;

e Initialiser avec une chaine de caracteres constante entre guillemets,
doubles : Le compilateur dimensionnera le tableau pour stocker la
chaine de caractere constante et ajoutera le caractere nul :
char Chaine4[] ="Arduino"

* Initialiser le tableau avec une taille explicite et une chaine de caracteres
qui restera constante en taille dans le programme. Exemple :
char Chaine5[8] ="Arduino"

e Déclarer un tableau plus large, en le prévoyant pour une chaine plus
étendue que celle de l'initialisation. Exemple :
char Chaine6[10] = "Arduino”

(Pour compléter cette chaine voir l'encadré page 41)

Les délimiteurs :
Les chaines de caracteres sont toujours définies entre des guillemets
("ABC") et les caracteres sont toujours définis entre deux cotes. ('A’)

Déclaration de longues chaines de caracteres :

Il est possible pour des raisons de lisibilité du source de scinder de
longues chaines de caracteres de la facon suivante :

char LongueChaine[] ="Ce long texte ne va " "constituer”

" dans le programme qu'une"" seule et unique chaine";

Tous les "blocs" de texte sont encadrés par des guillemets et se suivent
sans virgule de séparation. Les espaces ne sont pas obligatoires. C'est
le point virgule qui acheve la déclaration complete.

Tableaux de chaines de caracteres :
Il est pratique de déclarer plusieurs textes, par un tableau de chaines

P9 —
Si le bloc d'instructions ne comporte qu'une seule instruction il n'est
pas obligatoire de placer les accolades pour délimiter le bloc.

if (Condition) Instruction_Sans_Acolade;

Structures If /else en cascade :

Le bloc relatif a else peut contenir un autre test if, et donc des tests
multiples mutuellement exclusifs peuvent étre mis en cascade. Chaque
test sera réalisé apres le précédent jusqu'a ce qu'un test true soit
rencontré. Quand une condition true est rencontrée, les instructions
associées sont réalisées, puis le programme saute son déroulement a
l'instruction suivant 1'ensemble de la structure if / else. Si aucun test
n'esttrue, le bloc d'instructions par défaut else sera exécuté, s'il est
présent dans le code, déterminant ainsi le comportement par défaut :

(<<= Au premier true rencontré {Ai} est réalisé puis "sortie".
true) {A1;} else It (frue)fA2:}elseift-(irue) {A3;} else {A4;}

f(
if (false) {A1;} else if (true) {A2;} elseit-frue){AS; }else {A4;}
if (false) {A1;} else if (false) {A2;} else if (true) {A3;} else {A4;}

if (false) {A1;}else if (false) {A2;} else if (false) {A3;} else {A4;}
NOTE : Le else if ne peut pas étre utilisée seul, il faut un if avant.
Une autre fagon plus lisible de réaliser des branchements de tests
multiples mutuellement exclusifs consiste a utiliser switch case.

La structures de boucle while : (While : Tant que)
while(Condition){Action();}

La structure while boucle en interne jusqu'a ce que la Condition ou
I'expression booléenne entre les parentheéses devienne false. Condition
doit se modifier sinon la boucle ne se terminera jamais. (Voir ['exemple
de boucle infinie tout en haut de la page 12) Condition est une
expression booléenne qui retourne la valeurtrue oufalse. Si en entrée
dans la structure Condition = false, I'Action(); n'est jamais réalisée.
La structures de boucle do / while : (Do : Faire)

do {Action();} while(Condition);

La boucle do / while fonctionne exactement comme la boucle while
simple, mais la condition n'est testée qu'apres avoir exécuté le bloc
d'instruction {Action();}. Ce dernier sera donc exécutée au moins une
fois quelles que soit 1'état de la Condition en entrée de structure.
NOTE :Le ";" est impératif puisque la ligne de code se termine par une
instruction de test et non un bloc placé entre "{" et "}".

— P 10

Incidence de I'ordre des opérations composées :
L'ordre dans lequel est effectué 1'incrémentation par rapport a la
variable de test doit étre pris en compte dans les structure de boucles
de type while ou celle de type do / while.

EXEMPLE :
| =0; > > >
do {Serial.print(X);} while (X++ < 5);// Affiche 012345.
| =0; >

do {Serial.print(X);} while (++X < 5);// Affiche 01234.
Dans le premier essai le test est effectué sur X puis il estincrémenté.
Dans le deuxieme exemple X estincrémenté, puis il y a le test. Donc
on sort de la boucle une passe avant celle du premier exemple.

La structures de boucle for_:
for (Initialisation; Condition; Incrémentation) {Action();}

L'instruction for est utilisée pour répéter 1'exécution d'un bloc
d'instructions regroupées entre des accolades. Un compteur incrémental
est habituellement utilisé pour faire évoluer et se terminer la boucle.
L'instruction for est trés utile pour toutes les opérations répétitives et
est souvent utilisées en association avec des tableaux de variables pour
agir sur un ensemble de données ou de broches.

L'Initialisation a lieu en premier et une seule fois en entrée dans la
structure. A chaque exécution de la boucle, la condition est testée; si
elle esttrue, le bloc d'instructions {Action();} et Incrémentation sont
exécutés. Puis la condition est testée de nouveau. Quand Condition
devient false, il y a sortie de la structure et saut au code suivant.

La boucle for en C est beaucoup plus flexible que généralement dans les
boucles des autres langages de programmation. Tout ou partie des trois
élément de 1'entéte de la boucle peuvent étre omis, les points-virgules
";" sont toutefois obligatoires. De plus, le codage pour Initialisation,
Condition ou Incrémentation peut étre n'importe quelle instruction
valide en langage C, avec des variables quelconques non liées.

Exemple dans lequel l'initialisation se fait hors structure et
l'évolution de la variable de test dans le bloc d'instructions :
byte =5;

for (; X < 8;) {Serial.print(X); X++;}// Affiche 567.

P 39
La conversion s'arréte au premier caractere invalide autre
que des chiffres et le point. Exemple :

FLOAT = atof("-123A4567.12"); Serial.printin(FLOAT);

Convertion valeurs numériques / chaine de caracteére :

C onvertir la valeur d'une variable numérique de type byte, int,

long, unsigned int et unsigned long est immédiat par usage
d'une instance String() comme développé en page 41. Par contre, pour
transformer en chaine de caractere la valeur d'un float la technique est
plus compliquée.

Convertir un entier en chaine de caracteres.

Il suffit d'affecter la variable dans une instance de type String :
long VALEUR = -21474836;

void setup() { Serial.begin(115200); Serial.begin();}

void loop() {
VALEUR = VALEUR * 3; // Petit calcul sur le nombre entier.
String TEXTE = String(VALEUR); // Transformation en chaine.
Serial.printin(TEXTE); Serial.printin(TEXTE[3]);
INFINI: goto INFINI; }

Convertir un float en chaine de caracteres.

a déterminer ...
Convertir du décimal en string :

http://forum.arduino.cc/index.php?topic=228246.0

Décodage de valeurs représentées en BCD :

Un nombre codé en BCD, par exemple sur un octet, loge les dizaines
(Exprimées en décimal) sur les quatre bits de poids forts, et les unités
sur les quatre bits de poids faibles.

OxF & OctetBCD; Isole les 4 bits de poids faibles.

Pour décoder les 4 bits de poids fort :

(10 * (OctetBCD >> 4)) + (OxF & OctetBCD);

NOTE IMPORTANTE sur le CAN de I' ATmega328.
Tout convertisseur analogique / numérique présente une imprécision
propre qui en limite le nombre de chiffres significatifs fiables. Le
convertisseur de I'"ATmega328 est tres linéaire, sauf pour les deux
bits de poids faibles. Sa précision est de £2LSB. (£ 4 uniztés)

— P 38

Convertion chaines de caractéres / valeurs numériques :

S avoir transformer une chaine de caractére en un nombre pouvant
servir dans des fonctions de calcul est un impératif, tout
particuliecrement quand les données sont issues de la ligne série qui ne
délivre que "du texte". Dans la chaine de caracteéres a convertir en
nombre, le signe + en téte n'est pas impératif.
Convertir une chaine en un int : atoi.

int INT; 88, LF)

void setup() {Serial.begin(19200);}

void loop(){ ——
INT = atoi("-32768"); Serial.printin(INT); 32768
INT = atoi("+32767"); Serial.printin(INT); 32787
INT = atoi("0"); Serial.printIn(INT); 0
INT = atoi("-12345"); Serial.printin(INT); 123435
INT = atoi("+12345"); Serial.printin(INT); 12345

ATTENTION : Il n'y a pas de vérification sur la valeur de la donnée
chaine qui doit rester dans les limites d'unint ot le résultat sera incorrect.
Convertir une chaine en un long: atol.

long LONG;
void setup() {Serial.begin(19200);}
void loop(){

LONG = atol("-2147483648"); Serial.printin(LONG); 2147483648

LONG = atol("2147483647"); Serial.printin(LONG); 2147483647
LONG = atol("0"); Serial.printin(LONG); i
LONG = atol("-1234567890"); Serial.printin(LONG); -1234567850
LONG = atol("+1234567890"); Serial.printin(LONG); |11234567850

ATTENTION : Il n'y a pas de vérification sur la valeur de la chalne qui
doit rester dans les limites d'un long ou le résultat sera incorrect.
Convertir une chaine en un float : atof.

Accepte aussi undouble, mais dans les deux cas quand on dépasse les huit
chiffres significatifs la conversion n'est plus parfaite.

F

COM3
FLOAT = atof("-1234567.12"); Serial.printin(FLOAT);
FLOAT = atof("+1234567.091"); Serial.printin(FLOAT); —
FLOAT = atof("-12345678.9845"); Serial.printin(FLOAT); [[1353ses oo
FLOAT = atof("+12345678.4321"); Serial.printin(FLOAT); -12345675.00
FLOAT = atof("-123456789.3333"); Serial.printin(FLOAT); ﬁjjggﬁ -gg'an .
FLOAT = atof("+123456789"); Serial.printin(FLOAT); 123456792.00

P11—
La structures de controle switch / case :

L'instruction switch / case permet au programmeur de construire une
liste de "cas" (Possibilités) définis a I'intérieur d'un "bloc" d'instructions.
Le programme compare chaque cas avec la variable de test, et exécute
le code si une correspondance true est détectée. Quand un frue est
rencontré, son bloc de code est exécuté. Mais on peut décider de sortir
de la structure avec l'instruction break, ou de continuer a comparer les
autres cas si cette instruction n'est pas insérée dans le bloc a exécuter.

switch (Var) {// Début de la structure
case Val1 : {Instructions; break;} » Sortie de la structure.
case Val2 : {Instructions;} —4_|
case Val2 : Instruction; break; » Sortie de la structure.
case Val2 : {Instructions; break;} » Sortie de la structure.

defalt: {Instructions; break;} // Option non impérative.

}// Fin de la structure.
Si aucune condition true n'est rencontrée lors du balayage, le code
defalt sera exécuté si cette instruction est présente dans la structure.
Pour éviter des comportements inattendus, (Valn étant modifiée dans
les Instructions,) il est recommandé de mettre une instructionbreak a
la fin du code de chaque Valn analysée. Il n'y a que dans le cas de
conditions imbriquées entre-elles que I'on pourra ne pas mettre le break.
Les Valn de comparaison peuvent étre ordonnée de facon quelconque.

L'instruction de controle continue :

L'instruction continue est utilisée pour passer outre certaines portions
de code dans les boucle do, for ou while. La condition est toujours
évaluée, mais le code restant dans le bloc est ignoré. Exemple :

int X = 0;
| |

while (X <=999) {X++;if (X > 3) {continue;} Serial.print(X);}
Serial.printin(); Serial.print(X); (1)

Dans cet exemple le programme ne va afficher que 1, 2et 3. Zéro n'est
pas affiché car l'incrémentation de X est effectuée avant son affichage.
A partir de X = 4, continue fait ignorer la suite du bloc et il y a nouveau
test sur la variable X. L'instruction (1) permet de vérifier I'achévement
de la boucle. Noter que la valeur finale est X = 1000 et non 999.

—P 12

Le goto en langage C :

B ien que le goto ne soit pas trés recommandé sachant qu'il peut
conduire facilement a des programmes délicats a déverminer, car
il devient difficile de suivre de cheminement lors du déroulement des
instruction, un Goto peut parfois s'avérer utile.

SYNTAXE :

» Nomeétiquette suivi de ":" sans espace pour créer le pointer du Goto.
» Goto NomEtiquette; pour imposer le saut inconditionnel.

Exemple simple :

INFINI: goto INFINI; // Facon de remplacer while(true);

Les tableaux de variables :

L es tableaux sont des collections de variables de types identiques,
situées dans un espace contigu dans la mémoire et accessibles a
I'aide d'un numéro d'index. (De type byte, char, int,long, double...)
Les tableaux a une dimension.
Diverses facons de déclarer un tableau a une dimension :
* Ne déclarer que la taille pour que le compilateur lui réserve la place :
int Tableau[6]; // 6 emplacements indexés de 0 a 5.
* Initialiser les données sans préciser la taille. Le compilateur compte
alors les éléments et crée un tableau de la taille appropriée :
char Car_valides[] = {'S', 'a’, 'N'}; // 4 octets car délimiteur "\0'.
* Déclarer la taille et initialiser les données :
byte Filtres[5] = {2, 4, -8, 3, 2}; // 5 octets indexés de 0 a 4.
* Cas particulier des caracteres et des chaines : Il faut prévoir pour la
taille déclarée I'emplacement du délimiteur \0' :
char Message[8] = "Bonjour"; // 7 caracteres plus le "\0'.
Accéder aux éléments d'un tableau.
X = Tableau[2]; // X prend la valeur du troisiéme élément.
Tableau[0] = X; // Le premier élément prend la valeur de X.
Le premier élément d'un tableau est indexé avec zéro.
Le dernier élément d'un tableau est indexé avec [Dim] - 1 ou par la
valeur [Dim] - 2 si c'est un tableau de type chaine ou de caracteres.
ATTENTION : Le compilateur ne teste pas le débordement
®. d'indice. Lire hors tableau retourne une valeur quelconque. g
Ecrire hors limites écrase du code ou une valeur du logiciel
et conduit a un comportement imprévisible du programme.

Allocation dynamique de la mémoire.
La réservation dynamique de mémoire SRAM passe par 1'utilisation d'un
pointeur. On peut procéder en deux étapes : Déclarer le pointeur, puis
réserver la zone mémoire avec ce dernier. Exemple :
long int*PTR = NULL;// Déclaration du pointeur.
Puis utiliser le pointeur, par exemple dans la boucle de base :
PTR = (long int*) malloc(NB_OBJETS *sizeof(long int));

/I Allocation de NB_OBJETS.
Ou utiliser une instruction unique directement dans la boucle de base :
long int *PTR = (long int*) malloc(NB_OBJETS *sizeof(long int));
Le seul parameétre a passer a malloc() est le nombre d'éléments typés
a allouer. La fonction malloc() retourne comme valeur 1'adresse du
premier octet de la zone mémoire allouée.

Si l'allocation n'a pu se réaliser par manque de mémoire

disponible, la valeur retournée est la constante NULL.

Libération de la zone réservée en mémoire dynamique.
La libération de la mémoire précédemment allouée viamalloc() se fait
avec la procédure free() dont la syntaxe n'exige comme parameétre
que l'identificateur du pointeur utilisé pour réserver la zone allouée :
free(PTR);// Libére tout I'espace réservé avec PTR.

Initialisation d'une zone de mémoire.
memset(PTR,Valeur,NB OCTETS);

Procédure qui permet de remplir une zone mémoire avec desValeurs

désirées. Par exemple pour vider le contenu d'une chaine de caracteres

en forgcant tout ses octets a 0, remplir un tableau avec des "1" etc.
Le pointeur PTR précise 1'adresse de la premieére cellule mémoire a
initialiser. Valeur est I'octet de remplissage en hexadécimal, décimal,
un code ASCII, 'caractere’. NB OCTETS indique le nombre de
cellules mémoire a initialiser avec Valeur. Noter que cette procédure
ne fonctionne qu'avec des octets, donc le pointeur sera de type byte.

sizeof(Variable)

Cette fonction retourne le nombre d'octets constituant une variable, ou
le nombre d'octets occupés par un tableau.

Pour I'argument, n'importe quel type de Variable ou de tableau peut
étre précisé : int, float, byte, char etc ...

P 37—

— P36

Allocation dynamique de la mémoire :

malloc() est en informatique une fonction de la bibliotheque

standard stdlib.h permettant d'allouer dynamiquement de la
mémoire. Cette bibliotheque est fournie en standard pour le langage C.
Elle est implicitement déclarée dans Arduino, de ce fait une instruction
#include <stdlib.h> n'est pas impérative.

L'allocation dynamique de la SRAM.

Elle peut s'effectuer de trois facons:

» Statiquement, au cours de la compilation par la déclaration de
variables statiques : Variables globales ou variables locales
déclarées en utilisant le mot-cléstatic,

* Dynamiquement, au cours de 1'exécution :

* Soit de facon automatique sur la pile d'exécution : Variables
locales déclarées dans un bloc d'instructions,
*Soitalademande du programmeur, surle TAS, en utilisant des
fonctions spécifiques d'allocation de la mémoire.

|| 9 allocation statique oblige le développeur a connaitre a I'avance

la quantité de mémoire qui sera utilisée. Un "gaspillage" de
mémoire peut survenir si I'on réserve trop de mémoire par rapport au
besoin réel du programme. Avec la réservation automatique, la libération
de la mémoire n'est réalisée qu'a la fin du bloc d'instructions dans lequel
est déclarée la variable, ce qui peut également étre un facteur de
gaspillage lorsque cette mémoire restant allouée, elle n'est plus utilisée.

C ¥ cstdans ce cas typique que l'allocation dynamique de mémoire

fournit une solution élégante au programmeur. La réservation
de la mémoire se fait au cours de 1'exécution du programme ; la libération
de cette mémoire n'est plus gérée par le compilateur, mais a convenance
par le programmeur. La complexité du programme augmente, mais la
gestion de la mémoire est plus fine. Si un programme alloue de la
mémoire avec malloc() sans la libérer ensuite avec l'instruction free(),
on utilise le vocable "fuite de mémoire". Pour éviter ce type
d'inconvénient et faciliter 1'écriture des programmes, certains langages
disposent d'un mécanisme nommé "Ramasse-miettes". Ce n'est pas le
cas pour le langage C pour lequel la gestion dynamique de la mémoire
est entierement laissée a la charge du programmeur.

Bien que malloc() fasse partie du C, il est tres peu conseillé de 1'utiliser
avec des microcontrdleurs car sont effet peut s'avérer imprévisibles.

P 13—

Les tableaux a plusieurs dimensions.

Leur déclaration est identique a celle d'un tableau a une dimension, sauf

qu'il faut préciser autant de crochets que 1'on désire de dimensions.

Tous les éléments sont de méme type. Exemple simple :

char TEXTES[5][5] = {"AAAA","BBBB"} ;// Deux dimensions.

Exemple avec trois dimensions :

char TROIS_DIM[4][3][2] ={ (1)
{{'{A",'B}1,{'C','D'},{'E",'"F'}}, // Premiere ligne. (n°0)
{{'G",'"H'}{'I''J}{'K','L'}}, // Deuxieéme ligne. (n°1)
{M''N}{'O",'P'},{'Q",'R'}}, // Ligne n°2
{'s",'T'HL{U",'"V'}L{W''X"}},// Derniere ligne. (n°3)
};// Fin de déclaration / initialisation du tableau.

(1) : Les dimensions d'un tableau sont obligatoirement déclarées comme
des constantes, ou le compilateur génere des erreurs. Il n'est donc
pas tres utile d'employer des identificateurs. Par contre, 'acces aux
éléments peut se faire avantageusement avec des identificateurs :

byte LIGNE, COLONNE, ELEMENT;
LIGNE = 3; COLONNE = 2; ELEMENT = 1;// Pointe le 'X".
Serial.printin(TROIS_DIM[LIGNE][COLONNE][ELEMENT]);

Initialisation des tableaux.

Toutes les valeurs non-précisées pour un tableau sont automatiquement

mises a zéro. On peut proc 2 mise a zéro ableau

tres rapidement et facile récisant que sa valeur :
i ul2][3][4]1 ={{ {0} } }; En C mais pas en C++.

Déclaration incompléte.

Il est possible lors de la déclaration de ne pas préciser la taille de la
premiere dimension. Par exemple ce code est parfaitement valide :

int Tableau[][3] = { {0,1, 2, 3, 4, 5}, {6, 7, 8} };

Pour cet exemple, la premiere dimension vaudra 6. Par contre ce n'est
accepté que pour la premiere dimension. Si la taille des autres dimensions
n'est pas précisée, le compilateur géneére une erreur.

Tableau de pointeurs.
Il est parfaitement possible de déclarer un tableau de pointeurs :

int * ADRESSES[7];

Cette instruction créé un tableau de pointeurs et non un pointeur sur le tableau
ADRESSES car l'opérateur [] est prioritaire sur *. Le compilateur évalue
donc l'instruction comme étant un tableau contenant des pointeurs.

—P 14

Les fonctions avec passage de parameétres :

F onction et procédures sont deux structures assez analogues.
Toutes deux effectuent un traitement. Mais la fonction retourne
un parametre dont le doit étre déclaré en entéte. Comme pour les
procédures une fonction peut manipuler des variables globales, mais en
général elle utilise le passage de parametres. L'appel a une fonction
peut se faire a la place de tout parametre dont elle respecte le .Le
programme Fonction_avec_parametres.ino est un exemple qui
utilise plusieurs variantes de fonctions avec ou sans parametres.

NomFonction(type Param1, type Param2 ...)
{Instructions; Resultat} // Les nomsParamN sont optionnels.
La structured'une fonction commence par la déclaration de son
qui peut étre quelconque :ent, string, boolean etc. Entre parenthéses
sont listées les parametres dont letype doit également étre déclaré.
L'intégralité du traitement de la fonction doit étre placé entre les deux
accolades d'un bloc{ et}, y compris lereturn. Resultat peut étre
aussi-bien l'identificateur d'une variable qui a été traitée qu'une
instruction de traitement. La valeur doit étre compatible avec le

Une fonction peut parfaitement travailler exclusivement sur des variables
externes. Si elle ne doit pas utiliser de parametre, les parentheses seront
"vides" mais leur présence est obligatoire. Exemple :

float X = -123.456; byte Y = 2;

void loop() { Serial.printin(Division(),6); }

float Division(void) {return X /Y ;}
La portée des variables :
Une variable globale est une entité qui occupe un emplacement durable
et figé dans la mémoire, et qui peut étre "vue" et utilisée par n'importe
quelle fonction ou procédure du programme. Les variables locales ne
sont visibles que par la fonction dans laquelle elles ont été déclarées.
Elles sont crées au moment de leur utilisation dans l'espace disponible
en RAM, puis leur emplacement est libéré en sortie de procédure ou
de fonction. Dans le langage Arduino, toute variable déclarée en dehors
du corps d'une procédure ou d'une fonction (Corps délimité par{ })
est une variable globale. Il est fortement recommandé d'utiliser des
variables locales, donc déclarées a I'intérieur du corps des procédures
ou des fonctions, pour éviter les effets de bord, ceci tout particulierement
pour les indice d'évolotion des boucle de type for.

P 35—
detachlinterrupt(NumINT);
Instruction qui libére la broche del'interruption externe NumINT.
Seule labroche liée aNumINT ne provoquera plus d'interruptions.
l'instructionattachlinterrupt() permet d'en rétablir le fonctionnement,
oude laréorienter sur une autre routine de traitement d'interruptions.

nolnterrupts(NumINT);
Instruction qui désactive toutes les interruptions.
permettent a certaines taches importantes de survenir a tout moment,
et . Plusieurs procédures et
fonctions sont désactivées ou perturbées lorsque les interruptions
sont déclenchées. (Communications série, millis, delay etc) Les
interruptions pouvant perturber le déroulement du code dans certaines
sections critiques, nolnterrupts permet de suspendre en bloc et
momentanément toutes les interruptions de I'ATmega328.
interrupts(NumINT);
Instruction qui réactive les interruptions apres qu'elles aient été
désactivées parnolnterrupts. Naturellement, la paire d'instruction
de désactivation et de rétablissement des interruptions peut se
trouver dans toute procédure ou fonction du programme.

voidloop() {
"code courant" ...
nolnterrupts();// Désactivation des interruptions.
/] Code critique sensible aux fonctions temporelles.
interrupts();// Réactivation des interruptions.
Suite du "code courant” ... }

Quelques conseils sur l'utilisation des interruptions.

*[’usage des interruptions estidéal pour des taches qui consistent a
surveiller les touches d'un clavier, la détection d'un changement
d’étatrapide et aléatoire sur un capteur etc, sans avoir pour autant
aconstamment surveiller I’état de labroche d'entrée concernée.

e [déalement, une fonction attachée a une interruption doit &tre la plus
courte et la plus rapide possible. Une bonne pratique consiste a
s’en servir pour intercepter un événement aléatoire et positionner
savaleur dans une variable globale déclarée en typevolatile. Le
traitement de cette variable est ensuite confié a laboucle de base
ou al'une de ses procédures de servitude.

— P 34

Gestion des interruptions :

e microcontroleur
L ATmega328 dispose INT 1 “‘_

de deux entrées externes ATmega328

INT
d'interruptions sur les 0+

broches spécialisées 4 et 5 de son boitier, respectivement nommeées
INT 0 et INT 1. Ces deux broches sont reliées respectivement aux
entrées binaires n°2 et n°3 sur la carte électronique Arduino.

NOTE : Les ATMega328 peuvent également gérer des interruptions
de changement d’état sur vingt de leurs broches. Mais leur traitement
n’est pas aussi simple que pour les interruptions externes car il faut
aiguiller le code apres avoir déterminé d'ou vient le requéte. La
librairie Arduino arduino-pinchangeint.h a été développée afin
de permettre 1’ utilisation de ces interruptions internes au uP.

attachlnterrupt(NumINT,Procedure,MQDE)

Instruction d'initialisation qui configure 1'une des deux interruptions

externes. Cette instruction spécifie laProcedure (Sans parenthéses

pour la déclaration d'appel mais avec pour son code) a appeler

lorsqu'une interruption externe est détectée surNumINT. Elle remplace

tout autre procédure qui était attaché a cette interruption. Le parametre
précise 1'événement qui déclenchera les interruptions :

* LOW : Un niveau "0" sur la broche.

* CHANGE : Un changement d'état sur la broche.

* RISING : Une transition de "0" vers "1". (Un front montant)

* FALLING : Une transitionde "1" vers "0". (Un front descendant)

ATTENTION : La routine de service d'interruption Procedure
ne peut recevoir aucun parametre, ne doit traiter que des variables
de type volatile et ne peut retourner aucune valeur. (Routine ISR)

Procedure attachée a l'interruption étant basées sur
I'utilisation des timers du microcontréleur, la routine delay ne fonctionne
pas et la valeur renvoyée par millis ne s'incrémente pas durant le code
de cette derniere. Les données séries recues pendant 1'exécution de la
Procedure sont perdues et le protocole 12C est également affecté.
NOTE : Les variables volatile sont toute déclarées en GLOBAL et
peuvent étre modifiées par le programme de base et les subroutines.

P15
Les expressions numériques entieres :

L es expressions numériques entieres sont des nombres utilisés
directement dans un programme, sous forme de constantes
explicitées. Par défaut les expressions numériques entieres sont traitées
comme des nombres entiers exprimés en base 10. Mais avec certains
préfixes il est possible d'imposer d'autres bases. Dans les exemples
de syntaxe qui suivent, la variable X a été déclarée en int.

X =128;// Valeur décimale par défaut donc vaut 128+o.
X =B1011;// Valeur exprimée en BINAIRE. (Donc 1110.)

NOTE sur le format BINAIRE : Une expression binaire ne peut
manipuler que des OCTETS, donc huit bits au maximum. (On peut
écrire les zéros en téte mais ce n'est pas impératif) Il suffit pour
tourner cette difficulté d'utiliser une "macro instruction" avec poids
fort et poids faible différenciés. .
M; n'est pas acceptée, car elle dépasse huit BITs.
X =(B11*256) + BO1; permet de traiter 16 BITs et sera bien
interprétée comme valant 769 en décimal..

X=0111;// Un zéro en téte impose un format OCTAL.

ATTENTION : Dans l'exemple ci-avant on pourrait lire 111
%< pour la valeur de X. Mais exprimée en OCTAL, en réalité &
., ¢elle sera interprétée comme valant 73 en décimal. Inclure g
g =

é par inadvertance un zéro en téte dans une expression
numérique conduit a un leurre tres délicat a repérer.

X = 0xA3;// Valeur exprimée en HEXADECIMAL. (16310.)
Attention >>> Il faut un zéro dans Ox et non la lettre "O" !

X = (B10000001 * 256) + 255; // Valeur -32257 car le bit de

poids fort a "1" est le bit de signe négatif sur unint.

Par défaut, ces nombres sont traités comme des variables de type int,
donc des nombres signés exprimés en "complément a deux". Mais il
suffit d'en changer le type. Par exemple utiliser unsigned pour X
donnera 33269 pour la méme expression. Dans les documents en ligne
il est précisé qu'il est possible de changer le type d'une expression avec
les suffixes "U" pour unsigned et "L" pour long. Mais ce code ne
semble plus avoir cours, donc autant déclarer le type désiré pour X.

— P 16
Les expressions numériques ''floating point'' :

C omme pour les expressions numériques entieres, les expressions

numériques a virgule flottante sont utilisées pour preciser des
constantes numériques de type float. Plusieurs formats sont possibles
pour soumettre ces valeurs au compilateur qui les traduira en binaire :
float X =.005; // Les zéros en téte ne sont pas impératifs.

X = .00005; // Les zéros en téte sont ignorés.

X=10.0; /I Les zéros en queue sont ignorés.

X = 2.34E5; /I Exposant positif.

X =1.234567e-12;// Exposant négatif.
=-1.2345E5; /I Exposant positif et mantisse négative.

X =-123.45E2; // Mantisse avec plusieurs chiffres avantla",".

Pour exprimer 1'exposant on peut utiliser aussi bien un "E" qu'un "e";

par contre il ne faut pas d'espace entre la mantisse et 1'exposant.

Opérateurs arithmétiques.

Variable = Valeur_Numérique; (Voir l'encadré rouge en page 8)
L'opérateur d'assignation=impose au programme d'évaluer la valeur
de la constante ou de l'expression numérique et de la stocker par
écrasement dans Variable. L'entité Variable a gauche de = doit
pouvoir "contenir" la valeur calculée par I'instruction. Si sa taille
déclarée estinsuffisante la valeur stockée sera incorrecte ou tronquée.

Variable = Valeur1 Opérateur Valeur2;

Les Opérateurs +, -, *, / retournent respectivement la somme, la
différence, leproduit ou lequotient effectuée surles deux opérandes
Valreul et Valeur2 dans Variable par écrasement.

 L'opération est réalisée en utilisant le type des données des opérandes.

(Par exemple, 9 /4 donne 2 si 9 et 4 sont de type int) L'opération
risque de déborder si le résultat est plus grand que le type déclaré
pour les données. Dans ce cas le résultat est alors erroné.

* Si les opérandes sont de deux types de donnée différents, la taille du

plus "grand" est utilisée pour effectuer le calcul.

* Sil'un des opérandes est du type float ou double, le traitement se

fait en virgule flottante. (Par exemple 18.9/5 donnera 3.78)

* Les constantes entiéres sont par défaut de type int. Si un calcul effectué

entre deux constantes déborde, le résultat devient négatif.

* Choisir des tailles de variables dimensionnées pour permettre de

P 33
L'opérateur ternaire ''?"" :

y opérateur ternaire, qui n'est qu'une autre forme pour effectuer
un test de condition de type Si/Alors/Sinon, tient son nom du
fait qu'il est le seul en langage C a s'écrire avec trois items.
(Condition) ? Instruction_pour_vrai : Instruction_pour_faux ;
Les parenthéses ne sont pas obligatoires pour encadrer la Condition.
Concretement c'est 1'équivalent d'unif / else condensé, plus rapide a
écrire, mais qui rend bien plus délicate la lisibilité du code.

Contraintes de l'instruction ternaire ? :
* Les accolades ne sont pas admises pour les instructions,
* Un appel a procédure n'est pas acceptée, }2{)
* Une seule instruction est possible pour chaque alternative.

eIl ne fautpasde";" alafindel'instruction relative au castrue, mais
uniquement a la fin de I'instruction ternaire complete.

void loop() { HEURES++; if (HEURES==24) HEURES = 0;

Serial.print("HEURES = "); Serial.print(HEURES);
/* Forme standard sans les parenthéses */
HEURES <= 12 ? Serial.print(" : Matin") : Serial.print(" : Apres midi");
/* Avec parenthéses et sur trois lignes pour faciliter la lecture */
(HEURES <= 12)

? Serial.printin(" > AM.") // Pas de ";" apres l'affectation du "then".

: Serial.printin(" > PM."); // ";" pour terminer l'instruction compléte.

delay(500); }

Dans certains cas, I'écriture compacte d'un Si/Alors/Sinon peut s'avérer
avantageuse dans la mesure ou l'instruction est d'une interprétation
évidente. Par exemple gérer un singulier et un pluriel dans un affichage:
Compteur++;if (Compteur==6) Compteur = 0;
Serial.print("Compteur = "); Serial.print(Compteur);
Serial.print(" comptage");
/* Cas ou I'écriture simplifiée peut s'avérer plus simple : */
Compteur > 1 ? Serial.printin("s") : Serial.printin();
Instruction ternaire = Affectation de valeur.
Fondamentalement, I'opérateur ternaire affecte une valeur a une
variable en fonction d'une condition. Cette valeur peut étre affectée

dans une expression quelconque ou directement pour un affichage. Ex :
Calibre = (Taille > 25) ? "Valide" : "Rejet";

— P 32

Portée des variables et qualificateurs :

L es variables en langage C ont implicitement une portée qui dépend

de I'endroit du programme ou elles sont déclarées. Toute variable
(Ou constante) déclarée hors des fonctions ou des procédures ont une
portée GLOBALE. Elles sont alors "vues" et peuvent étre utilisées par
n'importe quelle fonction ou procédure du programme. Toute variable
déclarée dans le corps { } d'une fonction ou d'une procédure est une
variable LOCALE qui n'est vue et manipulable que par cette derniere.
Les déclarations des variables (Ou des constantes) peuvent se situer
n'importe ou dans le programme, mais doivent étre déclarées avant leur
utilisation. Il est fort recommandé pour éviter les "effets de bord" de
déclarer en local la variable d'évolution d'une boucle for.

Le mot-clé const. (Voir également en page 3)

Le mot-clé const est une directive qui se place juste avant ou juste
apres le type d'un identificateur. Cet objet déclaré peut étre utilisé comme
n'importe quelle autre variable, mais sa valeur ne doit pas étre changée dans
le programme. (Toute tentative de modification génerera une erreur)

Le mot-clé static.

Le mot-clé static est utilisé pour créer des variables locales dans
une fonction qui conservent leurs valeurs entre deux appels de cette
derniére. Les variables déclarées avec static sont créées et initialisées
uniquement au tout premier appel de la fonction ou de la procédure.

void setup() { Serial.begin(115200); }
void loop() {Experience_avec_static(); delay(1000);}
void Experience_avec_static () {

static byte COMPTEUR = 0; // Static donc initialisé au 1" appel.
COMPTEUR++; Serial.print("Valeur de la variable statique =");
Serial.printin(COMPTEUR); }

Le mot-clé volatile.

Le mot-clé volatile est une directive qui précede la déclaration du type
d'une variable pour indiquer au compilateur de placer cette derniere en
RAM (Adresse stable) et non dans un registre de stockage, emplacement
temporaire de la mémoire ou les variables sont stockées et manipulées.
Sous certaines conditions, la valeur de la variable stockée dans les
registres peut-étre perturbée. Avec Arduino, la seule situation ou le
probleme peut se produire risque d'arriver dans les sections de codes
associées aux interruptions. (Routines de service des interruptions)

P17

stocker les plus grands résultats potentiels issus des calculs.

* Pour les mathématiques qui nécessitent des décimales ou des fractions,
utiliser les variables de type float, mais ne pas oublier l'inconvénient
de leur taille empiétée en mémoire, et la "lenteur" d'exécution des
calculs qui en résulte.

e Utiliser les opérateurs de conversion de type pour transposer une
variable d'un type en un autre type "ala volée". (Exemple int(MyFloat))

Variable = Dividende % Diviseur;

Fonction Modulo qui retournele reste de la division d'un entier
par un autre. L'opérateur modulo ne fonctionne pas avec les variables
de type float. Ex: [7% 5% 2]1[9 % 5% 4][5% 5 » 0] [4 % 5 » 4]

NOTE : Si on désire obtenir la valeur entiére d'un modulo il
suffit de soustraire a Variable le résultat de 1'opérateur %.
Exemple : Val_entiere = Variable - (Variable % Diviseur);

Opérateurs composés.

Y = X++; // Affecte X a Y puis Incrémente X.

Y = ++X;//Incrémente X puis affecte sa valeurdans'Y.
Y = X--; // Affecte X a Y puis Décrémente X.

Y =--X;//Décrémente X puis affecte sa valeurdans'Y.

Y += X; // Equivaut a I'expression Y = Y+X;

. . o . . Forme
Y = X; // E,qwlvaut 8‘. I'expreSS|.on Y = Y—*X, d'écriture non
Y *= X; // Equivaut a I'expressionY =Y * X; conseillée.

Y /=X; // Equivaut a I'expression Y=Y/ X;

L'utilisation de ces opérateurs ne conduit a aucun gain de place pour le
programme. Mais ils demeurent potentiellement des sources d'erreurs
car la lecture de ces expression n'est vraiment pas naturelle.

Y &= X; (ETBIT a BIT) Y |=X; (OU BIT a BIT)

Les opérateurs composés BIT a BIT réalisent leur opérations au niveau
le plus élémentaire, celui des BITs individuels constituant les variables.
Y &= X; // Equivaut a I'expression Y = Y&X;

Y |= X; // Equivaut & lI'expression Y = Y|X;

X est une constante ou une variable entiere de type char, int ou long.
Y est une variable entiere de type char, int oulong.

Comme pour les opérateurs arithmétiques cette forme d'écriture n'est
pas avantageuse, préférer 1'opérateur d'affectation classique.

— P 18

Fonctions arithmétiques.

X =min(Valeur1,Valeur2);Retourne le plus petit des deux nombres.
(X=min(X,MAX) permet de maintenir X en dessous de MAX.)

X =max(Valeur1,Valeur2);Retourne le plus grand des deux nombres.
(X=max(X,MIN) permet de maintenir X au dessus de MIN.)

Valeur1 etValeur2: n'importe quel type de donnée.
X =abs(Y);Retourne la valeur absolue de Y. (Toujours positif)

Suite a la fagcon dont le compilateur implémente les instructions
min(), max() et abs() il faut éviter d'utiliser d'autres fonction
entre les parentheses, car de faux résultats peuvent en résulter.
min(X++, 100);// Fournit un mauvais résultat.

X++; min(X, 100); // Méthode correcte.

X = constrain(X,INF,SUP);
Fonction qui impose a la variable X de rester dans la plage de valeurs
située entreINF et SUP. Retourne la valeur de X si elle est contenue
dans la fourchette, INF si X est plus petit et SUP si X est supérieur.
(X=max(X,INF,SUP) maintien X dans la plage [MIN-MAX])

map(X, "Plage d'entrée", "Plage de sortie"); (Voir page 30)
X = pow(BASE,EXPOSANT);

Fonction qui retourne la valeur dufloat BASE élevée ala puissance
du float EXPOSANT. Les parametres BASE et EXPOSANT
comme constantes numériques peuvent €tre quelconques et en
particulier des fractionnaires. Le résultat retourné estundouble. La
fonctionpow() ne s'utilise qu'avec des variables de typefloat. Sion
propose des int, long, etc, le résultat sera erroné. Dans la syntaxe
décrite en ligne il est suggéré de transposer type "ala volée", mais les
essais personnels avec les exemples suggérés n'ont pas fonctionné. I1
semble donc impératif d'affecter aux parametres le typefloat.

X = sq(Y); // Equivalent & pow(Y,2);
Fonction qui retourne le carré deY d'un type quelconque.

X = sqrt(Y);// Equivalent a pow(Y,0.5);
Fonction qui retourne laracine carrée du type quelconque Y sous le
format d'unlong. Attention : Ne vérifie pas si Y est de signe positif.

NOTE : Avecpow() il est facile d'obtenir des cubes etc. Exemples :

X =pow(Y,3); // Y est élevé au cube.

X =pow(Y,0.33333333); // Y est éleveé a laracine cubique.

P 31
Fonctions de gestion du temps.
Temps_Ecoule_depuis_RESET = millis();
La fonction millis() sans parameétre retourne en millisecondes le
temps qui s'est écoulé depuis le redémarrage du microcontrdleur sous
la forme d'ununsigned long. Par un simple calcul on peut en déduire
que I'horloge interne de I'ATmega328 ne recyclera pas a zéro avant
une durée de : 4294967,295 / 86400 = 49,71 jours. (@)
Temps_Ecoule_depuis_ RESET = micros();
Fonction strictement analogue amillis(), mais retourne la valeur en
microsecondes avec une résolution de 4uS. Le débordement de
TIMER 0 se fait donc toutes les 4294,967 /60 = 71,6 minutes. (@)
delay(DUREE);
Fonction qui suspend le déroulement du programme pendant
DUREE millisecondes. Le programme est arrété, mais des activités
prioritaires sontdéclenchées par toutes les interruptions qui continuent
en tiche de fond. (Dialogue série RX, génération PWM etc). (@)

(@) : La valeur retournée étant un unsigned long, et des erreurs de
calculpeuvent se produire si le programme utilise des opérations
mathématiques avec d'autres opérandes qui ne sont pas des entiers.

(@) : Cette fonction fse sert du "TIMER 0" de ' ATmega328.

delayMicroseconds(DUREE);
Réalise une temporisation de DUREE microsecondes dont la valeur
ne doit pas dépasser 16383 pour que le délai soit parfaitement
respecté. La précision est obtenue a partir d'unminimum de 3uS. Pour
respecter la consigne, cette fonction désactive les interruptions durant
son exécution. Son codage spécifique ne faitintervenir aucun "Timer"
et ne perturbe pas le fonctionnement des interruptions. Donc a
privilégier pour des pauses courtes dans des routines d'interruption.

NOTE : Les procédures delay() ne sont réellement utilisables que
pour des délais tres courts car elles "stoppent" le programme. (Par
exemple SmS pour les dialogues série ...) Pour des temporisations
plus importantes qui doivent laisser le logiciel de base se dérouler, il
faut faire appel a des bascules booléennes gérées avec 1'horloge
millis(). Le petit programme Temporisation_sans_utiliser_delay.ino
en donne un exemple avec deux chronométrages simultanés.

— P 30

Transpositions de valeurs avec la fonction map_:

% nalysée en détail sur une fiche dédiée, la transposition de valeurs
y utilise des écritures logicielles personnelles. Mais ce besoin
en traitement se retrouve presque dans chaque programme. Le langage
C d'Arduino permet une simplification d'écriture pour faciliter la tiche
des développeurs. C'est la fonction map qui propose une option plus
directe informatiquement que de faire un "produit en croix". La fonction
map s'exprime sous la forme syntaxique suivante :
map(Num_en_Entrée, "Plage d'entrée",);
En tant que fonction,map retourne une valeur numérique de typeint

N

oulong quirésule d'un "produiten croix" a partirdeNum_en_Entrée.

nn

"Plage d'entrée" sera définie par deux entiers séparés parune ",".

nn

sera définie par deux entiers séparés parune ",".

A partir d’une valeur de Num_en_Entrée, d’un intervalle "Plage
d'entrée" et d’un intervalle , la fonction retourne la
valeur équivalente linéairement, comprise dans le deuxieéme intervalle.

Nous allons reprendre la transposition proposée Fig.1 sur la fiche :
Transposer la plage de [0 a 1024] en [] que nous avions codé :

Transposée = (uint32_t) Analog * 255/ 1023

Avec la fonction map cette écriture devient :
Transposée = map(Analog, 0, 1023,);

Cette technique résous le probléme de cohérence des variables abordé
en page 28. Les plages peuvent avoir des bornes avec signe négatif.
Par contre le résultat d'une fonction map est un entier. De ce fait la
transposition fait perdre les décimales éventuelles. C'est la raison pour
laquelle dans I'exemple ci-dessus on exprime la en
milli Volts. Il suffit ensuite de diviser par 1000 pour avoir le résultat en
Volts ce qui avec A0 = 2849V, donne en fonction du codage :

Transposée =(map(Analog, 0, 1023,)) /1000;

// Retourne 2.000 les décimales sont perdues. Les décimales /
/l sont perdues, car la division par 1000 se fait sur un entiers.
Transposée = map(Analog, 0, 1023,)

// Retourne 2849.000 mais dans un réel qui conservera les

/I décimales lors de la division par 1000.
Serial.printin(Transposée/1000); // Affiche correctement 2.849.

P19

Fonctions trigonométriques.

X =sin(ANGLE) ;Fonction qui calcule sous la forme d'undouble le
sinus du parametre ANGLE supposé exprimé en radians.

X =cos(ANGLE) ;Fonction qui calcule sous la forme d'undoublele
cosinus du parametre ANGLE supposé exprimé en radians.

X =tan(ANGLE);Fonction qui calcule sous la forme d'undoublela
tangente du parametre ANGLE supposé exprimé en radians. Pour les
valeursm/2 et27/3 ne retourne pas "infini" mais la valeur -22845570.

* Pour transformer ANGLE exprimé en degrés vers les radians :
Radians = ANGLE * PI/ 180;

* Pour avoir la cotangente d'un angle on peut coder :
X =cos(Radians)/sin(Radians) ;

Génération de nombres aléatoires.

X = random(MAX); (random est une fonction)
Génere un nombre pseudo aléatoire compris entre 0 etMAX-1.

X = random(MIN,MAX);
Génere un pseudo aléatoire compris entre MIN et MAX-1 quels que
soientles signes des bornes si elles sont données dans I'ordre croissant.

* Si aucun parametre n'est indiqué génére des valeurs de type long.

* Si MAX est négatif et indiqué sans MIN le signe négatif est ignoré.

* Si MAX est plus petit que MIN, ne génére que la constante MIN a

chaque appel de la fonction quel que soit le signe de MAX.

La séquence génere une suite de valeurs aléatoire tres longue, mais

systématiquement identique a chaque redémarrage du programme.

randomSeed(VALEUR)
Procédure qui impose a la séquence générée de démarrer en "un point
arbitraire".Sil'on désire obtenir une séquence différente a chaque
RESET, il faut que VALEUR soit une entité différente a chaque
redémarrage du programme. Dans ce butil est possible d'utiliser la
valeur retournée par lalecture d'une broche analogique non connectée,
par exemple avec l'instruction : randomSeed(analogRead(0)).
Par contre, sil'on désire utiliser des séquences pseudo-aléatoires qui
serépetent exactement a des fins de comparaison expérimentales par
exemple, il faut que le parametre VALEUR soit une constante, et
initialiser avant de faire appel ala séquence de générationrandomy().

— P 20
Les opérateurs LOGIQUES bit a bit :

M is a part I’opérateur de négation ~, les autres opérateurs sont
appliqués sur deux entités en relation binaire. Plus précisément

I'opération s'effectue bit a bit avec une correspondance directe en

fonction de leurs poids binaires.

L’opérateur de négation :

~ inverse chaque bit : Les "0" deviennent des "1" et réciproquement.

A noter que le type de la variable a une importance :

intx =B101; alors ~x;vaudraB1111111111111010 et non BO10.

Les opérateurs logiques standards :

*Le ET:B110 & B100; vaut B100 (Forcer des bits a zéro)

«Le OU :B110 | B100; vaut B110 (Forcer des bits a 1)

e Le OU exclusif : B110 A B100; vaut BO10 (Inverser des bits)
Noter que les formes compactes sont utilisables sur Arduino :

X &=Y est équivalent a X = X&Y. (Voir encadré page 31)

X|=Y est équivalent a X = X|Y.

X A=Y estéquivalent a X = X"Y.

Exemples : Programme Travail_sur_les_ OP_LOGIQUES.ino.
Décalage a GAUCHE.

Les bits qui "sortent" sont perdus, et les bits insérés sont des zéros.
L’opérateur est << et le deuxieme parametre est le nombre de décalages
a gauche qui seront effectués, donc le nombre de zéros ajoutés a droite.
Siint X=B101, X << 2; vaudra B10100 Les fonctions

et X << 14; vaudra B100000000000000. SHIFT -

Décalage a DROITE.

Les bits qui "sortent" sont perdus, les bits ajoutés ne sont pas forcément
des zéros. Plus précisément, si la variable est signée (De type char,
intou long), ils auront la méme valeur que le bit le plus a gauche : 1y
a extension du signe. Si la variable n’est pas signée, le comportement
classique s’observe : Des zéros sont systématiquement ajoutés.

int X=B1000000000001010; ¢ X >> 2; vaudra B1110000000000010
unsigned int Y =B1000000000001010;

*Y >> 2; vaudra BO0O10000000000010

La solution pour imposer un comportement standard a X consiste a le
transtyper : (unsigned int)X >> 2 vaudra BO010000000000010.
Exemples : Programme SHIFT et PORTS.ino.

P 29 —
Forcer la taille des données dans un calcul :

ans l'exemple de la page 28 il suffit de donner a la variable

Commande le type unsigned long et l'affectation devient
homogene. Mais ce n'est pas idéal car une variable qui peut étre
contenue sur deux octets va alors en exiger le double. En C, tous
compilateurs confondus, ce n'est pas le type de la variable "calculée"
(Celle a gauche de l'opérateur d'affectation "=") qui définit le type du
résultat mais le type le plus étendu des variables impliquées dans
I'expression définissant le traitement : Le calcul est effectué avant
I'affectation, c'est lui qui impose le format. Une solution, sans user de
variables surdimensionnées existe, il suffit de forcer le calcul a une "taille
suffisante" lors du calcul. On nomme ¢a effectuer un cast. Le codage
consiste a faire précéder I'expression de calcul d'une directive de type :

(uintNN_t) ot NN est le nombre de bits réservés aux éléments durant
le calcul. (Exemples : (uint16_t), (uint32_t), (uint64 _t))
unsigned int Commande;// Valeur mesurée pour éclairer.
unsigned long Eclairage_LED;// Valeur pour PWM.
void loop() {
Commande = analogRead(Commande_lumiere);
Eclairage_LED = (uint32_t) Commande * 255/ 1023;
analogWrite(LED,Eclairage_LED); }

Avec l'ajout de (uint32_t) avant la définition de 1'expression de calcul
la variable de réception Eclairage_LED fait toujours 16 bits, mais les
calculs sont forcés en 32 bits. Donc les résultats intermédiaires se font
sans €tre tronqués avec de l'interprétation "en complément a deux".
Une fois I'expression calculée, les 32 bits présentent des zéros en téte
et seul les poids faibles sont affectés a la variable Eclairage_LED.

[0[o[o[o[o[o[o[o[0]0[0[0]0[0]0]o]050]0]040l0(040(1]041[1[140[1]0]

Utilisation des E/S binaires :

Utiliser un B.P. pour générer une action.

Exemple avec un B.P. qui appuyé génere un "0" logique :

const byte BoutonPoussoir = 12; // Entrée 12 pour tester.
if ((digitalRead(BoutonPoussoir) == 0)) {Actions;} ;

Pour une action sur état logique "1" prendre ==1 dans le test.

—P 28

Probléme de cohérence du type des variables :

Y estun aspect du compilateur qui peut engendrer des résultats
erronés alors que fondamentalement le choix du type des
données n'arien d'illogique. L'évaluation d'un calcul ou d'une expression
d'un test pour une structure if peuvent provoquer des dysfonctionnements
sournois pas faciles a déceler lors de la mise au point d'un programme.
Exemple pour un calcul utilisant des entiers.
Le programme Pilotage Analogique_ LED.ino est cohérent au
sens mathématique. On multiplie deux entiers, donc c'est homogeéne :
unsigned int Commande; // Valeur mesurée pour éclairer.
unsigned long Eclairage_LED;// Valeur pour PWM.
void loop() {
Commande = analogRead(Commande_lumiere);
Eclairage_LED = Commande * 255/ 1023;
analogWrite(LED,Eclairage_LED); }

Commande varie entre [0 et 1023] donc choisirunsigned int pour
rester dans la plage des valeurs et travailler avec des entiers positifs.
Eclairage_LED doit varier entre [0 et 255] mais choisir le type
unsigned long car le calcul rouge peut arriver ala valeur calculée de
1023 * 255 = 260865. Pour transposer [0 a 1023] en [0 a 255] le
calcul consiste a diviser par 1023 et multiplier par 255, mais il faut

commencer par la multiplication car on travaille avec des entiers et
255/ 1023 donnerait 0,25 donc zéro.

Le résultat du calcul et la valeur envoyée a PWM sont incorrect car les
deux coté de I'expression d'affectation ne sont pas de types homogenes.
Eclairage_LED varie de 0 a 30 pour 635 puis saute a 4294967268 a
partir de 655 environ. (Quatre fois sur la course du potentiometre)

CONCLUSION : Si un traitement réalise des opérations
arithmétiques, toutes les variables de I'expression doivent étre du
méme type et d'une taille qui accepte la plus grande valeur
intermédiaire pouvant étre générée dans les calculs.

P 21—

Opérateurs booléens et masques logiques.

Il importe de ne pas confondre &&, l'opérateur ET utilisé dans des
expressions booléennes avec l'opérateur logique & utilisé avec des
masques logiques dans les instructions bit a bit.

De la méme facon, ne pas confondre | |, l'opérateur OU dans des
expressions booléennes avec 1'opérateur |, pour le OU bit a bit.

Les fonctions orientées OCTETS :

lowByte(Data);
Fonction qui retourne 'octet de poids faible(Situé le plus a "droite")
d'une variable enti¢re >>>Data : byte, char, word,int, long.
highByte(Data);
Fonction qui retourne I'octet de poids fort d'une variable entiere.
(Situé le plus a "gauche d'un type word ou le second pour une
variable de taille plus grande")Data :byte, char, word,int, long.
Les fonctions orientées BITS :

bitRead(Data,N);
Fonction qui retourne "0" ou "1" en fonction du BIT de positionN
testé dans la variableData. Le rang du bit a lire estN, en partant de
0 pour le bit de poids faible. Ne vérifie pas un débordement surN.

bitSet(Data,N);
Procédure qui forcea"1"le BIT derangN dansData. Le rang du bit
estN, en partant de O pour le poids faible sans vérifier le débordement.

bitClear(Data,N);
Procédure qui force 2a"0" le BIT derangN dansData. Le rang du bit
estN, en partant de O pour le poids faible sans vérifier le débordement.

bitWrite(Data,N,);
Procédure qui forceal' logique le BIT de rangN dansData.
Lerang dubitestN, en partant de O pour le poids faible sans vérifier
le débordement. peut étre une variable booléenne. Toute
valeur supérieure a 0 pour se traduira par I'écritured'un"1" .

bit(N);
Fonction qui calcule la valeur numérique d'un bit spécifié.(Retourne
2 élevé a la puissance du bit indiqué : 2°=1, 2'=2, 2?=4, etc)

(Voir également Utilisation des E/S binaires en page 26)

— P 22

P 27—

Travail sur les ports de I'ATmega328 :

|| es registres des PORTS d'E/S permettent la manipulation plus
rapide des broches d'interfacage du microcontrdleur utilisé sur
une carte Arduino. Les controleurs de la famille AVR (ATmega8 et

AT.mega]68), qusédent * B pour les E/S binaires de 8 4 13,
trois ports spécifiques : * C pour les Entrées Analogiques,
* D pour les E/S binaires de 0 a 7.

Chaque port du micro contrdleur est géré par trois "variables registres"
(Identificateurs réservés) définies dans le langage C d'Arduino.
L’identificateur DDRx :

C'est le registre de direction des données qui détermine si la broche
relative est une Entrée ou une Sortie en fonction de 1'état "0" ou "1".

* En écriture définit le sens des données BIT a BIT.

*Enlecture permet de saisir 1'état actuel d'initialisation de ce registre.

DDRx [0[1/0[1]0]1[1]0]
PORTx |E|S|E|S[E[S[SIE]
DDRB = B00111001; // Force 4 sorties : D8, D11, D12 et D13.
DDRD = DDRD | B11111100; // Force 6 sorties sans changer 0 et 1.

L’identificateur PORTX : 5vec Ecriture dans PORTX +5Vce
C'est l'instruction qui permet Résistances internes 30kQ a 60kQ

de forcer des états logiques nqufmquinguningulmou g ningmng
dans les BITs du registre de JC == JL = J II"
données qui sont initialisés en _@ IE‘ |E| I—E‘—|
sorties. Les broches qui sont

forcées en entrées voient 1'utilisation de larésistance interne de forcage
du niveau haut connectée sur un état '"1", et isolée sur un état ""0Q"'.
Lecture dans PORTx Une lecture dans PORTX retourne
T ooy les valeurs qui ont €té €crites dans le
1%"1%"0" "0 "0"|"1"|"0" ™1 registre quiimpose les états sur les

{Fﬁﬁﬁﬁﬁﬁﬁ broches de sorties. Les valeurs lues

II1 " ||1 " IIO" llO" IIO" ||1 " ||O" II1 " Sur les bits Correspondant a des
entrées ne sont pas influencées par

= = +5v)
e e @ﬁb d@ I'état électrique de la broche
correspondante, mais uniquement par 1'état des bits qui conditionnent la
mise en service ou l'isolation de la résistance interne de for¢cage de niveau.

Les Entrées / Sorties évoluées.

tone(Broche, Frequence, Durée);

Procédure qui géneére une onde carrée de Frequence spécifiée sur
une Broche quelconque d'E/S. La Durée exprimée en millisecondes
peut étre précisée, sinon le signal continue jusqu'al'appel de I'instruction
noTone(). Une seule note peut étre produite a la fois. Si une note est
déja générée sur une autre broche, 1'appel de la fonction tone() n'aura
aucun effet tant qu'une instruction noTone() n'est pas rencontrée dans
le programme. Si la note est requise sur la méme broche, 1'appel de la
fonctiontone() modifierala fréquence de I'onde générée. Toute broche
d'E/S d'Arduino peut étre utilisée, y compris les "entrées analogiques".
La déclaration en OUTPUT de Broche n'est pas nécessaire.

ATTENTION : Une fois déclenchée la génération du signal est
autonome. Si avant la fin de Durée une instruction tone() est

rencontrée dans le programme, la signal sera généré "en continu".
noTone(Broche);
Procédure qui stoppe sur Broche la génération du signal carré
déclenchée par l'instructiontone(). Cette instruction ne provoque

aucun effet si aucune tonalité n'est en cours de génération.

pulseln(Broche, ETAT,);

Fonction qui retourne la durée d'une impulsion de niveau ETAT
mesurée sur Broche configurée en ENTREE. Elle attend que Broche
passe aETAT, puis effectue le chronométrage jusqu'au niveau contraire,
stoppe la mesure et retourne la valeur exprimée en puS. Si l'option

est précisée, il y a sortie de la fonction et retour de la valeur O si aucune
impulsion n'est survenue dans le spécifié en uS. (Valeur par
défaur 15) La plage fiable de mesures se situe entre 10uS et 3 minutes.

shiftOut(Data, CLOCK, OrdreTX, OCTET);
Procédure de type SPI pour un protocole de communication série
synchrone. Emet un par un les bits d'un OCTET de données dans
I'ordre fixé par OrdreTX sur la broche Data apres quoi la broche
CLOCK est inversée pour indiquer que le bit est disponible. Les deux
entités sont synchronisées et communiquent a vitesse maximale car
elles partagent la ligne CLOCK. Le parametre OrdreTX est défini par
MSBFIRST ou LSBFIRST. La broche Data et la broche CLOCK
doivent toujours étre configurées en SORTIES a 1'aide de pinMode().

int Valeur = 500; // il faut deux octets pour transmettre cette valeur.

shiftOut(Data, CLOCK, MSBFIRST, (Valeur >> 8)); // Décalage de 8 bits
vers la droite pour isoler les bits forts.

shiftOut(Data, CLOCK, MSBFIRST, Valeur);// Envoyer |'octet LSB.

—P 26

P 23

Les Entrées / Sorties binaires : Fig.1 &«

X

A rduino-Uno dispose de quatorze 1 R
broches d'Entrée/Sortie binaires dont ~ |
six peuvent fonctionner en mode PWM. 1.4Vee |
(Voir page 25) Mais si ce nombre est insuffisant, utiliser les entrées
analogiques comme des SORTIES binaires s'impose. Noter également
que la broche binaire 13 est reliée a une LED et sa résistance de limitation
de courant soudées sur le circuit imprimé de la carte Arduino. (Fig./)
Activer la résistance interne de rappel (Voir plus bas) force la tension
aenviron 1,4V aulieu des 5V théoriques. Il faut donc en tenir compte.
pinMode(Broche,Mode);

Configure la Broche spécifiée pour qu'elle se comporte soit en

entrée, siMode est défini parINPUT, soit en sortie avecOUTPUT.

digitalRead(Broche); i Fig.2
Fonction qui lit1'état logique deBrocheet +5V - ——-— i—
retourne les entiers "0" ou"1" en fonction de R
la tension présente surlabroche déclaréeen +4V : t
ENTREE. Ces valeurs numériques sont | rue
interprétées comme des étatsfalse ettrue VT | ~2 BV
par les opérateurs logiques. Si la broche oy e fet it
n'est pas connectée, les tensions statiques * =2,2V :
quis'y trouvent génerentdes états aléatoires. 4, L "0" |
La valeur de 1'état logique retournée est false |
fonction de latension présente sur l'entrée 0V t .

Binaire. La Fig.2 donne les valeurs, avec un 1éger effet "Trigger de
Schmitt" au franchissement du seuil de référence. Naturellement la
broche doit avoir été déclarée en entrée avecpinMode. Enfin, si un
état extérieur n'est pas forcé, il faut, avec l'instruction spécifique
digitalWrite(Broche, HIGH); activer le "rappel interne au +Vcc".
>>> Voir |'utilisation logique des Entrées en bas de la page 24.
digitalWrite(Broche, Etat);
Force unniveaulogique "1" avecHIGH ou un état logique "0" avec
LOW sila Broche est déclarée en SORTIE avec pinMode. Si la
broche est déclarée en ENTREE, HIGH valide la résistance
de rappel interne de "pullup" de 20 kQ ou passe l'entrée en mode
haute impédance avec la constante prédéfinie LOW.

byte Etat_port_B;
void setup() {DDRB =B110011; // Impose 4 sorties sur le port B.
PORTB = B011001; // Impose 4 états initiaux en sortie.}
voidloop() {
Etat_port_B = PORTB;// Lecture du port B. @
DDRB =B111111;// Passe B en six sorties pour afficher la lecture @.
PORTB = Etat_port_B; }// Recopie sur les LED I'état lu en @.
Dans I'exemple ci-dessus B2 est isolée et en B3 la résistance de forcage
du niveau haut est mise en service. En rouge les états logiques sont
recopiés sur les quatre sorties. En lecture @ on va obtenir 011001
quels que soient les états logiques sur les entrées B2 et B3.
L’identificateur PINx :
Cette instruction en LECTURE permet de saisir simultanément 1'état de
toutes les broches déclarées en entrées sur le PORTX. En lecture sur
des bits de sorties on retrouve 1'état logique de ces dernieres.
PORTD = PINC; // Recopier sur 0 a 5 I'état des entrées Analogiques.
if (PINB & 4) {Action du if}; // Réalise I'action si B10 = "1".
Contrairement aux informations trouvées sur Internet qui stipulent que
PINX ne fonctionne qu'en lecture, on peut affecter PINx en écriture.
Cette instruction utilisée en ECRITURE permet d'INVERSER 1'état
LOGIQUE des SORTIES avec un 1'état "1" sur le bit correspondant.
Les sorties associées a un état logique "0" ne sont pas affectées.
void setup() {DDRB =B00111111; // Impose 6 sorties sur 8 a 13.
PORTB = B001100; } // Impose 6 états initiaux en sortie.
void loop() {
PINB = B101010; // Inverse 3 sorties sans modifier les autres.
delay(200);}

Circuit minimal pour un ATmega328 :

M émoire de ' ATmega328 programmeée, le microprocesseur peut

fonctionner avec trois fois rien. Broche 7 au +5Vcc, Broche 8
(Ou broche 22) ala masse. Un quartz quelconque entre les broches 9
et 10 et le circuit fonctionne. Normalement les broches 9 et 10 doivent
étre reliées a la masse par un condensateur de 12pF a 22pF. Lors des
essais ces deux composants n'étaient pas branchés, les capacités
parasites étant suffisantes pour faire osciller sans probléme des quartzs
dont la fréquence était comprise entre 1,8MHz et ISMHz.

— P 24

Les Entrées analogiques :

L a fonction de transfert N = k * V du CAN d'Arduino est agencée
pour retourner des valeurs comprises entre 0 et 1023 quand la
tension en entrée An varie entre 0 et . Le temps de conversion
avoisine 100uS, la fréquence maximale d'échantillonnage est donc de
10 kHz. Fonctionnant en haute impédance, une entrée analogique laissée
"en l'air" retourne les valeurs fluctuantes des tensions électrostatiques.
analogRead(Broche_analogique); (Voir encadré en bas de page 39)
Fonction qui retourne I'équivalent numérique de la tension présente
sur Broche_analogique. Le CAN de 10 bits géneére une valeur
comprise entre 0 et 1023 quand la tension en entrée par défaut varie
entre 0 et +5Vcc. La résolution est donc de : 5/1024 =4,88 mV.
Avec cette fonction les broches sont implicitement des entrées et le
parametre Broche_analogique peut prendre les valeursde 0 a 5.
analogReference();
Procédure qui impose la référence pleine échelle du CNA.
: DEFAULT, INTERNAL ou EXTERNAL.

* DEFAULT : La valeur de référence pour 1023 est +5 volts.

* INTERNAL : Une tension de référence interne égale a 1,1 volts.

« EXTERNAL : Latension de référence est prise sur la broche AREF
utilisée en tant que de tension.Il est fortement recommandé
d'insérer une résistance de protectionR d'environ 4,7 kQ en entrée
de AREF pour éviter des dégradations internes a 1'Atmega si la
configuration logicielle de l'instruction analogReference est
incompatible avec l'intensité qui résulterait d'un branchement externe.
(AREF passe en basse impédance avec le parametre INTERNAL)
R diminue la tension qui seraréellement utilisée comme référence, car
il y a une résistance interne de 32 kQ sur la broche AREF.

Entrées Analogiques utilisées en SORTIES :

Bien que fondamentalement dédiées aux fonctions d'entrées analogiques,

les six broches An fonctionnent également de fagon banale si elles sont

initialisées en sorties. Pour les différencier des autres broches Dn elles
sont par convention notées de 14 pour A0 a 19 pour A5. Exemple :
pinMode (15, OUTPUT);// L'entrée A1 devient une sortie.
digitalWrite(15, LOW); // Etat LOW ou HIGH naturellement.

digitalWrite(15, HIGH); active également une résistance de pullup
interne qui force une tension de +5Vcc si AS est initialisée en ENTREE.

Les sorties analogiques PWM :

C ontrairement a ce que laisse supposer le terme ANALOGIQUE
utilisé pour les sorties PWM 3,5,6,9, 10 et 11, il s'agit bel et
bien de sorties binaires pouvant fonctionner en mode impulsions a
modulation de largeur. (Pulse Width Modulation) Le rapport cyclique
est directement proportionnel a la valeur N passée en parameétre :
analogWrite(Sortie_ PWM, N)

Sortie. PWM : Numéro de la broche de sortie utilisée.

N : Valeur qui impose la durée au niveau 1.

La fréquence de répétition mesurée est de 490 Hz avec une période
T = 2042 pS pour PWM 3,9, 10 et 11. Pour les sorties PWM 5 et 6
lafréquence de répétition mesurée est de 976 Hz avec une période
T = 1025 pS. La Fig.1 montre un dessin des signaux observés avec un
oscilloscope sur une carte Arduino Uno en fonction de la valeur de N.

Fig.1] SRR ®

| =2 mS N =
+5vce I
i =~ 500 pS (B)
~ 1000 pS N =128
=——— = 1025 uS = @
~ 2042 uS N =254

Utiliser une sortie déclarée PWM en mode BINAIRE pur :

* Quand N =0 la sortie reste en permanence a 0 V.
e Quand N =255 la sortie reste constamment a = 5 VCC.

Le programme Test_mesure_analogique.ino recopie sur la sortie
PWM n°3 la valeur de la tension mesurée sur l'entrée analogique AO.
(Valeur moyenne puisque le signal est pulsé et de forme "carrée”

Noter que pour convertir une valeur mesurée en une donnée valide sur
un octet il suffit de diviser la "définition" du CNA par quatre.

P 25

